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Abstract: To address the coordinated distribution of motor braking and friction braking for the
regenerative braking system, a cooperative braking algorithm based on nonlinear model predictive
control (NMPC) is proposed, with braking energy recovery power, tire slip rate, and motor torque
variation as the optimization objectives, and online optimization of the coordinated distribution of
motor braking and friction braking. Using the offline model built in Matlab/Simulink, the cooperative
braking algorithm is tested for energy efficiency and braking safety. The results show that when
based on World Light Vehicle Test Cycle (WLTC), the energy recovery rate can reach 30.4%, and with
a single high braking intensity, the braking safety can still be ensured.

Keywords: regenerative braking; cooperative braking control; nonlinear model prediction

1. Introduction

As the automotive industry gradually enters the era of electrification and intelligen-
tization, the fully decoupled braking system has become a key research object for major
OEMs and parts manufacturers [1]. The increase in the degree of decoupling of the braking
system has laid the hardware foundation for the implementation of advanced braking
control algorithms [2,3]. Among them, the cooperative braking control algorithm has
been a hot topic of research in the industry, which is mainly used to solve the problem of
coordinated distribution of motor braking and friction braking for the regenerative brak-
ing system and has an important impact on braking safety and braking energy recovery
effect [4–6].

The cooperative braking control strategy mainly includes two types of parallel and
series, and the schematic diagram is shown in Figure 1. For the parallel control strategy,
motor braking and friction braking are independent of each other [7–9]. Motor braking is
additionally superimposed on the drive shaft while keeping the conventional front and
rear axle friction braking ratio unchanged. It can be easily achieved in the conventional
undecoupled hardware system [10–12]. The additional motor braking power should not be
too large; otherwise, it will affect the braking feeling and safety, so the regenerative braking
system with a parallel control strategy will only recover less braking energy. For the series
control strategy, friction braking and motor braking can be coordinatively controlled so
that the motor braking capacity can be fully utilized while ensuring braking feeling and
safety [13,14]. The regenerative braking system with a series control strategy can recover
more braking energy, but its algorithm is more complex and must be implemented in the
decoupled hardware system [15].

In recent years, many advanced cooperative braking algorithms have been derived
based on these two basic types. The paper [16] takes the Economic Commission of Europe
(ECE) braking safety regulation as the constraint condition and develops a new regenerative
braking torque distribution strategy. To improve energy recovery efficiency, an optimization
algorithm of energy recovery efficiency is proposed for parallel hydraulic hybrid systems
(PHHS) using dynamic programming (DP) [17]. The paper [18] designs an energy-recovery
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control strategy based on the Kalman Filter, which can optimize the model accuracy and
improve the robustness of the system. Based on logic threshold control algorithm with
the input of z and I, a distribution relationship between electric and mechanical braking is
determined, which is proved to be effective on road conditions with different slopes [19].
Based on the ECE regulation curve and ideal braking force distribution (I curve), a braking
force distribution strategy of the front and rear axles is designed to improve the recovered
braking energy [20].
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Figure 1. Cooperative braking control strategy: (a) parallel type; (b) series type.

In summary, despite the fact that various advanced braking control algorithms have
been proposed, it is mostly true that they only optimize a single control objective, while
control of other objectives is rather vague and thus cannot systematically address the
problem of multiple objectives and constraints in regenerative braking systems. In addition,
the control objectives cannot be optimized in real time according to the change of vehicle
state, which means the regenerative braking system may not be able to be fully exploited.
Therefore, based on the above analysis, a cooperative braking algorithm based on NMPC
is proposed for the fully decoupled braking system of front-drive vehicles in this paper,
with braking energy recovery power, tire slip rate, and motor torque variation as the
optimization objectives, and online optimization of the coordinated distribution of motor
braking and friction braking to achieve good energy efficiency while ensuring braking
safety [19,21,22].

The remainder of this paper is organized as follows. Section 2 describes the cooperative
braking control algorithm based on NMPC. Simulation verification and results analysis are
discussed in Section 3. Lastly, conclusions are drawn in Section 4.

2. Cooperative Braking Control Algorithm Based on NMPC
2.1. Overview of NMPC

The control process that is based on the system dynamic model to find the optimal
solution of the optimization problem in a finite prediction time domain and utilizes the
rolling optimization to complete the optimization of the whole control process, which is
defined as model predictive control (MPC) [23,24].

Classical MPC usually uses linear models for prediction, which works better for linear
systems. But for nonlinear systems, linear models cannot accurately describe their dynamic
characteristics, making it difficult to apply them directly to nonlinear systems.

MPC is also a closed-loop optimization method that can correct the error caused by
model mismatch through the closed-loop process. In practice, MPC can be applied in
nonlinear processes by linearizing the nonlinear model. This control process is known as
NMPC [25,26].

As a branch of MPC, NMPC can achieve predictive control based on the nonlinear
model and perform closed-loop optimization. The nonlinear model can provide a more
accurate description of the nonlinear process, solving the problem of insufficient accuracy
of the linear model [27,28].
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NMPC can only find the optimal solution in each finite time domain but not the global
optimal solution of the whole operation process. In engineering practice, the target state
of the vehicle in the future cannot be predicted in advance, so the global optimum cannot
be found. Therefore, solving the local optimal results can already satisfy the optimization
requirements of the regenerative braking process [29].

2.2. The Implementation Method of NMPC

Different NMPC algorithms differ in terms of prediction models and control perfor-
mance, but all have the same implementation. In each control cycle, with the current
state as the starting point, the control algorithm can solve the optimization problem in the
finite time domain by a prediction model to obtain the optimal control sequence, the first
element of which is used as the control input of the current state. The implementation of
the algorithm consists of three parts: solving the prediction model, solving the optimization
problem in the finite time domain, and feedback correction.

The first step in implementing the NMPC algorithm is to build a discrete prediction
model. The predictive model can respond to system dynamic characteristics and be used
to predict system future states and outputs. By solving the prediction model, each set of
system states and outputs in the prediction time domain can be obtained.

To solve the optimization problem in the finite time domain, it is first necessary to
design the optimization objective function. The optimization objective function contains
the outputs and state variables to be optimized and contains the weights for each of these
optimization objectives. Solving an optimization problem in the finite time domain is
actually to find the input matrix that minimizes the value of the optimization objective
function in the prediction time domain. The time range of the input matrix is called
the control time domain, and usually, the control time domain is less than or equal to
the prediction time domain. To ensure that the states and inputs can be solved for each
moment in the prediction time domain, the last set of inputs of the input matrix can be
taken as the inputs outside the control time domain.

In the actual control process, there is a common problem of model mismatch. Using
closed-loop feedback, the NMPC algorithm can correct control errors caused by the model
mismatch. The NMPC algorithm can correct control errors caused by model mismatch
through closed-loop feedback.

The feedback correction consists of two parts: first, when solving the optimization
problem at each moment, the prediction model starts predicting based on the actual
feedback of the system at the previous moment, which can reduce the global cumulative
error caused by the accumulation of model mismatch over time; second, the control
algorithm can compare the prediction data before the current moment with the actual
measurement results to obtain the prediction error caused by model mismatch, and use
the prediction error to correct the output of the future prediction model at each moment,
which can further reduce the local prediction error caused by the model mismatch.

When in the regenerative braking state, the algorithm control flow chart is shown in
Figure 2.

2.3. Build Predictive Model

The braking energy recovery process is influenced by the wheels, the hydraulic braking
system, the motor, and the battery; to accurately calculate the motion of the wheels, the load
transfer of the sprung mass also needs to be predicted. Therefore, the desired predictive
model should include models for the sprung mass, tires, hydraulic braking system, motor,
and battery. To ensure the timeliness of online rolling optimization, the predictive model
should be simplified as much as possible.

The reference vehicle force analysis curve is shown in Figure 3, and the basic parame-
ters of the vehicle are shown in Table 1.
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Table 1. Main parameters used in models.

Parameter Value Unit

msm 1928 kg
l 2675 mm
a 1263 mm
b 1412 mm

hg 530 mm
Jwi 1.12 kg·m2

Jm 5.34 kg·m2

Rt 0.308 m
it 8.28 –

Where msm is the sprung mass, Fb1 is the front wheel ground braking force, Fb2 is
the rear wheel ground braking force, Fa is the air resistance, l is the wheelbase, a is the
horizontal distance from the center of the sprung mass to the front axle, b is the horizontal
distance from the center of the sprung mass to the rear axle, hg is the height of the centroid,
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ω1 is the front wheel rotational speed, Jw1 is the front wheel rotational inertia, Jm is the
motor rotational inertia, it is the total rotation ratio, Tm is the motor torque, Rt is the
tire rolling radius, Tf 1 is the front wheel friction braking torque, ω2 is the rear wheel
rotational speed, Jw2 is the rear wheel rotational inertia, and Tf 2 is the rear wheel friction
braking torque.

The sprung mass is modeled as a planar single degree of freedom model. The sprung
mass moves along a straight line with velocity v. Its motion equation is:

msm
.
v = Fb1 + Fb2 − Fa (1)

The equation of air resistance is:

Fa =
1
2

Cd AFρav2 (2)

where Cd is the air resistance coefficient, AF is the windward area, and ρa is air density.

Fz1 =
msmg

l

(
b−

.
v
g

hg

)
(3)

Fz2 =
msmg

l

(
a +

.
v
g

hg

)
(4)

where g is gravity.
Changes in vertical load and slip rate affect the longitudinal force of the tire, and to

more accurately reflect this one, the Pacejka model is used to model the tire. So, regarding
the relationship between the tire longitudinal force and the slip rate, the vertical load can
be expressed as:

Fbi = KDsin
(

KCtan−1
{

KBsi − KE

[
KBsi − tan−1(KBsi)

]})
Fzi (5)

where KB, KC, KD, and KE, the coefficients of the Pacejka model, are constants, Fzi is the
vertical load of each wheel, and si is the slip rate.

si =
ωiRt

v
− 1 (6)

The slip rate is related to the rotational speed and longitudinal speed of the wheel.
Assuming that the wheel is rigidly connected to the sprung mass, its longitudinal speed is
the same as the sprung mass and the rotational speed can be calculated from the torque
acting on the wheel and its rotational inertia. The front wheel is the driving wheel and is
subjected to the torque formed by the motor torque, friction braking torque, and ground-
braking force acting on the wheel, so the motion equation of the front wheel can be
expressed as follows: (

Jw1 +
Jm

2it2

)
.

ω1 =
1
2

(
itTm + RtFb1 − Tf 1

)
(7)

The rear wheel is the driven wheel, so the applied torque does not include the motor
torque. Assuming that the front and rear wheels have the same rolling radius, the motion
equation of the rear wheel can be expressed as:

Jw2
.

ω2 =
1
2

(
RtFb2 − Tf 2

)
(8)
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Because the friction braking torque ratio of the front and rear wheel brakes is constant,
the driven wheel motion equation can also be expressed as:

Jw2
.

ω2 =
1
2

[
RtFb2 −

(1− β)Tf 1

β

]
(9)

The total braking demand torque Ttotal is equal to the sum of the total friction braking
torque and the motor braking torque; the formula is:

Tm + Tf 1 +
(1− β)Tf 1

β
= Ttotal (10)

The total braking demand torque is obtained through the braking intent recognition
module, and it is a constant while solving for the optimization results. Therefore, the front
wheel friction braking torque can also be expressed by Tm; the relationship equation is:

Tf 1 = (Ttotal − Tm)β (11)

By establishing the relationship between the friction braking torque and the motor
braking torque, the input dimension of the model can be reduced and the optimization
problem can be simplified.

The front wheel is rigidly connected to the drive motor through the transmission sys-
tem, so the motor speed is known from the front wheel speed; the relationship equation is:

ωm = itω1 (12)

When the speed and torque are given, the motor output current is:

Im =
Tmωm − Loss(Tm, ωm)

Vacc
(13)

where Loss(Tm, ωm) is the power loss of the motor, which can be obtained by bench testing
the motor at different speeds and torques; Vacc is the voltage of the power battery, which is
related to the battery current and state of charge (SOC), but for each control process, the
battery voltage does not change much, so Vacc is considered as a constant.

To apply the above model to the NMPC algorithm, it needs to be discretized. With the
sampling period of ∆t, the discretized model is:

v(k + 1) =
∆t
m

[Fb1(k) + Fb2(k)− Fa(k)] + v(k) (14)

ω1(k + 1) =
∆t

Jw1 +
Jm

2it2

[
itTm(k) + RtFb1(k)− Tf 1(k)

]
+ ω1(k) (15)

ω2(k + 1) =
∆t
Jw2

[
RtFb2(k)− Tf 2(k)

]
+ ω2(k) (16)

The air resistance after discretization is:

Fa(k) =
1
2

Cd AFρav(k)2 (17)

The front axle load and rear axle load after discretization are:

Fz1(k) =
msmg

l

(
b− v(k)− v(k− 1)

∆tg
hg

)
(18)

Fz2(k) =
msmg

l

(
a +

v(k)− v(k− 1)
∆tg

hg

)
(19)
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The tire longitudinal force after discretization is:

Fbi(k) = KDsin
(

KCtan−1
{

KBsi(v)− KE

[
KBsi(v)− tan−1(KBsi(v))

]})
Fzi(v) (20)

The slip rate after discretization is:

si(k) =
ωi(k)Rt

v(k)
− 1 (21)

The motor output current after discretization is:

Im(k) =
Tm(k)ωm(k)− Loss(Tm(k), ωm(k))

Vacc
(22)

The input in the above model is:

u(k) = Tm(k) (23)

At the moment k, the input will be optimized online by the NMPC algorithm and
the first element of the optimal control sequence will be used as the input to the system
at the current moment. The above model involves the state variable at moment k-1, but
when k = 0, it does not exist. In practical engineering, the controller can always monitor the
state variable online, so when the braking starts, the controller can input the state variable
measured at the previous moment as the state variable at moment k-1 into the model, so
that the model can work normally.

2.4. Design Optimization Objective Function

The optimization objective function reflects the objective variables and weights that
need to be optimized for the optimization problem. The optimization objectives of the
control strategy proposed in this paper are the braking energy recovery power, tire slip rate,
and motor torque variation. To recover as much braking energy as possible, the braking
energy recovery power should be increased as much as possible while ensuring that the
tire slip rate is within the safe range. Throughout the braking process, the braking torque is
provided by both the motor and the friction braking system. The motor braking torque
can be changed quickly by adjusting the current, but the change rate of the friction braking
torque is smaller. Therefore, the change of the motor torque should be as small as possible
to ensure smooth deceleration during the braking process.

According to the above optimization objectives, the optimization objective function
can be expressed as:

J(k) = wu

hc−1

∑
i=0
|∆uk|+ ws

hc

∑
i=1

s1(k + i|k)− wP

hc−1

∑
i=0

Pm(k + i|k) (24)

where ∆uk is the motor torque variation at moment k, s1(k + i|k) is the slip rate at moment
k + i that is predicted at moment k, and Pm(k + i|k) is the braking energy recovery power
at moment k + i that is predicted at moment k.

Since the motor braking torque is superimposed on the front wheels, which corre-
sponds to a reduced slope of the β line, the front wheels are more likely to hold and the
rear wheels are less likely to hold, so only the slip rate of the front wheels is optimized. wu,
ws, and wP, the weights of each, are constants. Pm is the braking energy recovery power
that can be expressed as:

Pm = Tmωm − Loss(Tm, ωm) (25)

In the model prediction process, the prediction time domain hp is usually longer than
the control time domain hc, and inputs beyond the control time domain hc are still using the
last input element of hc. Since the vehicle dynamics system is very sensitive to changes in
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inputs, inputs beyond hc are not helpful to the optimization of the system, so the prediction
time domain in this paper is the same as the control time domain to ensure that there is an
independent control input at each moment.

2.5. Design Constraints

During the braking process, the motor torque is also influenced by the motor external
characteristics and the charging current limit of the power battery. In engineering, motor
drives usually limit the motor torque based on the motor external characteristic curve
but do not consider the effect of battery charging current limit. Therefore, when the
control strategy is designed, if the above limitation is still not considered, it will cause
damage to the power battery or cause a serious mismatch in the model. To avoid the above
situation, the above limitation should be considered when designing the regenerative
braking control strategy. So, the constraints on the state variables and inputs of the system
can be expressed as:

Tm_min(ωm) ≤ Tm ≤ 0 (26)

s1 ≤ smax (27)

Im ≤ Imax (28)

where Tmmin(ωm) is the maximum braking force of the motor on the external characteristic
curve of the fourth quadrant; smax, the limit of the wheel slip rate, is a constant; and Imax
is the charge current limit of the battery, which varies with SOC and temperature. Since
there is an order of magnitude difference between the time duration of a control moment
and the time duration of the various time of Imax, it can be considered as a constant when
solving the optimization problem.

3. Simulation Verification Based on Matlab/Simulink
3.1. Build Simulation Model

The whole vehicle simulation model is established based on the Simscape toolbox in
Matlab/Simulink to test the effectiveness of the above NMPC-based cooperative braking
algorithm. The simulation model includes the driving cycle, longitudinal driver, environ-
ment, controllers, passenger car, and visualization modules.

The original controller module included only the powertrain controller. To verify the
above NMPC-based cooperative braking algorithm, a brake controller with brake energy
recovery was built independently, as shown in Figure 4.
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The brake controller model includes a sub-model based on the NMPC cooperative
braking algorithm, as shown in Figure 5. The input signal is the total braking demand
torque, and the optimal motor braking torque is output through the model prediction and
optimal solution procedure of NMPC algorithm, which can achieve a good energy recovery
effect while ensuring braking safety, and at the same time, the vehicle speed and front
and rear wheel speeds are fed back to NMPC algorithm for rolling optimization of the
prediction model. The optimization objectives are the braking energy recovery power, tire
slip rate, and motor torque variation, and the constraints are the motor torque limited by
the motor external characteristic curve, power battery charging current, and wheel slip
rate limits.
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3.2. Simulation and Result Analysis Based on WLTC

The energy recovery effect of the proposed control algorithm will be tested based
on WLTC, and the energy recovery effect will be evaluated using the braking energy
recovery rate.

3.2.1. Select Driving Cycle

Currently, there are a variety of driving cycles used for vehicle energy efficiency testing
in various countries around the world, including NEDC, FTP75, UDDS, and JC08. For
China, the evaluation of the regenerative braking system started late and did not develop
its test cycle conditions, usually using NEDC as the standard. NEDC is divided into two
parts: urban conditions and suburban conditions. Urban conditions consist of four UDC
conditions, suburban conditions for one EUDC condition. The target speed curve for
NEDC is shown in Figure 6a.
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The overall NEDC is relatively stable, and most of the time the vehicle is in a constant
speed state. However, NEDC does not take into account the frequent stopping of vehicles
in urban traffic jams, there is a large deviation from the actual road traffic in China.
Therefore, in recent years, the conditions-testing standard in China is transitioning from
NEDC to WLTC. WLTC is a standard jointly developed by Japan, the United States, and
the European Union, which is obtained by processing the real driving conditions data
collected worldwide. Compared with NEDC, it fully takes into account factors such as
vehicle rolling resistance, gearing, and vehicle weight, and its speed fluctuates greatly, with
fewer idling conditions and covering a wider speed range, without cyclical acceleration
and deceleration, better reflecting the frequent changes in speed under different road
congestion states. Therefore, the energy-saving evaluation effect obtained by using WLTC
is more practical.

WLTC is divided into four parts: low speed, medium speed, high speed, and super-
high speed. Compared with NEDC, its test cycle increases from the 1180 s to 1800 s; the
duration of each part is 589 s, 433 s, 455 s, and 323 s, respectively, and the average speed
increases from 34 km/h to 46 km/h. WLTC has a longer test period and higher average
speed, which is more in line with the actual driving conditions. The broader speed range
for the overall performance of the vehicle also puts forward higher requirements. The
target speed curve for WLTC is shown in Figure 6b.

Based on the above analysis, WLTC was selected for the simulation test in this paper.

3.2.2. Simulation and Result Analysis

The data from WLTC were input into the simulation model of regenerative braking
system with NMPC-based cooperative braking algorithm for testing. To better verify the
effectiveness of the proposed algorithm, the comparison test with the parallel control
strategy was also performed. The comparison curve of target speed and actual speed is
shown in Figures 7 and 8. Setting the initial SOC to 0.8, the battery SOC curve can be
obtained, as shown in Figure 9. The motor braking torque curve and slip rate curve are
shown in Figures 10 and 11, respectively.
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Then, the above-mentioned sets of comparison graphs are analyzed as follows. Ac-
cording to the speed curve, the NMPC algorithm can follow the target velocity better, so
its control accuracy and response effect is higher than that of the parallel algorithm. The
variation of SOC curve indicated that after finishing an WLTC cycle, the SOC dropped from
80% to 73.2% under the proposed NMPC algorithm. When compared to 68.5% under the
parallel algorithm, the difference was 4.7%, so the NMPC algorithm consumes less power.
The motor torque curve shows that compared to the parallel strategy, the NMPC-based
motor braking torque is higher, up to 90 Nm, and the drive torque spikes are smaller, con-
tributing to smoother motor operation and better comfort. Furthermore, according to the
slip rate curve, the NMPC algorithm can better keep the slip rate within the safety interval.

The energy efficiency of the algorithm is also evaluated using the energy recovery rate
ηreg, with the following equation:

ηreg =
Ereg

Ebrk
× 100% (29)
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where Ereg is the recovered motor braking energy during the whole cycle, which can be
obtained by integrating the charging power Pc, and Ebrk is the total energy consumption
during the whole cycle, which is the sum of the front wheels braking energy consumption
Eµ f , the rear wheels braking energy consumption Eµr , and the motor braking energy
consumption Eµm . The expressions are as follows:

Ereg =
∫

Pcdt =
∫

Uc Icdt (30)

Ebrk = Eµ f + Eµr + Eµm =
∫

Fµ f uadt +
∫

Fµruadt +
∫

Fµmuadt (31)

where Uc is the charge voltage, Ic is the charge current, Fµ f is the front wheels braking
force, Fµr is the rear wheels braking force, Fµm is the motor braking force, and ua is the
vehicle speed.

Based on Equations (29)–(31), the calculation module is inserted in Simulink and the
results are presented in Table 2.

Table 2. The calculation of energy recovery rate.

Ereg Ebrk ηreg

3474 11,417 30.4%
2401 11,395 21.1%

According to these simulation results, the proposed cooperative braking algorithm
can more effectively recover the braking energy than the conventional parallel control
strategy, and under the whole WLTC, the energy recovery rate reaches 30.4%, which is
higher than 21.1% of the parallel algorithm.

Based on the above analysis, the NMPC algorithm is higher than the parallel algo-
rithm in terms of control accuracy, comfort, safety, and energy saving, which proves the
effectiveness of the proposed algorithm.

3.3. Simulation and Result Analysis Based on Single Braking Condition

To further verify the safety of the algorithm, a single high-intensity braking test
was conducted, in which the vehicle was gradually accelerated to 100 km/h, followed
by braking with a maximum braking intensity of 0.8, and the simulation result curves
Figures 12–15 were as follows:
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According to the above curves, the slip rate is always kept within 15–25% during
braking. When the braking intensity and the slip rate are high, the motor braking torque
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will be reduced rapidly, which can prepare for the possible wheel locking. Therefore, it can
still ensure good braking safety with high braking intensity.

4. Conclusions

The NMPC-based cooperative braking control algorithm is proposed in this paper,
with braking energy recovery power, tire slip rate, and motor torque variation as the opti-
mization objectives, and online optimization of the coordinated distribution of motor brak-
ing and friction braking to achieve good energy efficiency while ensuring braking safety.

Using the whole-vehicle dynamics model and the braking energy recovery system
model, which were built in Matlab/Simulink, when based on WLTC, the NMPC algorithm
proved to be better than the conventional parallel algorithm in terms of control accuracy,
comfort, safety, and energy saving. Meanwhile, the energy recovery rate was 30.4%, and
the maximum motor braking torque was 90 Nm. Under single high-intensity braking, the
slip rate was always within 15~25% and the motor quickly exited the braking process to
prepare for the possible wheel locking, which further proves that the algorithm can achieve
good braking safety.

Considering that the discrete model in the paper was obtained on the basis of the
Eulerian method, which is the first-order integrator characterized by low accuracy, and that
its stability can only be ensured by sufficiently small step-sizes, a comparative analysis with
other higher-order numerical integration methods will be performed in future studies [30].
In addition, the study has only progressed to the model and simulation stage, but in a real
application, there is also a need to consider the sensors and instrumentation required to
measure the relevant data, including the delays imposed by each element, as well as an
estimation of the total response time of the whole system, including the microprocessor.
So, this will also need to be addressed in future studies.
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