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Abstract: Due to their advantages of high power density and high efficiency, permanent magnet
synchronous machines (PMSMs) are widely used in the field of electric vehicles (EVs). Vibration
and noise are important indicators for evaluating the performance of PMSMs, and the skewed slot
method is now widely used to mitigate the torque ripple and noise of motors. In the vector control
strategy, the space vector pulse width modulation (SVPWM) method produces sideband voltage
harmonics with a frequency near the switching frequency. These harmonics act on the magnetic field
to generate an excitation force with a frequency near the switching frequency. This paper compares
and analyzes the sideband harmonic current and the exciting force of a skewed slot motor and a
straight slot motor during steady-state operation. The research results show that the skewed slot
method can effectively mitigate the vibration and noise caused by sideband harmonics.

Keywords: permanent magnet synchronous machine (PMSM); skewed slots; space vector pulse
width modulation (SVPWM); sideband harmonic; vibration noise

1. Introduction

Noise pollution, air pollution, water pollution and solid waste pollution are the four
major pollutions in the world today. Noise pollution is a kind of environmental pollution.
It has become a major hazard to humans. Working in a noisy environment for a long
time will cause a series of physiological and pathological changes in the human nervous
system, cardiovascular system, endocrine system and digestive system [1,2]. The main
sources of motor vibration and noise can be divided into three categories: aerodynamic
noise, mechanical noise and electromagnetic noise [3]. With the improvement in design
and manufacturing level and the continuous improvement in processing technology, the
noise generated by mechanical vibrations in motors has been effectively mitigated, and
the aerodynamic noise in motors is also small. The main source of vibration and noise in
motors is electromagnetic vibration noise.

In the EV industry, comfort is an important index to evaluate its performance. The
comfort level of the human body refers to the comprehensive influence of various meteo-
rological factors on the physiological functions of the human body, such as heat balance,
temperature regulation, the endocrine system and the digestive organs. Continuous, high-
intensity vibration and noise will lead to the driver’s sense of pressure and fatigue, which
is the manifestation of discomfort. PMSMs are widely used in electric vehicles due to their
high efficiency, low temperature rise and high power density [4–6]. Therefore, improving
the performance of PMSMs has become a significant research direction. In the motor
design process, skewed slot stator is usually used to mitigate air gap magnetic density
harmonics [7,8]. When the slot pitch of the skewed slots is exactly the wavelength of the
υ th spatial harmonic, the υ th harmonic magnetomotive force in the conductor will be
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offset. Therefore, compared with straight slot motors, the distribution of the air gap flux
density and excitation force density in skewed slot motors is different [9,10].

Vector control, also known as field-oriented control (FOC), is a technology that uses
a frequency converter (VFD) to control a three-phase AC motor and adjusts the output
frequency and output voltage of the frequency converter. The amplitude and angle are used
to control the output of the motor. Its characteristic is that the magnetic field and torque of
the motor can be controlled separately, similar to the characteristics of a separately excited
DC motor [11]. Since the three-phase output current and voltage are expressed as vectors
during processing, it is called vector control. When the motor control adopts vector control,
a variety of current harmonics of different frequencies will appear in the stator windings of
the motor. In the low-frequency band, the order of the current harmonics of the integer
slot motor is 6k ± 1 (k = 1, 2, 3 . . .); in the high-frequency band, because the vector control
strategy usually adopts SVPWM modulation technology, the actual voltage of the inverter
is a series of PWM waves with equal amplitudes and unequal duty cycles that are used to
be equivalent to sine waves. Fourier decomposition of the PWM waves can obtain high-
order harmonic components. These harmonic frequencies are usually distributed in the
switching frequency of the inverter and near the multiple frequency [12–15]. The frequency
of the voltage output by the inverter is as follows: k fs + n f1 ( fs is the switching frequency,
and f1 is the fundamental frequency), when n = 1, 3, 5, . . . , k = ±[3(2l − 1) ± 1], where
l = 1, 2, 3 . . .; when n = 2, 4, 6, . . . , k = ±[3(2l − 1)± 2], where l = 1, 2, 3 . . . These
current harmonics will cause exciting force harmonics in the motor, whose frequency is
close to the switching frequency [16–18].

The skewed slot method can mitigate the harmonic content of the air gap magnetic
density in the air gap and mitigate the excitation force density. Considering the actual
operation of the motor, due to the on/off of the inverter, an excitation force with a frequency
near the switching frequency is introduced. This article examines the sideband current
harmonics and vibration in a skewed slot motor to verify whether the skewed slot method
can effectively mitigate the vibration caused by the inverter.

2. Modeling and Simulation

Based on Matlab/Simulink and Ansys software, a co-simulation model of the vector
control strategy of a skewed slot motor and a straight slot motor is established. A motor
structure diagram of the skewed slot motor is shown in Figure 1. Some important parame-
ters of the motor are shown in Table 1. The inclination of the stator winding of the skewed
slot motor is 7.5◦, and the switching frequency of SVPWM is 10 kHz. Because its multiple
frequency exceeds the hearing range, only the sideband harmonics near the switching
frequency are analyzed.

Table 1. Motor parameters.

Parameters Value

Number of stator slots, z 48
Number of pole pairs, p 4

Stator outer diameter, Dso 180 mm
Rotor outer diameter, Dro 122.2 mm

Axial length, Lax 96 mm
Rated power, P 10 kW

Rated rotating speed, nN 3000 rpm
Rated torque, TN 32 N·m

Under a 32 N·m load and 1000 rpm and 3000 rpm speed, the waveforms of the phase A
current of the skewed slot motor and the straight slot motor are as shown in Figures 2 and 3,
respectively. It can be seen that the phase current waveforms of the skewed slot motor at
the two speeds have good sinusoidal properties, and the current distortion rate is low. At
3000 rpm, the phase current waveform of the straight slot motor is flat at the peak value,
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and the current distortion rate is high and does not have good sinusoidal properties. At
1000 rpm, it can be seen from the waveform that the harmonic content of the low-frequency
current of the straight slot motor is significantly higher than the harmonic content of
the low-frequency current of the skewed slot motor. The use of a skewing slot structure
in the stator winding of the motor effectively mitigates the current harmonics, thereby
significantly optimizing the performance of the motor.
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Fourier decomposition is performed on the currents obtained in the two operating
states, and the main current harmonic content at 32 N·m load and 1000 rpm speed is
obtained as shown in Table 2. It can be seen that the 5th and 7th harmonic contents of the
skewed slot motor and the straight slot motor are not much different, and the amplitude
is small, while the 11th and 13th harmonic current amplitudes of the straight slot motor
are 5.81 A and 5.53 A, respectively, much larger than the amplitude of the 11th and 13th
harmonic currents of the skewed slot motor. The main current harmonic content at 32 N·m
load and 3000 rpm speed is shown in Table 3. The 5th and 7th harmonic contents of the
skewed slot motor and the straight slot motor are not much different, and the amplitude is
small, within 1 A. The amplitude of the 11th harmonic current of the straight slot motor
is 1.61 A, and the amplitude of the 11th harmonic current of the skewed slot motor is
only 0.36 A. The 11th harmonic current of the skewed slot motor is much smaller than
that of the straight slot motor. The skewing slot structure has a very obvious effect on the
attenuation of tooth harmonics. Compared with straight slot motors, skewed slot motors
are not suitable for industrial automation production. For example, the production of a
skewed slot motor requires manual wiring, which increases the possibility of winding
insulation damage. Therefore, the manufacturing cost of a skewed slot motor is higher
than that of a straight slot motor. The advantage of the skewed slot motor is that it can
effectively weaken the tooth harmonics of the motor, thereby significantly weakening the
cogging torque and improving the running performance of the motor.

Table 2. Current harmonic amplitude at 1000 rpm and rated load.

Harmonic Order Skewed Slots Straight Slots

5 0.72 A 0.42 A
7 0.30 A 0.65 A
11 0.10 A 5.81 A
13 0.28 A 5.53 A

Table 3. Current harmonic amplitude at 3000 rpm and rated load.

Harmonic Order Skewed Slots Straight Slots

5 0.68 A 0.91 A
7 0.42 A 0.41 A
11 0.36 A 1.61 A
13 0.31 A 0.42 A

The high-frequency current harmonics caused by the frequency converter are analyzed.
The Fourier decomposition results of the phase currents obtained under stable operation at
a speed of 1000 rpm and a load torque of 32 N·m are shown in Figure 4a. It can be seen that
there is no obvious difference between the sideband current harmonics generated by the
inverter for the skewed slot motor and the straight slot motor, and the maximum harmonic
amplitude is about 0.4 A. The Fourier decomposition results of the phase current obtained
under the stable operation state at a speed of 3000 rpm and a load torque of 32 N·m are
shown in Figure 4b. The sideband current harmonics of the two motors have peaks at the
frequencies of fs ± 2 f1, 4 f1, which is consistent with the theoretical results. Compared
with the straight slot motor, the sideband harmonic current of the skewed slot motor has
a significantly smaller amplitude. At 3000 rpm, the skewed slot method can effectively
mitigate the sideband current harmonics.
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By comparing the sideband currents of 1000 rpm and 3000 rpm, it can be seen that
the amplitudes of the sideband currents of the two motors are between 1 A and 2 A at
3000 rpm, while the amplitudes of the sideband currents of the two motors are both smaller
at 1000 rpm. On the whole, the higher the speed, the greater the amplitude of the sideband
current. The sideband current increases as the speed increases.

Under the running state of 1000 rpm and 32 N·m, the space and time order distribu-
tions of the excitation force of the straight slot motor and the skewed slot motor near the
switching frequency are shown in Figures 5 and 6, respectively. The value of f1 is equal to
66.67 Hz, and fs = 10, 000 Hz = 150 f1.
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Figure 6. Two-dimensional Fourier decomposition results of the excitation force of the skewed slot
motors at 1000 rpm.

It can be seen that the harmonic amplitudes of the excitation force of the two motors
are larger in the 0th and 8th spatial orders. When the space order is 0 and the time frequency
corresponds to fs + 3 f1, the amplitude of the exciting force density of the two motors is
relatively large. When the space order is 8 and the time frequency corresponds to fs + f1,
5 f1, the amplitude of the exciting force density of the two motors is relatively large. The
harmonic distribution of the excitation force near the switching frequency is not completely
consistent with the harmonic distribution of the excitation force caused only by sideband
harmonics. This is because the amplitude of the sideband current is not significantly larger
than that of other high-frequency harmonic currents when the rotating speed is low.

Under 3000 rpm and 32 N·m operating conditions, the spatial and time order distribu-
tions of the excitation force of the straight slot motor and the skewed slot motor near the
switching frequency are shown in Figures 7 and 8, respectively. The value of f1 is equal to
200 Hz, and fs = 10, 000 Hz = 50 f1.
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Figure 8. Two-dimensional Fourier decomposition results of the excitation force of the skewed slot
motors at 3000 rpm.

It can be seen that the harmonic amplitudes of the excitation force of the two motors
are larger in the 0th and 8th spatial orders. When the space order is 0 and the time frequency
corresponds to fs ± 3 f1, the amplitude of the excitation force of the two motors is larger.
When the space order is 8 and the time frequency corresponds to fs − f1, fs + 5 f1, the
amplitude of the excitation force of the two motors is larger, as shown in Table 4. In the
four different orders of (0, 47), (0, 53), (8, 49) and (8, 55), the exciting force of the skewed
slot motor is mitigated to a certain extent compared with that of the straight slot motor.

Table 4. Amplitude of excitation force obtained by two-dimensional Fourier decomposition.

(Space Order, Time
Order) Skewed Slots/Pa Straight Slots/Pa Weaken Proportion

(0, 47) 1690.197 1799.291 6.45%
(0, 53) 2318.406 2506.543 8.11%
(8, 49) 1094.235 1236.586 13.01%
(8, 55) 844.8169 923.367 9.30%

The spectrograms of the two motors at 1000 rpm and 3000 rpm are shown in Figure 9a,b.
At 1000 rpm, due to the small current harmonics, there is no obvious difference in the
excitation force harmonics of the two motors. At 3000 rpm, the exciting force harmonics
peak at frequency fs ± f1, 3 f1, 5 f1. The excitation force distribution of the two motors is
similar, and the harmonic amplitude of the skewed slot motor is significantly smaller than
that of the straight slot motor.
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3000 rpm.

The order corresponding to the peak value is shown in Table 5. It can be seen that at the
frequencies of 9400 Hz, 9800 Hz, 10,200 Hz, 10,600 Hz and 11,000 Hz, the excitation force
harmonics of the skewed slot motor are significantly smaller than those of the straight slot
motor, and at the frequencies of 10,200 Hz and 10,600 Hz, the amplitude of the excitation
force harmonics of the straight slot motor is compared with that of the skewed slot motor.
The amplitude of the excitation force harmonics of the skewed slot motor decreased by
more than 10%. It can be considered that the skewed slot method has a certain effect on
weakening the sideband excitation force caused by the frequency converter.

Table 5. Amplitude of excitation force obtained by one-dimensional Fourier decomposition.

Exciting Force
Harmonic

Frequency/Hz
Skewed Slots/Pa Straight Slots/Pa Weaken Proportion

9000 854.172 751.0238 −12.07%
9400 1850.119 1911.404 3.31%
9800 1442.411 1566.67 8.61%

10,200 1617.312 1798.004 11.17%
10,600 2644.036 2945.897 11.42%
11,000 1403.132 1499.958 6.90%

3. Experimental Verification and Discussion

In order to analyze the current harmonics of the motor caused by the inverter in
the stable operation state, a motor experiment platform is built. The prototype assembly
diagram is shown in Figure 10a. The stator structure is shown in Figure 10b. The exper-
imental motor has the same structural parameters as the skewed slot motor used in the
simulation. The operating conditions are set to 1000 rpm, and the load torque is 32 N·m. In
the experiment, a dynamometer is used to apply a load torque, and a current clamp probe
detects the current.

The experimental current waveform is shown in Figure 11a. The three-phase current
waveform has a good sinusoidal property. The frequency spectrum obtained by the Fourier
decomposition of the phase A current is shown in Figure 11b. The harmonic distribution
of the frequency near the switching frequency obtained by the experiment is consistent
with the theory, and the amplitude of the current harmonics appears at the frequency of
fs ± 2 f1, 4 f1.
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The experiments are carried out at 1000 rpm, no load and 1000 rpm rated load,
respectively. The current waveforms in the two operating states are obtained, and the
Fourier decomposition of the currents in the two states is performed to obtain the current
spectrum distribution as shown in Figure 12. It can be seen that the difference in the
amplitude of the sideband current caused by the inverter is very small under the no-load
and rated load operating conditions. It can be considered that the load has little effect on
the sideband current and vibration caused by the inverter.

World Electr. Veh. J. 2021, 12, x FOR PEER REVIEW 10 of 13 
 

 
Figure 12. Sideband current at load and no load. 

The rated load was applied, and the skewed slot motor was tested at three different 
speeds of 500 rpm, 750 rpm and 1000 rpm to obtain the three-phase current waveforms 
under three working conditions and to perform Fourier decomposition on one of the 
phase currents and obtain its spectrum distribution as shown in Figure 13a,b. As shown 
in the frequency spectrum distribution near the switching frequency of the inverter, it can 
be seen that near the switching frequency, the current harmonic amplitudes correspond-
ing to different speeds are different. At 1000 rpm, the current has obvious spikes at 𝑓 ±2𝑓 , 4𝑓 , and it is significantly larger than the current amplitude at 500 rpm and 750 rpm. 
The current amplitude at 750 rpm is obviously larger than the sideband current at 500 
rpm. As the speed increases, the amplitude of the sideband current in the skewed slot 
motor increases significantly. As shown in the frequency spectrum distribution of the low-
frequency current, at several different speeds, the amplitude of the current harmonics is 
not much different, but the frequency of the peaks is different. This is because the funda-
mental frequency of the current is different at different speeds. 

Shown in Figure 14 are the amplitudes of the current harmonics at several key orders, 
of which 5, 7, 11 and 13 correspond to the 5th, 7th, 11th and 13th times of the fundamental 
current, respectively. (−4), (−2), (2) and (4) respectively correspond to the sideband current 
harmonics of frequency 𝑓 − 4𝑓 , 𝑓 − 2𝑓 , 𝑓 + 2𝑓  and 𝑓 + 4𝑓  caused by the frequency 
converter. When the speed is different, the amplitude of the low-frequency current har-
monics is almost the same; the difference is very small. However, the sideband current 
has a significant increase, and the sideband current may cause the 0-order and 2p-order 
excitation forces. At high-speed operation, the motor vibration and noise under the vector 
control strategy increase significantly; if the motor adopts a skewing slot structure, it will 
have a significantly smaller vibration and less noise than those of the ordinary straight 
slot structure. 

  

Figure 12. Sideband current at load and no load.



World Electr. Veh. J. 2021, 12, 223 10 of 12

The rated load was applied, and the skewed slot motor was tested at three different
speeds of 500 rpm, 750 rpm and 1000 rpm to obtain the three-phase current waveforms
under three working conditions and to perform Fourier decomposition on one of the phase
currents and obtain its spectrum distribution as shown in Figure 13a,b. As shown in the
frequency spectrum distribution near the switching frequency of the inverter, it can be
seen that near the switching frequency, the current harmonic amplitudes corresponding to
different speeds are different. At 1000 rpm, the current has obvious spikes at fs ± 2 f1, 4 f1,
and it is significantly larger than the current amplitude at 500 rpm and 750 rpm. The current
amplitude at 750 rpm is obviously larger than the sideband current at 500 rpm. As the
speed increases, the amplitude of the sideband current in the skewed slot motor increases
significantly. As shown in the frequency spectrum distribution of the low-frequency current,
at several different speeds, the amplitude of the current harmonics is not much different,
but the frequency of the peaks is different. This is because the fundamental frequency of
the current is different at different speeds.
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Shown in Figure 14 are the amplitudes of the current harmonics at several key orders, of
which 5, 7, 11 and 13 correspond to the 5th, 7th, 11th and 13th times of the fundamental current,
respectively. (−4), (−2), (2) and (4) respectively correspond to the sideband current harmonics
of frequency fs − 4 f1, fs − 2 f1, fs + 2 f1 and fs + 4 f1 caused by the frequency converter. When
the speed is different, the amplitude of the low-frequency current harmonics is almost the
same; the difference is very small. However, the sideband current has a significant increase,
and the sideband current may cause the 0-order and 2p-order excitation forces. At high-
speed operation, the motor vibration and noise under the vector control strategy increase
significantly; if the motor adopts a skewing slot structure, it will have a significantly smaller
vibration and less noise than those of the ordinary straight slot structure.
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4. Conclusions

Based on the Ansys/Matlab software, this paper conducts a co-simulation and builds
an experimental platform to analyze and verify the sideband harmonics of a skewed slot
motor. The calculation and Fourier decomposition are mainly aimed at the sideband
current harmonics and the excitation force of the skewed slot motor, and a comparison and
analysis are carried out with a straight slot motor. The following conclusions can be drawn:

(1) Compared with the straight slot motor, the 11th and 13th harmonics of the skewed
slot motor are greatly weakened, which is of great significance for weakening the cogging
torque of the motor.

(2) At rated load and no-load operation, the amplitude of the sideband current har-
monics is basically the same, and the sideband harmonics caused by the inverter have little
relationship with the magnitude of the load.

(3) The sideband harmonics caused by the frequency converter increase with an
increase in the motor speed. With an increase in velocity, the increasing trend of the
sideband current is much greater than that of the low-frequency current.

(4) The sideband current harmonics of the skewed slot motor are smaller than those of
the straight slot motor. This effect is more significant when the speed is higher. Therefore,
the skewed slot structure has a certain weakening effect on the excitation force near the
switching frequency caused by the sideband current, and as the speed increases, this
weakening effect becomes more pronounced.
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