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Abstract: In recent years, air pollution and climate change issues have pushed people worldwide
to switch to using electric vehicles (EVs) instead of gas-driven vehicles. Unfortunately, most distri-
bution system facilities are neither designed nor well prepared to accommodate these new types of
loads, which are characterized by random and uncertain behavior. Therefore, this paper provides a
comprehensive investigation of EVs’ effect on a realistic distribution system. It provides a technical
evaluation and analysis of a real distribution system’s load and voltage drop in the presence of EVs
under different charging strategies. In addition, this investigation presents a new methodology for
managing EV loads under a dynamic response strategy in response to the distribution system’s
critical hours. The proposed methodology is applied to a real distribution network, using the Monte
Carlo method and the CYME program. Random driver behavior is taken into account in addition to
various factors that affect EV load parameters. Overall, the results show that the distribution system
is significantly affected by the addition of EV charging loads, which create a severe risk to feeder
limits and voltage drop. However, a significant reduction in the impact of EVs can be achieved if a
proper dynamic demand response programme is implemented. We hope that the outcomes of this
investigation will provide decision-makers and planners with prior knowledge about the expected
impact of using EVs and, consequently, enable them to take the proper actions needed to manage
such load.

Keywords: electric vehicle; charging load; distribution system; low-voltage network; probabilis-
tic model

1. Introduction

Energy and transportation are the main sectors consuming fossil fuels [1,2]. Soares et al.
found that the transportation sector consumes 53% of globally produced oil and accounts
for 24% of direct CO2 emissions [3]. For this reason, many governments are taking major
measures to reduce reliance on fossil fuel combustion to fulfil their energy needs and to
safeguard the environment. Such measures include the switch to utilizing: (i) clean and
environmentally friendly renewable energies—in place of traditional fossil-based—to meet
the escalating demand of the energy sector [4,5] and (ii) electric vehicles (EVs) that are more
energy-efficient and have lower operation and maintenance costs compared to the existing
and widely used internal combustion engine (ICE) vehicles [6,7]. As a result, recent years
have been marked by a dramatic increase in the use of EVs worldwide [8,9].
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Charging EVs through the power grid inflicts additional loading on the grid. Such
loading has a stochastic nature, i.e., it varies in time and location of occurrence throughout
the distribution grid [10]. An unplanned increase in EVs’ penetration levels will lead to
overloading the power lines and cables, transformer ageing, high voltage dips, increasing
load losses in the power grid and degrading of power quality [11]. For these reasons,
investigating the effects of charging EVs through the distribution grid is of crucial im-
portance in order to account for future expansion of the grid, as well as to take proper
precautions for any unexpected events in the power grid. Indeed, EVs’ integration with
the grid has remained a highly relevant subject of study and research—ever since the use
of EVs began—in proving their sustainability over conventional ICE vehicles. Moreover,
analyzing the impact of EV charging on the power grid will enable authorities to enforce
proper regulation strategies under the purpose of governing EVs’ charging behavior.

To study the impacts of EV charging load on the power grid, an EV load profile and
the underlying uncertainty of the associated random variables must be well developed.
The study presented in [1] used the US National Household Travel Survey (NHTS) to build
a load profile for EVs. This model is based on different data, such as time of arrival, daily
driven distance, battery capacity, rate of EV charging, and the total estimated number
of EVs. Grahn developed different EV load profiles based on driver’s behavior and EV
charging needs [12]. A load profile for the flexible charging of an EV was also developed
and then used to analyze the effects of charging EVs on both the power grid’s loading limits
and voltage fluctuations. Real-time driving data are the basis for studying the various
factors that can formulate the EV load, which in turn can enable optimization analysis to
control the charging process [13]. In [14], voltage-dependent load profiles were built for four
types of EV after measuring the vehicles’ voltage response by charging them via level-one
AC chargers (candidate chargers for homes). The developed load profiles were then used
to examine the expected impact on the power grid when EV charging control is possible.
A study performed in southwest Germany built empirical load profiles for EVs using
electric mobility data, by which a genuine depiction of EV loading in future analyses can be
manifested [15]. To account for the stochastic load behavior of EVs, Qian et al. developed a
numerical model of the EV load and predicted its variation over a 24-h period [16]. The
impact of EV loading on the distribution grid demand was then studied by implementing
four charging scenarios: (i) uncoordinated household charging, (ii) coordinated off-peak
household charging, (iii) smart household charging and (iv) uncoordinated workplace
charging. Further studies [17–19] show the effect of EVs on the Norwegian distribution
networks. These studies focus on factors such as the probability of the daily frequency
of charging events, the charging state when starting charging, the possibility of charging
according to the price of electricity, user behavior according to social class and the number
of EVs to be charged.

This paper is different than the above mentioned references in that a novel method is
proposed for the application of dynamic response to the critical hours regarding EV charg-
ing loads. The framework involves two models: the first model is targeted at determining
critical system events (hours) when system facilities are unable to meet the EV load. The
second model examines the feasibility of EV charging’s response to critical events. The
proposed framework entails new indices. These indices offer highly essential information
on system behavior that can be used for managing the EV charging load and load models
to thoroughly investigate their impacts on a real distribution network.

The electrical distribution system in Jordan is an old system and needs to be developed
in order to reduce the faults that may occur in this system throughout the day. A new
electrical distribution system with international specifications is very expensive. Therefore,
developing appropriate solutions to avoid the problems of the existing system can help the
decision makers to avoid the high cost of new systems. Our goal is to study the existing
system as it is, then take into our account the effect of the extra load resulting from the
process of charging EV. Therefore, in this paper we have proposed an EV charging model
based on a dynamic critical hour.
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In general, the existing body of research on EVs in the power field can be categorized
into two themes: (i) development of EV load models and associated uncertainties and
(ii) assessment of the accepted impact of EVs on the power grid. However, such issues
have not been investigated in Jordan’s national grid. This is done—in this paper—by
developing a probabilistic assessment framework for incorporating EV charging load
models in order to thoroughly investigate their impact on a real residential distribution
network in Jordan, which is representative of the Middle East and North Africa (MENA)
region. The importance and originality of this paper can be summarized as follows:

1. It provides a comprehensive investigation of the effect of EVs on a realistic distribution
system in Jordan, which has not previously been reported. It includes a technical
evaluation of the effect of the distribution system load and voltage drop in the
presence of EVs under different types of charging strategy.

2. It presents a new methodology—that has not been reported before—for managing EV
loads under a dynamic response strategy for the Jordanian distribution system. The
proposed methodology involves two models: the first determines the critical hours
in which EVs cause technical violation (feeder loading and voltage drop), and the
second investigates the inherent flexibility in EV loads in response to critical hours, in
order to modify the EV charging load accordingly.

2. Methodology
2.1. Data Collection and Pre-Processing

The system under investigation is a real distribution system that has been energized
and operated for many years; hence, it is considered as a real example for many distribution
systems to which EVs will be connected. To reflect the real-life situation and obtain accurate
results, the presented investigation is modelled using CYME power engineering software
that has been practically applied by many distribution companies and offers advanced
analysis tools for distribution networks. A probabilistic model for EV charging loads is
developed. It includes realistic estimates of the elements characterising the charging process
and explicitly takes into account the underlying uncertainties of the random variables. The
activities carried out in developing realistic load profiles for EVs are as follows:

1. Vehicle mobility data are drawn and analysed from transportation surveys to precisely
capture driver behavior that is essential in characterizing the charging process (e.g.,
drive distance, arrival time and departure time).

2. A study is conducted in the form of survey questions to obtain data pertinent to
driver preferences that have a major influence on the charging load, such as EV types
and place of charging.

3. Monte Carlo simulation is deployed to simulate the input variables needed to develop
the EV charging loads in view of the underlying uncertainty of the random variables.
Hence, a multitude of scenarios for EV charging loads is generated and assessed.

The developed reliable estimation model of the EV load profiles depends on many fac-
tors, such as penetration levels, charging equipment characteristics, battery specifications,
and driving patterns. The study of driver behavior is another important factor in shaping
loads for electric vehicles. Many studies have focused on developing reliable methods to
study driver behavior (e.g., the time of arrival to home and the daily travel distance). In this
study information about individual driving patterns is extracted from a survey distributed
randomly to 2000 households in Jordan. Probability distribution functions (PDFs) and
cumulative distribution functions (CDFs) of drivers’ behavior are developed by finding the
cumulative probability for a given x-value. The resulting number shows the probability
that a random observation taken from the population will be less than or equal to a certain
value. The CDF and PDF for daily travel distance, arrival time, and departure time are
shown in Figures 1–3, respectively.
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Home charging at night is one of the most preferable options for EV owners due to
easy accessibility and convenience, as the vehicle is at home at night (20 p.m.–4 a.m.) [20,21].
To support this assumption with evidence, a survey was conducted of 500 respondents
in Aqaba/Jordan. The results, as shown in Figure 4, reveal that 95% of the respondents
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state their preference for charging their EVs at home. Consequently, in the case studies
presented in this paper, the charging place is assumed to be at home.
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The sizes of EV batteries and their range (the maximum distance that can be achieved
at full charge) play an essential role in daily energy consumption. Table 1 shows examples
of electric vehicles that are the most popular and most commonly sold in the market, with
different sizes chosen [22]. The types of electric car in Jordan are the same as those in the
United States, as most of the imported cars are from the United States. It also shows their
battery capacities, electric ranges, and energy consumption per km. In this investigation,
for consistency with the available finalized SAE J1772 standards for residential use [23],
two charging levels were used, as indicated in Table 2. Two-thirds of EVs are assumed to
be charged using level 1 according to the survey results reported in [24].

Table 1. Data for the EVs used in this research.

EV Type Battery Capacity Range Specific Energy

(kWh) (km) (kWh/km)

Chevrolet Volt 16 56 0.284
Nissan LEAF 24 118 0.203
Toyota Prius 4.4 18 0.249

Tesla S 85 427 0.199

Table 2. Charging levels based on the SAE J1772 standard.

Charging Level Voltage Current Power

(V) (A) (kW)

1 120 12 1.44
2 240 30 7.2

2.2. Models of EV Charging Loads

This study includes a technical evaluation of the effect of the system load and voltage
drop in the presence of EVs under different types of charging strategy. This article also
presents a new methodology for managing the EV loads under a dynamic response strategy
for the system’s critical hours. The proposed methodology involves two models: the
first determines the critical hours in which the EVs caused technical violation (feeder
loading and voltage drop), and the second investigates the inherent flexibility in EV loads
in response to critical hours and modifies the EV charging load accordingly, under the
assumption of different charging schemes. This manuscript presents a study of the expected
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impact of increasing EV penetration on a real distribution system in Jordan. We combine
mobility survey data and probabilistic analysis (Monte Carlo simulation) techniques to
investigate the impact on transformer loading and feeder voltages. The Monte Carlo
simulation model takes into consideration the correlation between the three PDFs (distance,
departure time and arrival time). Longer periods away from home are likely to correlate
with longer distances, more energy and less time to restore that energy. The following three
factors affect the load profile of each of the investigated EVs [1,10,25,26]: (i) the energy
required to charge the battery, (ii) the duration of the charge and iii) the time of the charge.
The simulation process to develop the EV charging loads is illustrated in Figure 5, and a
detailed description is provided in the following four steps:

• Step 1: Daily travel distance (DTD): The simulation begins by generating a random
number (between 0 and 1) and looks at the inverse daily distance to find the corre-
sponding distance with a probability that equals the generated random number. Once
the daily travelled distance is determined for each vehicle, the period and amount of
charging can be subsequently determined.

• Step 2: Energy consumption (EC): The estimated daily distance, battery capacity (BC)
and electric range (ER) provide the required information to determine the amount of
energy consumption. The state of charge (SoC) of each EV after arriving home can be
calculated as follows:
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SoC =

{
20% DTD ≥ ER(

ER − DTD
ER

)
∗ 100% DTD < ER

(1)

where DTD and ER are in km. The electric ranges shown are the theoretical ranges. The
actual electric range of an electric car is often lower and depends on several factors. Below
is a list of factors that might impact range, such as aggressive driving, long mountain
climbs, non-stop high speeds and strong headwinds.

With respect to battery life, a 70% maximum allowable depth of charge is often
assumed in the literature; i.e., the battery cannot be charged if the SoC ≥ 90% and cannot
be run down if the SoC ≤ 20%. However, the average energy consumption of EVs is
about 1.89 kW/km considering different EV models available in the market in 2020. This
implies that EVs with a useable energy capacity of 11.34 kWh could account for 85% of
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PEVs which travel less than 60 km and still do not need a second recharge on the same day.
Similarly, EVs with a usable energy capacity of 18.9 kWh or higher can travel about 100 km
a day without a second recharge, which comprises 99% of vehicles, according to the data
of NHTS. As a result, the probability that the daily travel mileage for an EV exceeds its
electric range, considering different EV models available in the current market, is extremely
small [27]. If this condition is not satisfied, then the simulation model starts to simulate
a charging profile for the next vehicle. Equation (2) shows the mathematical formula for
determining the amount of energy consumption.

EC = (0.9− SoC) ∗ BC (2)

• Step 3: Charging duration time (CDT): The estimated energy consumption, charging
efficiency (ηch), and charging level (chL) are then used to determine the number of
hours needed to charge the vehicle as expressed in the following equation:

CDT =
EC

ηch ∗ chL
(3)

EV charging level is divided into 3 levels; level 1 (120 V), level 2 (220 V), and level 3
(480 V) such that the higher the charging level, the higher the power output and the faster
the electric car is charged, so the charging duration time (CDT) is small. In Jordan, the
home and public level is 220 V which is considered level 2 charging (7.2 kW per EV).

• Step 4: Start and end time for charging: Two random numbers are generated to
estimate the arrival and departure times from CDFs of home arrival time (AT) and
departure time (DT). Two charging scenarios are possible: (i) the vehicle is charged
after it arrives home until it is fully charged when the duration between the arrival
time and departure time is greater than the required charging time, as expressed
in Equation (4); otherwise, (ii) the EV keeps charging until its departure time, as
expressed in Equation (5).

Pi(t) = chL where t = (AT, . . . . . . , AT + CD− 1) (4)

Pi(t) = chL where t = (AT, . . . . . . , DT − 1) (5)

This procedure is repeated to simulate the daily charging profile for each EV; then, the
total charging profile for t = 1 to 24 h is determined using the following formula:

PEV(t) =
No. o f EVs

∑
i=1

Pi(t) (6)

The previous steps are performed to simulate the EV load under an arrival time
(the time of arriving home, which differs from one person to another) charging scenario.
Figure 6 shows the simulation processes for overnight charging (charging that takes place
during the night-time hours, typically lasting for seven to eight hours) and off-peak charg-
ing (charging that happens at times when there is least demand) scenarios. An important
step in these processes is to check the stay duration time at home (SDT) by determining the
difference between the arrival and departure times. If the SDT is greater than the charging
duration time (CDT), then the EV might start charging at off-peak or overnight periods,
based on the time difference between the start time—of the predetermined hours of the
off-peak or overnight periods—and the departure time.
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2.3. Proposed EV Charging Model Based on Dynamic Critical Hours

This section discusses a new charging strategy based on the application of a dynamic
critical hours model as a response to the violation of feeder loading and voltage drop.
The structure of the proposed strategy contains two main stages, a detailed description of
which is presented in the following subsections.

2.3.1. Stage 1: Critical Hours Determination

A new model is developed to determine the critical hours in which the EVs cause
technical violation as described in the following step-wise procedure:

• Step 1: Develop an EV charging load under an uncontrolled mode on an hourly basis
using the approach discussed in Section 2.2.

• Step 2: Evaluate the ability of each feeder to meet the EV charging load. At this step,
when the EV charging load violates the feeder loading and voltage drop limits, the
hours in the load profiles are divided into two groups: (i) critical hours, when the
feeder loading and voltage drop limits are violated and (ii) non-critical hours, when
the feeder loading and voltage drop limits are satisfied. For the critical hours, an index
for the EV load that caused violation (VEV), as shown in Equation (7), is computed.
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This index is then utilized for defining the number of EVs required to avoid charging
during critical hours (NEV

v ), as indicated by Equation (8).

VEV(t)

=

 PEV(t) + PCL(t)− Pmax(t)
i f⇔

PEV(t)
i f⇔

PCL(t) < Pmax(t) < PEV(t) + PCL(t)
Pmax(t) ≤ PCL(t)

(7)

NEV
V (t) =

VEV(t)
chL × ηch

(8)

where Pmax represents the feeder maximum limit which assures that the voltage drop at
this feeder does not exceed 5%, and PCL represents the conventional system load without
the addition of an EV load.

For the non-critical hours, the Reserve Level (RL) is calculated, as indicated by
Equation (9) and then used in Equation (10) to determine the number of supplemental EVs
that can be accommodated without threatening the feeder loading and voltage drop limits.
The importance of this index is that it gives an indication of the candidate charging hours
and their reserve levels.

RLEV(t) = Pmax(t)− PCL(t)− PEV(t) (9)

NEV
RL (t) =

RLEV(t)
chL × ηch

(10)

• Step 3: The aforementioned indices, in addition to the other EV charging parameters,
are then used as input for modifying the uncontrolled EV charging load while consid-
ering the inherent flexibility of the EV charging load in response to the critical hours.

• Step 4: The adapted EV charging profile is then used for evaluating the distribution
system and determining the effectiveness of this model.

2.3.2. Stage 2: EV Charging Load in Response to Critical Hours

This stage is proposed to investigate the inherent flexibility of EV loads in response to
critical hours, and to modify the EV charging load accordingly. To ensure the practicality of
the proposed model, the decision to postpone the time of charging during the critical hours
primarily depends on the charging flexibility, and should neither violate driver comfort
behavior nor cause inconvenience. In other words, two main conditions should be satisfied:
(i) the duration of the stay at home is greater than the required charging time and (ii) the
charging hours intended under the uncontrolled mode intersect with the critical hours.
Essential input to this stage is obtained from the outcomes of the previous stage, which
entail the following indices: (i) TNCR which denotes the non-critical hours where the feeder
can accommodate more EVs for charging and (ii) TCR that denotes the critical hours where
some EV loads must be shifted to non-critical hours.

As depicted in Figure 7, the subsequent steps underline the main procedures for
adapting the EV charging load in response to the critical hours:



World Electr. Veh. J. 2021, 12, 218 10 of 23
World Electr. Veh. J. 2021, 12, x FOR PEER REVIEW 11 of 24 
 

Perform Step 1 to Step 3, as described in section 2.2, for the 
uncontrolled EV charging model to define: AT, DT, SoC, CE, and CDT

TSH > TUNC

Start charging once the vehicle arrives home under 
uncontrolled mode using equation (5)

No Yes

Define the following Time periods:TUNC,TSH,TCR, and TNCR 

TUNC ∩ TCR ≠ ɸ 

Start charging once the vehicle arrives home under 
uncontrolled mode using equation (4)

TSH ≥ TUNC+TCR

Partial response to the critical hours: 
The  charging time is determined using equations 

(11)-(13).   

Full response to the critical hours: 
The  charging time is determined using equations 

(14)-(15).  

Update the load profile for the whole fleet. 

Update the following indices: VEV , RLEV ,TCR  , and TNCR

No

No

Yes

Yes

Case I 

Case II 

Case III Case IV

Last vehicle?

Adapted EV charging load is completed.

• Outcomes indices from stage-I: VEV , RLEV ,TCR  , and TNCR

•    PDFs of home arrival time and home departure time and daily mileage
• EV-related data (e.g., battery capacity, electric range, 
       market share, charging levels, etc.)

No

Yes

 
Figure 7. EV load model with response to the system critical hours. 

2.4. Case Study: Aqaba Distribution System 
The proposed model has been applied to the low voltage (LV) network of Aqaba city, 

Jordan, where the Electricity Distribution Company (EDCO) supplies its customers with 
electricity according to a retail sale license granted to it by the Energy and Mineral Re-
sources Regulatory Commission (EMRC). The distribution is geographically spread in the 
distribution network. The layout of the EDCO power distribution network starts with 
132/33 kV transformers. Distribution companies in Jordan are bound by the Bulk Supply 
License to commit to the standards through procedures, requirements, and indicators in 
order to guarantee the best power supply performance. The only relevant performance 
indicator taken into account in this investigation was the voltage drop on LV feeders, 
which states that the rise and drop in voltage should not exceed 7% in both rural and 
urban areas [28]. 

Figure 7. EV load model with response to the system critical hours.

• Step 1: Input the indices obtained from the previous stages and other data pertinent to
the EV charging parameters (e.g., driver behavior data; market share; charging levels;
battery specifications).

• Step 2: Perform Steps 1 to 3, as described in Section 2.2, for the uncontrolled EV
charging model in order to define the following parameters: AT, DT, SoC, CE, and
CDT. Using these parameters, the following periods can be determined: TUNC that
denotes the candidate charging hours under uncontrolled mode and TSH which
defines the hours during which an EV stays at home.

• Step 3: Two scenarios are investigated: (i) if an EV requires charging hours greater
than or equal to the stay at home hours (i.e., TUNC ≥ TSH), the EV will be charged
under an uncontrolled strategy using Equation (5), and cannot respond to critical
hours; (ii) Otherwise (i.e., TUNC < TSH), two further scenarios are investigated:
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(1) If there is no intersection between the charging hours under the uncontrolled strategy
and the critical hours (i.e., TUNC ∩ TCR = ∅), the EV will be charged under an
uncontrolled strategy using Equation (5).

(2) Otherwise (i.e., TUNC ∩ TCR 6= ∅), the EV can respond to some or all of the critical
hours according to the following cases:

(3) Avoid charging during some critical hours: when the stay home hours are less
than the total number of critical hours in addition to the required charging hours,
i.e., (TSH) < (TCR + TUNC), the EV can only avoid charging during some criti-
cal hours to avoid insufficient charging. In this case, the EV is charged using
Equations (11)–(13):

Pi(t) = chL
where⇒ t ∈ T1 & t ∈ T2 (11)

T1 = TSH ∩ TNCR (12)

T2 = TSH ∩ TCR (13)

where T1 constitutes the stay home hours that coincide with the non-critical hours,
and T2 resembles the stay home hours that coincide with the less critical hours.

(a) Avoid charging during all critical hours: when the stay home hours are more than or
equal to the required charging hours plus the critical hours, charging can be avoided
during all critical hours. In this case, the EV is charged according to Equations (14)
and (15), in which T3 contains the non-critical hours that intersect with the stay
home hours.

Pi(t) = chL
where⇒ t ∈ T3 (14)

T3 = TSH ∩ TNCR (15)

• Step 4: The previous procedures (Steps 1 to 3) are repeated sequentially until charging
profiles for the entire fleet are simulated.

2.4. Case Study: Aqaba Distribution System

The proposed model has been applied to the low voltage (LV) network of Aqaba
city, Jordan, where the Electricity Distribution Company (EDCO) supplies its customers
with electricity according to a retail sale license granted to it by the Energy and Mineral
Resources Regulatory Commission (EMRC). The distribution is geographically spread in
the distribution network. The layout of the EDCO power distribution network starts with
132/33 kV transformers. Distribution companies in Jordan are bound by the Bulk Supply
License to commit to the standards through procedures, requirements, and indicators in
order to guarantee the best power supply performance. The only relevant performance
indicator taken into account in this investigation was the voltage drop on LV feeders, which
states that the rise and drop in voltage should not exceed 7% in both rural and urban
areas [28].

A distribution network consists of overhead lines (OHLs) and underground cables
(UGCs), which connect areas of different consumption categories, such as residential,
commercial, industrial, and agricultural. Customers are fed from medium-voltage (MV)
networks through 33/0.415 kV and 11/0.415 kV transformers. The distribution loads are
supplied with electric energy from five main stations [28], namely:

1. The Aqaba 2 (A2) main station that has four 132/33 kV transformers and a total
capacity of 63 and 40 MVA.

2. Aqaba Industrial Estate (AIE) main station that has two 132/33 kV transformers and
a rated power of 80 MVA.

3. Aqaba Thermal Power Station (ATPS) that has four 132/33 kV transformers and a
total capacity of 63 and 80 MVA.

4. Disi Main Station that has two 132/33 kV transformers and a capacity of “2 × 63” MVA.
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5. Quweira Main Station that has three 132/33 kV transformers and a rated power of 16
and 45 MVA.

All these main stations are owned and maintained by the National Electricity Power
Company (NEPCO). In the distribution network structure, MV distribution networks with
voltage levels of 33 and 11 kV are connected in rings. A single line diagram (SLD) of the
MV network is shown in Figure 8.
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The case study proposed in this paper is the neighbourhood of Mahdoud Area Block
No. 1 in Aqaba city. The Mahdoud area was selected—over other locations in Aqaba—for
the following reasons:

1. Most of its 400 customers are of the residential category, which makes it the perfect
candidate for EV home charging.

2. It represents a sample of an urban electric network in a continuously growing city
with a high possibility of EV adoption.

The electric energy data of this neighborhood were obtained from the EDCO SCADA
system. Customers in this neighbourhood are supplied with electricity from 11 kV UGCs
(Feeder Y505-Aqaba 4 Main Station (A4) “2 × 25” MVA). Energy is transferred to LV
customers using two 11/0.415 kV transformers, which are transformer number 740 with a
capacity of 1000 kVA and transformer number 53 with a capacity 1500 kVA. Each trans-
former has three feeders designated 1, 2, and 3. Table 3 gives detailed information about the
network and its loading during the year 2018 where CCC is the current carrying capacity
of the feeder.

Single line diagrams of the LV networks of transformer numbers 53 and 740 are shown
in Figures 9 and 10. The types of LV transmission lines that feed electricity to customers are
OHLs with a cross-sectional area of “1 × 16” mm2 and UGCs with a “4 × 35” mm2 cross
section, and both types are made of aluminium [29]. The triangles in Figures 9 and 10 are
individual homes with the assumption of one vehicle for each home.
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Table 3. Network data of block No. 1 in Aqaba.

Transformer Feeder Cross Section
(mm2) CCC (A) Summer

Load (kW)
Summer Voltage

Drop (%)
Winter Load

(kW)
Winter Voltage

Drop (%)

53
1 95 320 89.21 4.25 56.81 1.31
2 95 320 103.89 5.55 66.24 2.40
3 95 320 122.29 6.27 77.92 2.94

740
1 120 380 171.03 5.60 108.05 4.31
2 120 380 57.43 −1.95 36.12 −0.71
3 120 380 78.61 1.47 49.41 1.38
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The feeder loading was assessed using the parameter of load percentage (Load %),
which is expressed as:

Load % =
Feeder′ s loading (A)

CCC (A)
× 100% (16)

3. Experiments and Results

Different load scenarios were analysed for the LV network. These scenarios were
chosen to cover seasonal load variation in summer. The impact of EVs on the electrical
distribution system in summer is much greater than in winter. This was clearly noted
while carrying out the simulation experiments in both summer and winter. Therefore, this
experimental part focuses on the potential worst case scenarios that occur mostly during
summer. Then, electrical vehicle charging (EVC) loads were randomly added in the CYME
software to customers’ homes in percentages of penetration from 0–100%. In this paper the
percentages (0%, 40%, and 60%) are shown, because these percentages present the normal
case (0%), best case (40%), and the worst-case (60%) scenarios.

The system was modelled using CYME power engineering software which was devel-
oped by Eaton.com/USA. The software comprises many modules that meet the needs of
transmission, distribution and industrial applications. It is capable of performing numerous
forms of analysis of distribution networks, whether they are balanced or unbalanced and
have one, two or three phases. One of the essential simulations in CYME software is time-
series analysis, which addresses the effects of solar irradiance, wind, and load variations on
the shape of the network’s load and voltage profiles in addition to the network controls of
regulators and switched capacitors. All can be dealt with through time-series simulations.

Our system is simulated using the CYME software for different scenarios: an unco-
ordinated arrival time charging scheme, coordinated charging schemes at overnight and
off-peak, and other coordinated charging scheme, by applying dynamic response to the
system critical hours, where the arrival time is the time when the customer reaches his
home and the uncoordinated charging schemes are arrival time, overnight, and off-peak
charging. For each scenario a percentage of load representing the number of EVs is added
to the network to study the effect of adding EVs on the load profile and voltage drop. The
load profile results are taken at the starting node of the feeders, while the voltage profile
results are taken at the end of the feeders.

3.1. Case A: Impact of an Uncoordinated Arrival Time Charging Scheme under Different EVC
Penetration Levels in Summer

Here the impact of adding EVC loads with different penetration levels, namely 0%,
40% and 60%, was studied and analyzed for arrival time charging in summer. EVC loads
were added to the grid at random points and with random phases. The numbers of EVs
per feeder for the 40% and 60% EVC penetration levels at different feeders are shown in
Table 4 depending on the feeder loading. The load for each EV was based on a 10 A current
for each EV. The total number of EVs running on a given day for the 40% is 108 vehicles
and 156 vehicles for 60% EVC penetration levels.

Table 4. Number of EVs per feeder for 40% and 60% EVC penetration levels.

Transformer Feeder # EVs 40% EVs 60%

53
1 15 22
2 17 26
3 24 30

740
1 29 43
2 10 15
3 13 20

Total 108 156
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The peak loads of LV network in summer (weekdays and weekend) with 0%, 40%,
and 60% EVC penetration levels for Feeders 1, 2, and 3 of each transformer are shown in
Table 5 from the CYME software. Simulation results of load flow and long-term-dynamic
analyses were recorded during the peak day of summer season in order to consider the
worst case scenarios. Peak load of feeders A4 and Y505, which supplies transformers 53
and 740 was recorded. The current in summer reached 178 A on 13 August at 23:00. The
load percentage with 0% EVC is below the loading limit of each feeder, which makes the
feeder able to handle further increase in loading. The load percentage has increased to 70%
for Transformer 740, Feeder 1, and 60% for Transformer 53, Feeder 3. Charging EVs with
40% and 60% penetration during summer led to a further drop in the voltage levels of the
LV feeders.

Table 5. Peak loads of the LV network in summer with 0%, 40% and 60% EVC.

0% EVC 40% EVC 60% EVC

Transformer Feeder Max Weekday
Load (kW)

Max Weekend
Load (kW)

Max Weekday
Load (kW)

Max Weekend
Load (kW)

Max Weekday
Load (kW)

Max Weekend
Load (kW)

53
1 89 92 116 119 130 133
2 104 109 136 140 151 155
3 122 125 157 161 171 176

740
1 171 178 210 220 241 248
2 57 64 77 80 88 90
3 79 85 103 107 115 118

The voltage drop with 0% is within the acceptable range (i.e., 5%). Transformer 53,
Feeder 3 and Transformer 740, Feeder 1 with 0% EVC have the lowest voltage, while
Transformer 740, Feeder 2 and Transformer 53, Feeder 1 have the highest voltage. Voltage
drop for Feeders 1, 2, and 3 of each transformer changed after adding 40% and 60% EVC to
the LV feeders, as shown in Table 6.

Table 6. Voltage drop of the LV network during summer with 0%, 40% and 60% EVC.

0% EVC 40% EVC 60% EVC

Transformer Feeder
Max Weekday
Voltage Drop

(%)

Max Weekend
Voltage Drop

(%)

Max Weekday
Voltage Drop

(%)

Max Weekend
Voltage Drop

(%)

Max Weekday
Voltage Drop

(%)

Max Weekend
Voltage Drop

(%)

53
1 2.14 2.24 2.84 2.99 3.22 3.45
2 4.39 4.45 5.93 6.23 6.55 6.72
3 5.35 5.61 7.13 7.42 7.78 7.95

740
1 5.35 5.84 7.08 8.17 9.76 9.82
2 −1.20 −1.20 −1.20 0.13 0.24 0.53
3 0.77 1.02 1.46 1.66 2.07 2.21

Tables 5 and 6 reveal that the difference between the results in the case of weekdays
and weekends for both load and voltage drop profiles is relatively small. Therefore, in the
following scenarios, summer weekdays will be used for further analysis. Figure 11 shows
the load profile for the three feeders, which is connected to Transformer 740 in the summer
season with 0% EVC. It is clear that each feeder has a different peak loading curve.

The voltage profiles for all feeders of Transformer 740 with 0% EVC are shown in
Figure 12. The peak voltage occurs at 6:00 a.m. due to minimum load as shown in load
profile figures. The voltage in Figure 12, the voltage of Tr. 740, Feeder 2 is above the rated
voltage (415 V) because it was measured practically at Feeder 2 with maximum voltage
drop (−1.2%) according to Table 6 so the over voltage is 4.98 V above the rated voltage.
The standard limit for voltage drop is approximately 7%.



World Electr. Veh. J. 2021, 12, 218 16 of 23

World Electr. Veh. J. 2021, 12, x FOR PEER REVIEW 16 of 24 
 

Table 6. Voltage drop of the LV network during summer with 0%, 40% and 60% EVC. 

  0% EVC 40% EVC 60% EVC 

Transformer Feeder 
Max Weekday 
Voltage Drop 

(%) 

Max Weekend 
Voltage Drop 

(%) 

Max Weekday 
Voltage Drop 

(%) 

Max Weekend 
Voltage Drop 

(%) 

Max Weekday 
Voltage Drop (%) 

Max Weekend 
Voltage Drop (%) 

53 
1 2.14 2.24 2.84 2.99 3.22 3.45 
2 4.39 4.45 5.93 6.23 6.55 6.72 
3 5.35 5.61 7.13 7.42 7.78 7.95 

740 
1 5.35 5.84 7.08 8.17 9.76 9.82 
2 −1.20 −1.20 −1.20 0.13 0.24 0.53 
3 0.77 1.02 1.46 1.66 2.07 2.21 

Tables 5 and 6 reveal that the difference between the results in the case of weekdays 
and weekends for both load and voltage drop profiles is relatively small. Therefore, in the 
following scenarios, summer weekdays will be used for further analysis. Figure 11 shows 
the load profile for the three feeders, which is connected to Transformer 740 in the summer 
season with 0% EVC. It is clear that each feeder has a different peak loading curve. 

 
Figure 11. Load profiles of Transformer 740 in summer with 0% EVC. 

The voltage profiles for all feeders of Transformer 740 with 0% EVC are shown in 
Figure 12. The peak voltage occurs at 6:00 am due to minimum load as shown in load 
profile figures. The voltage in Figure 12, the voltage of Tr. 740, Feeder 2 is above the rated 
voltage (415 V) because it was measured practically at Feeder 2 with maximum voltage 
drop (−1.2%) according to Table 6 so the over voltage is 4.98 V above the rated voltage. 
The standard limit for voltage drop is approximately 7%. 

Figure 11. Load profiles of Transformer 740 in summer with 0% EVC.

World Electr. Veh. J. 2021, 12, x FOR PEER REVIEW 17 of 24 
 

 
Figure 12. Voltage profile at the end of Transformer 740 in summer with 0% EVC. 

Figures 13 and 14 show the load and voltage profiles for Transformer 740 with 60% 
EVC. It can be noted that adding a 60% EVC penetration levels has a noticeable impact on 
the LV feeders, especially Transformer 53, Feeder 3, and Transformer 740, Feeder 1. The 
loading limits exceed 78% of the feeder’s maximum capacity for Transformer 53, Feeder 
3, and 92% for Transformer 740, Feeder 1. Additionally, the voltage drop of Transformer 
53, Feeder 3, and Transformer 740, Feeder 1, increased to 7.78% and 9.76%, respectively. 
Electronic devices need a controlled electrical environment. When a voltage drop occurs, 
then the device stops working or the data is distorted. The standard limit for voltage drop 
is approximately 7%, so the impact of 40% and 60% EVC penetration levels is noticeable 
in the voltage drop of LV feeders. 

 
Figure 13. Load profiles of Transformer 740 in summer with 60% EVC. 
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Figures 13 and 14 show the load and voltage profiles for Transformer 740 with 60%
EVC. It can be noted that adding a 60% EVC penetration levels has a noticeable impact on
the LV feeders, especially Transformer 53, Feeder 3, and Transformer 740, Feeder 1. The
loading limits exceed 78% of the feeder’s maximum capacity for Transformer 53, Feeder
3, and 92% for Transformer 740, Feeder 1. Additionally, the voltage drop of Transformer
53, Feeder 3, and Transformer 740, Feeder 1, increased to 7.78% and 9.76%, respectively.
Electronic devices need a controlled electrical environment. When a voltage drop occurs,
then the device stops working or the data is distorted. The standard limit for voltage drop
is approximately 7%, so the impact of 40% and 60% EVC penetration levels is noticeable in
the voltage drop of LV feeders.
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charging 

Off-peak 
Charging 
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charging 
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53 
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2 4.39 6.29 4.63 6.92 5.28 
3 5.35 7.54 5.37 8.19 6.31 

740 
1 5.35 7.30 5.57 10.22 8.05 
2 −1.20 −1.20 −1.57 0.36 −0.17 
3 0.77 0.51 −0.19 2.24 1.42 

Figure 14. Voltage profile at the end of Transformer 740 in summer with 60% EVC and arrival time charging.

3.2. Case B: Impact of Coordinated Charging Schemes under Different EVC Penetration Levels

Here, coordinated charging schemes are applied with different penetration levels of
EVC. The coordinated schemes are overnight and off-peak charging techniques. The peak
loads of the LV network in summer with 0%, 40%, and 60% EVC using three charging
schemes for Feeders 1, 2, and 3 of each transformer are shown in Table 7. The voltage
drops of Feeders 1, 2, and 3 of each transformer changed after adding 40% and 60% EVC
penetration levels for the three charging schemes to the LV feeders, as shown in Table 8.

From Tables 7 and 8, it is clear that overnight charging in summer boosted the peak
load of the LV feeders and led to higher voltage drops; however, these values remained
within acceptable limits. Additionally, it is noticed that the peak load decreased due to
implementing an off-peak charging scheme compared to those of the arrival time and
overnight charging schemes. Thus, applying off-peak charging will lead to better feeder
loading conditions in the case of an EVC penetration of 40%. Finally, the tables show
that adding EVC loads and using an off-peak charging mechanism will not lead to low
voltage levels for some feeders, such as Transformer 740, Feeder 1, and Transformer 53,
Feeder 3. Off-peak charging will lead to higher and better feeder voltage levels than
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arrival time charging. The load profiles of long-term dynamics for Feeders 1, 2, and 3 of
each transformer with 60% EVC, overnight and off-peak charging in summer is shown in
Figures 15–17, while Figure 18 shows the voltage profiles from long-term dynamic analysis
of Feeders 1, 2, and 3 of each transformer with 60% EVC, overnight and off-peak charging
schemes in summer.

Table 7. Loading of the LV network in summer with 0%, 40%, and 60% EVC and different charg-
ing schemes.

Transformer Feeder
0% Load (kW) 40% Load (kW) 60% Load (kW)

Without
Charging

Overnight
Charging

Off-Peak
Charging

Overnight
Charging

Off-Peak
Charging

53
1 89 124 103 137 117

2 104 145 122 160 137

3 122 167 139 181 154

740
1 171 228 186 256 218

2 57 83 69 93 69

3 79 112 92 122 104

Table 8. Voltage drop at the end of the LV network in summer with 0%, 40%, and 60% EVC, and
different charging schemes.

Transformer Feeder

0% EVC Voltage
Drop (%)

40% EVC Voltage
Drop (%)

60% EVC Voltage
Drop (%)

No Charging Overnight
Charging

Off-Peak
Charging

Overnight
Charging

Off-Peak
Charging

53
1 2.14 3.11 2.14 3.47 2.34

2 4.39 6.29 4.63 6.92 5.28

3 5.35 7.54 5.37 8.19 6.31

740
1 5.35 7.30 5.57 10.22 8.05

2 −1.20 −1.20 −1.57 0.36 −0.17

3 0.77 0.51 −0.19 2.24 1.42
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3.3. Case C: Other Coordinated Charging Scheme by Applying Dynamic Response to the System
Critical Hours

Figure 19 shows the load profiles on Feeder 1/Transformer74 with/without response
to the critical hours at a 60% EVC load penetration level compared to the case without EVs.
It is clear that, during critical hours (18:00 to 22:00), the uncontrolled EVC load is shifted to
less critical hours, thus largely reducing the system peak to the base profile.

It is worth remembering that the response to critical hours primarily depends on
charging flexibility, i.e., it has to be within driver behavior limits and not cause inconve-
nience. Consequently, the substantial load reduction during critical hours, when applying
the proposed model, indicates that EV charging has enough flexibility to respond to critical
hours without interrupting the driver behavior boundaries. Figure 20 shows a comparison
of voltage profiles—obtained using the EV load model—with and without response to
the critical hours. It is clear that the voltage profile is maintained in order to be similar
to the base case without EVs, compared with the uncontrolled charging strategy. With
respect to the application of the proposed model, the results of load and voltage profiles
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are considered significant and reveal a very promising option that can be considered for
managing an EV charging load.
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The results—depicted in Table 9—demonstrate that when using the proposed dynamic
critical hours, the load and voltage drop for Transformer 740, Feeder 1 at a 60% penetration
level are significantly reduced so that they are very close to the case without EV. These
results support the current trend in investigating solutions on the demand side to help
improve system stability. The findings also provide insights into the application of dynamic
demand response models as promising solutions to manage EV charging loads.

Table 9. Results for Transformer 740/feeder 1 in summer at 60% EVC with/without response to the critical hours.

Load (kW) Voltage Drop (%)

Base Case
No EVs

Uncontrolled
Charging

Dynamic Critical
Hours

Base Case
No EVs

Uncontrolled
Charging

Dynamic Critical
Hours

171 241 171 5.35 9.76 5.35
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4. Conclusions

A detailed investigation of the effect of EVs on a real distribution system is presented.
Special focus is placed on feeder loading and voltage drop in the presence of EVs. A
probability-based method was first developed to model the EV load profiles in an accurate
and realistic manner. In the proposed method, both the randomness of driver behavior as
well as the characteristics of EV batteries were considered. The effect of EV loads on a low-
voltage distribution network was then investigated, while considering different charging
scenarios and different penetration levels. In this work, a real distribution network in the
city of Aqaba in Jordan was used to conduct several case studies. The presented results
and discussion show that EV loads have a clear impact on voltage drop and feeder loading.
The results also indicate that EV loads are highly flexible; however, this is subject to the
implementation of effective demand response programmes. Based on the obtained results,
the most important findings to emerge from this investigation are as follows:

1. Considering all types of charging scenarios under different charging penetration
levels, the resulting changes in feeder loading and voltage profiles are different due
to the differences in the network topology, nature of traditional loads, and number of
EVs connected to each feeder.

2. In general, electric vehicle loads under different charging types have a noticeable
effect on both feeder loading and voltages.

3. Since the maximum allowable load for each feeder is 132 KW (415 V, 320 A), Feeders
2 and 3 of Transformer 53 and Feeder 1 of Transformer 740 passed the maximum load
in almost all charging scenarios under 40% and 60% EV penetration levels.

4. One of the interesting results is that the effect of EVs on feeder loading is not identical
to the effect on the voltage, which is due to the aforementioned reasons in point 1.

5. In general, electric vehicle loads under different charging types have noticeable effects
on both the load and voltage variables.

6. The results showed that arrival time charging has a significant effect on both feeder
loading and voltage drop. This can be understood by the fact that the time of arrival to
home coincides with the start time of high system demand (refer to Figures 2 and 11).
This matter calls for appropriate solutions to manage EV demand and ensure a
reduction in the impact of EVs.

7. Overnight charging is a possible scenario that is often proposed in many studies.
When 22:00 was chosen as the starting hour for overnight charging, the results were
worse than those of arrival time charging. The reason behind this is that most people
have the flexibility to wait for that time and start charging at the same hour, thus
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causing another peak in the load profile. Therefore, the choice of the starting hour of
charging is very important to avoid such a case.

8. For the off-peak charging scenario, the charging start time is chosen to be 4 a.m.
when the system load profile is light. Compared with the arrival time and overnight
charging scenarios, charging using the off-peak scenario significantly reduces the
impact of EVs on feeder loading and voltage drop.

9. A more significant reduction in the impact of EVs can be achieved if a proper dy-
namic demand response programme is implemented. However, this necessitates
the availability of appropriate infrastructure that enables information sharing and
communication between electricity companies and EV owners.

As future research work, several topics are suggested to supplement the current
investigation such as how to deal with EV-integration, utilization to solve stability-security
problems, and how to mitigate the possible interactions between EV operating points with
nearby equipment.
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