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Abstract: Electric vehicles (EVs) have emerged as the green energy alternative for conventional
vehicles. While various governments promote EVs, people feel “range anxiety” because of their
limited driving range or charge capacity. A limited number of charging stations are available, which
results in a strong demand for predicting energy consumed by EVs. In this paper, machine learning
(ML) models such as multiple linear regression (MLR), extreme gradient boosting (XGBoost), and
support vector regression (SVR) were used to investigate the total energy consumption (TEC) by the
EVs. The independent variables used for the study include changing real-life situations or external
parameters, such as trip distance, tire type, driving style, power, odometer reading, EV model,
city, motorway, country roads, air conditioning, and park heating. We compared the ML models’
performance along with the error analysis. A pairwise correlation study showed that trip distance
has a high correlation coefficient (0.87) with TEC. XGBoost had better prediction accuracy (~92%)
or R2 (0.92). Trip distance, power, heating, and odometer reading were the most important features
influencing the TEC, identified using the shapley additive explanations method.

Keywords: electric vehicles; XGBoost; SVR; SHAP; machine learning; vehicle parameters

1. Introduction

The demand for electric vehicles (EVs) has significantly increased globally [1]. The
rapid increase in pollution due to the rise in the usage of more motor vehicles, and concerns
about CO2 emissions, have influenced companies and governments to explore and adopt
alternative clean energy options [1–3]. The most comprehensive and promising approach
for reducing air pollution is to use EVs [4,5]. As a result, governments encourage citizens
to buy and use EVs instead of gasoline-powered automobiles [4,6]. EVs convert 77% of
electrical energy from the grid to power at the wheel, according to the report from the U.S.
Department of Energy.

In contrast, fuel-based electric vehicles convert only about 12–30% of the energy stored
in gasoline to power them [7]. In addition to that, a recent policy set by the U.S. government
about the 2030 greenhouse gas pollution reduction target aimed at securing U.S. leadership
on clean energy technologies such as EVs [8]. Similarly, commitment has been made by the
European Union (EU) to reduce the CO2 levels by at least 40% by 2030 [9]. With the global
increase of the EVs market, accurate power prediction has become crucial, as electric cars
cannot refuel as fast as conventional fuel-operated vehicles [10].

EVs also appear to be the most promising choice for improving the fuel economy,
but they still have significant disadvantages due to the limited driving range for the
battery [10]. Additionally, it was reported that due to limited battery capacity, people have
“range anxiety” [11]. Furthermore, charging stations in developing countries are restricted
to specific regions (city or heavily populated regions). As a result, knowing the driving
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range and fuel consumption rate before the trip is essential. While car manufacturers
provide information on the driving range and fuel consumption, the data is restricted. A
variety of external factors influence the fuel rate in real-world scenarios. The main challenge
of EVs today is to precisely determine and increase the trip distance by employing effective
means of battery power conservation. The energy consumption rate (ECR) measured
by manufacturers should be analyzed to better understand energy conservation. The
ECR factor, specified as kilowatt-hours per hundred kilometers, is set by the vehicle
manufacturer [4]. There is a considerable knowledge gap in predicting the ECR, including
the external factors that can influence it over time.

Energy consumption of EVs was reported using various methods, with limitations
that they will not work for any EV model [12–17]. Conventional statistical methods such as
simple linear regression often cannot predict precise responses because large volumes of
data can be scattered. On the other hand, machine learning (ML) algorithms with super-
vised and unsupervised learning approaches improve the prediction accuracy, reducing
the margin of error between the actual and predicted data. Simple linear regression was
attempted for predicting driving range and remaining charge in the EVs [4]. Among the lat-
est ML models, support vector regression (SVR) and extreme gradient boosting (XGBoost)
have been gaining popularity in making predictions with the highest accuracy, at a faster
rate [18,19]. The XGBoost is an open-source ML model that supports both regression and
classification models and handles large volumes of complex data with automatic handling
of the missing values. It uses additional approximations to find the best tree model that
works well, while preventing the overfitting of the data [18,19]. XGBoost algorithms were
not reported to predict the energy consumed by EVs using external factors (independent
variables). The ML models used in this study can improve the prediction and reduce the
error margin among the predicted and test set data. The popularity of ML among EVs’
range prediction and charging time prediction has been increasing in recent times. This
approach has been used in the plug-in time duration of EVs to optimize the charging
time [20].

Power management, accurate driving distance prediction, and nearest route to charg-
ing station prediction are the sectors that can benefit from the power prediction using
ML. Several internal and external factors affect and influence the power usage and the
remainder of total power in EVs. EVs’ idle time estimation on charging infrastructure
has been reported comparing supervised ML regressions, which examined the impact of
speed, route, traffic volume, and weather conditions on power usage [21–24]. To the best of
our knowledge, there has been no work reported on utilizing the efficient ML methods to
predict EVs’ power usage influenced by external factors, such as driving distance, driving
style or patterns, road type, tire type, EV model, air condition, park heating, odometer
reading, and power of the vehicle, which motivated us to pursue the work presented in this
paper. Our work is novel in utilizing XGBoost to improve the prediction accuracy of TEC at
a faster rate, using the most influential or dominant external parameters not studied before.
To better understand the developed model and the predictors, SHAP (shapley additive
explanations method) was used in the XGBoost model to find the importance or strength
of each feature while interacting with another feature, and such work was not reported.

In this study, we analyzed the total energy consumption (TEC) of EVs with the
vehicle’s external and internal factors. This study aims to predict the amount of energy
consumed by EVs after traveling a distance in various driving conditions. We hypothesize
that ML models multiple linear regression (MLR), SVR, and XGBoost algorithms can
effectively predict and track the power consumed by EVs, influenced by EVs external
parameters such as tire type, driving style, power, odometer, trip distance, city, motorway,
country roads, air condition, and park heating. To better understand our model predictions,
the SHAP (shapley additive explanations) method was used to study the importance of
each feature.
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2. Methodology
2.1. Data Source and Preparation

The data used for the analysis were extracted for the Tesla S model. The data were
collected from Spritmonitor. Spritmonitor is an open-source German website that collects
and distributes data about the fuel consumption of vehicles in real-world conditions
through its registered vehicles and users. The data is updated in the system on a regular
basis by the users (crowdsourcing), while they log the fueling data in the system. It
contains data from both electric and conventional fueled vehicles. Several other websites
and data sources were examined before choosing Spritmonitor. They lacked the required
parameters for this study, but Spritmonitor had a large dataset of EV fuel consumption
information. The Tesla Model S was selected with the driving data under several conditions,
available for 100 users. The data was extracted from the Spritmonitor website using
crawlers and saved as a CSV file. Web scraping or web crawling is a powerful tool that
programmatically goes over a collection of web pages and extracts data. Python and
Scrappy (an application framework that extracts structured data by crawling websites)
were used to build the scrapper.

The data preprocessing included various steps. The original dataset obtained from the
website contained 20 features. The features were selected according to their importance and
use in the prediction of TEC. Some of the features that had incomplete data (for example,
ECR rate, fuel note, consumption per 100 km, and fuel type) were removed. Manufacturer,
model, and version were combined to make a single feature of different versions of Tesla
Model S. The total number of features used after feature selection was 11. Additionally,
we have eliminated the rows with missing data, reduced inconsistent values and outliers,
and removed duplicate data for maintaining data consistency. After cleaning the dataset,
feature encoding was performed to transform categorical variables into a numerical format.

Table 1 outlines the sample of the dataset used in this study. The total number of data
points used after cleaning was 13,156, which includes TEC as a dependent variable and
the rest of the parameters as the independent variables, as shown in Table 1. The average
power consumed by the EVs is 34.5 kWh. The data was preprocessed, and ML algorithms
were built using the google collaborator. Several ML packages such as numpy, pandas,
sklearn, seaborn, etc., were imported to build the ML model. The extracted dataset had a
few outliers and some missing data. Those outliers and missing data have been removed
from the dataset to reduce the error in the prediction.

Table 1. Input dataset with independent variables and dependent variable (TEC).

EV Model
Tire
Type

Driving
Style

Power
(kW)

Odometer
(Miles)

Trip
Distance

(km)
City Motor

Way
Country
Roads A/C Park

Heating
Total Energy

Consumption
(kWh)

Tesla Model S Winter normal 225 88,514 67.5 Yes Yes Yes Yes Off 11.29

Tesla Model S All-year moderate 267 185,973 2.4 Yes No No Yes Off 0.55

Tesla Model S Summer normal 257 64,924 142 No Yes Yes Yes On 34.02

The pairwise correlation was conducted to observe the relationship between each
independent variable with the target variable (TEC), as shown in Section 3. The pairwise
correlation was performed using Minitab (statistical software developed at Pennsylvania
State University, University Park, PA, USA). After the pairwise correlation, the final CSV
file was imported into the google collaborator, and the ML technique was deployed.

2.2. Model Building

The dataset was split into a training set of 80% of the data and a test set of 20% of
the data. The split data were analyzed using ML algorithms. The ML model buildings
were performed using Python (Version 3.9.2) via the google collaborator, including the data
processing and the analysis. The Python software and google collaborator are open-source
software available for free (http://www.python.org, accessed on 15 September 2020).

http://www.python.org
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Several packages such as matplotlib, NumPy, Pandas, and Scikit-learn were imported. The
three ML algorithms, XGBoost, MLR, and SVR, were used in this study. The data were
further analyzed using the above-mentioned ML algorithms. Figure 1 illustrates various
steps in the deployment of the ML process.

World Electr. Veh. J. 2021, 12, x  4 of 10 
 

State University, University Park, PA, US). After the pairwise correlation, the final CSV 

file was imported into the google collaborator, and the ML technique was deployed. 

2.2. Model Building 

The dataset was split into a training set of 80% of the data and a test set of 20% of the 

data. The split data were analyzed using ML algorithms. The ML model buildings were 

performed using Python (Version 3.9.2) via the google collaborator, including the data 

processing and the analysis. The Python software and google collaborator are open-source 

software available for free (http://www.python.org, accessed on 15 September 2020). Sev-

eral packages such as matplotlib, NumPy, Pandas, and Scikit-learn were imported. The 

three ML algorithms, XGBoost, MLR, and SVR, were used in this study. The data were 

further analyzed using the above-mentioned ML algorithms. Figure 1 illustrates various 

steps in the deployment of the ML process. 

 

Figure 1. Simple illustration of various steps in the deployment of the ML process. 

MLR uses several variables to predict the behavior or outcome of a dependent vari-

able. MLR models the linear relationship between the independent variables and the pre-

cision or dependent variable. As the dataset used in this study contains multiple variables 

that may affect the dependent variables, MLR seems to be a perfect model to see the linear 

relationship as it can make predictions using various criteria. To develop the MLR model, 

the libraries were imported into a python environment. The prepared dataset of Tesla 

Model S after cleaning and removing outliers was imported and separated into predictor 

(independent) variables and response (dependent) variables. The dataset we imported 

contained several categorical variables which needed to be converted into numerical val-

ues, for which one hot encoder and label encoding of the sklearn library were used to 

create dummy variables. The data were then split into a training set and test set in a 4:1 

ratio. The MLR ML model was trained using the training set data to better predict the test 

set. 

SVR is a supervised ML model that analyzes data for classification and regression 

analysis. It is built on the concept of support vector machines (SVMs). SVMs are super-

vised ML methods used in regression, outliers’ detection, and classification. SVMs are 

very useful while working in a dataset with multiple parameters as they are highly effec-

tive in high-dimensional spaces. SVMs are memory-efficient as they use a subset of sup-

port vectors or training points in the decision function. SVR uses the best fit line by in-

cluding the maximum amount of data in its hyperplane. It also includes the threshold 

value for better fit, rather than minimizing the errors between predicted and real values.  

XGBoost is an extension of the gradient boosting algorithm that is quite effective and 

popular. It is one of the most sophisticated tools that deal with all sorts of irregularities in 

the datasets. The XGB regressor is imported from XGBoost to make the prediction. The 

Figure 1. Simple illustration of various steps in the deployment of the ML process.

MLR uses several variables to predict the behavior or outcome of a dependent variable.
MLR models the linear relationship between the independent variables and the precision
or dependent variable. As the dataset used in this study contains multiple variables that
may affect the dependent variables, MLR seems to be a perfect model to see the linear
relationship as it can make predictions using various criteria. To develop the MLR model,
the libraries were imported into a python environment. The prepared dataset of Tesla
Model S after cleaning and removing outliers was imported and separated into predictor
(independent) variables and response (dependent) variables. The dataset we imported
contained several categorical variables which needed to be converted into numerical values,
for which one hot encoder and label encoding of the sklearn library were used to create
dummy variables. The data were then split into a training set and test set in a 4:1 ratio. The
MLR ML model was trained using the training set data to better predict the test set.

SVR is a supervised ML model that analyzes data for classification and regression
analysis. It is built on the concept of support vector machines (SVMs). SVMs are supervised
ML methods used in regression, outliers’ detection, and classification. SVMs are very useful
while working in a dataset with multiple parameters as they are highly effective in high-
dimensional spaces. SVMs are memory-efficient as they use a subset of support vectors
or training points in the decision function. SVR uses the best fit line by including the
maximum amount of data in its hyperplane. It also includes the threshold value for better
fit, rather than minimizing the errors between predicted and real values.

XGBoost is an extension of the gradient boosting algorithm that is quite effective and
popular. It is one of the most sophisticated tools that deal with all sorts of irregularities in
the datasets. The XGB regressor is imported from XGBoost to make the prediction. The
split training sets are fed into the regressor, and the root mean square error is calculated
to examine how close the predicted result is to the fitted line. It also helps to investigate
the marginal error in the observed and predicted data. Moreover, K-fold cross-validation
is applied ten times (k = 10), and 10 train and test folds are created. The built models are
trained over each train fold and, at the same time, tested separately on the test fold. The
cross-validation provides the best accuracy of the model and avoids overfitting.

Hyperparameter tuning was performed to prevent overfitting of the data, minimizing
the RMSE. Based on the impact of performance, the following hyperparameters were
tuned, objective: reg:squared error, learning_rate: 0.05, max_depth: 0.5, alpha: 10, and
colsample_bytree: 0.3, n_estimator = 100, early_stopping round: 10, verbose_eval = false,
using the ‘GridSearchCV’ object in Scikit-learn. After tuning the above hyperparameters,
the XGBoost model was developed. To better understand the developed model and the



World Electr. Veh. J. 2021, 12, 94 5 of 10

predictors, SHAP was used to find the importance of each feature. The tree explainer
method in SHAP was used to visualize the summary of the prediction. The dependence
plot of independent features (motorways and power) is generated by how individual
features impact energy consumption.

3. Results and Discussion

The pairwise correlation was used to compare the correlation between each indepen-
dent variable with the dependent variable to determine the collinearity between each other,
as shown in Table 2. The correlation between trip distance and TEC had the highest corre-
lation coefficient (r), of 0.88. The independent variables such as tire type, city, odometer,
A/C, and driving style had a very low correlation with TEC. The third column in Table 2
shows the confidence interval that is based on a 95% confidence level. The value of the
correlation coefficient lies in the range of the confidence interval. As illustrated in Table 2,
the highest R-squared value (R2) was 0.768 for trip distance vs. TEC, and the lowest was
for driving style vs. TEC. This pairwise correlation helps to determine each independent
variable’s significance for the total energy consumed by the electric vehicle used in this
study. The pairwise correlation provided information that there is no existing collinearity
between any of the independent variables.

Table 2. Pairwise correlation analysis between each independent variable and the dependent variable.

Dependent Variable Independent Variable Correlation Coefficient (r) Confidence Interval R2

Total Energy Consumption (kWh) Trip distance (km) 0.8766 (0.87, 0.88) 0.7685

Total Energy Consumption (kWh) Motor way 0.0852 (0.07, 0.1) 0.0073

Total Energy Consumption (kWh) Version 0.0782 (0.06, 0.1) 0.0061

Total Energy Consumption (kWh) Power (kW) 0.0687 (0.05, 0.09) 0.0047

Total Energy Consumption (kWh) Park heating 0.0586 (0.04, 0.08) 0.0034

Total Energy Consumption (kWh) Country roads 0.0021 (−0.01, 0.02) 0.0000

Total Energy Consumption (kWh) Tire type −0.0110 (−0.03, 0.01) 0.0001

Total Energy Consumption (kWh) City −0.0118 (−0.03, 0.01) 0.0001

Total Energy Consumption (kWh) Odometer −0.0139 (−0.03, 0.003) 0.0002

Total Energy Consumption (kWh) A/C −0.0253 (−0.04, −0.01) 0.0006

Total Energy Consumption (kWh) Driving style −0.0382 (−0.06, −0.02) 0.0015

The performances of the individual ML models were analyzed using two absolute er-
ror indicators, the root mean square error (RMSE) and the mean absolute error (MAE) [13].
MAE is the statistical value that measures the average magnitude of error in a set of predic-
tions. It is the mean of all the absolute errors. In comparison, RMSE is the average of all
the squared errors. The RMSE and MAE were calculated using the following formulas [5]:

RMSE =
m

∑
i=1


(

Ypredicted

)
i
− (Ymeasured)i

N

2

(1)

MAE =
m

∑
i=1

∣∣∣(Ypredicted

)
i
− (Ymeasured)i

∣∣∣
N

(2)

where m represents the total number of values, Y represents the group of values, and
N represents the number of errors. As shown in Table 3, the values of RMSE, R2, and
MAE were calculated for MLR, SVR, and XGBoost models. We found that the value of R2

obtained using XGBoost is 91.86%, which is higher than MLR (83.42%) and SVR (88.48%)
ML models. Similarly, to measure the magnitude of error, RMSE was calculated. The value
of RMSE obtained using XGBoost was 9.49 kWh, which is lower than the RMSE obtained
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using SVR (10.71 kWh) and MLR (12.93 kWh). This shows that the predicted data better fit
over test data with minimal error compared to the SVR and MLR. Our values are consistent
with the range of values reported in the literature [5].

Table 3. Comparison of the performances of different ML models in prediction of EVs TEC.

ML Model R-Squared (R2) Mean Absolute
Error (kWh)

Root Mean Square
Error (kWh) Accuracy (%)

MLR 0.8342 3.909 12.926 83.42

SVR 0.8848 4.691 10.707 88.49

XGBoost 0.9186 4.551 9.490 91.86

The scatter plot in Figure 2 shows the fit of the MLR model predicting TEC using
multiple external factors (independent variables) (TEC value was the dependent variable).
The accuracy of the fit was measured by R-squared (R2), also known as the coefficient
of determination. It was calculated to determine the percentage of variance collectively
explained by the independent variable in the dependent variable. This R2 (ranging from
0 to 100%) was used to measure the strength of the relationship between the dependent
variable and the performance of the developed model. The R2 for the MLR model between
the observed dataset and predicted values was calculated to be 0.83. The RMSE for the test
dataset was estimated to be 12.93 kWh, and the MAE was 3.91 kWh. The parity plot of
Figure 3A shows the fit of the SVR model predicting TEC using multiple external factors
(independent variables). The R2 calculated using the SVR model was higher than the
MLR model, as the SVR model considers its hyper line with the maximum number of
points. The linear fit line using the SVR model had less variation than MLR. The RMSE
and MAE calculated using the SVR model were 10.71 kWh and 4.69 kWh, respectively.
The scatter plot shown in Figure 3B shows the comparison of predicted values and the
observed dataset obtained by using a single independent variable (trip distance) with the
highest correlation value. The R2 calculated using the SVR model for this comparison is
0.79, showing that the prediction using only one parameter is lower than using multiple
independent variables. This proves that TEC is affected by various factors and not only by
the trip distance.
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Figure 4 shows the scatter plot obtained by comparing predicted values with an
observed dataset using the XGBoost model. The R2 values utilizing this model were
calculated to be 0.92, which is the highest among all the three ML models. The RMSE and
MAE errors calculated were 9.49 kWh and 4.55 kWh, respectively. Minimal variation and
better linear fit can be seen in the scatter plot obtained using XGBoost, in comparison with
both MLR and SVR models. The result shows that the XGBoost model is more effective in
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predicting the total power consumption of electric vehicles (Tesla Model S) than SVR and
MLR using the external factors (independent variables used in this study).
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To examine the significant parameters that influence the TEC, SHAP was used. SHAP
helps to explain the output obtained using machine learning models. The SHAP summary
was obtained to illustrate which features have high predictive significance. In Figure 5, the
features/parameters are arranged according to their level of importance, i.e., the features
that impact largely on TEC are placed on the top, and the features that have a minimal
impact are placed on the bottom. As seen in Figure 5, trip distance has the highest impact
on the TEC, followed by power, version, tire type, odometer, etc. The odometer reading,
which shows the total distance traveled by the vehicle, has a moderate impact on TEC.
Similarly, motorway and country roads are at the bottom of the SHAP summary, showing
that these parameters have minimal impact on the TEC.

The SHAP summary also shows how those individual parameters impact the TEC
(negatively or positively). For example, when we carefully examine the highly influential
feature, which is trip distance, we can say that the higher the trip distance, the higher the
TEC. Still, in contrast, in odometer, it shows lower odometer distance results in high TEC.
The data points in Figure 5 that are right next to the zero on the horizontal axis help to
estimate how those features result in high TEC, and the data points on the left show how
those features result in low TEC.
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Figure 5. SHAP summary of the relative importance of various features used in the prediction of
total energy consumption of the EVs.

In Figure 6, a SHAP dependence plot is generated to illustrate the impact of a single
feature on the TEC. In Figure 6, power can be related to the trip distance to obtain the
SHAP values. When the power is between 0 and 200 kW, the TEC is low, regardless of trip
distance (i.e., high or low), and the maximum energy consumption is seen when the power
is between 300 and 400 kW. The dependence plot helps to study the impact on individual
features on the TEC while interacting with a closely related parameter. This interaction
method using the tree explainer can uncover the important patterns of interaction, which
otherwise can be missed or cannot be shown by any other method.
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4. Conclusions

In this work, various ML models such as MLR, XGboost, and SVR were implemented
successfully in the EV (Tesla S model). Pairwise correlation using minitab determined
the best-suited independent variables for the dependent variable (TEC) prediction, and
trip distance was found to have the highest correlation coefficient (0.87). The TEC was
predicted under the influence of external parameters (trip distance, tire type, driving
style, power, odometer, EV model, city, motorway, country roads, air condition, and park
heating). The efficacy of the ML models was tested, and XGBoost has the highest prediction
accuracy (92%) for TEC. The XGBoost model could also identify the features which had the
strongest/weakest significance in TEC predictions using the SHAP probability analysis.

In summary, our results demonstrate that predictive ML algorithms can assist drivers
by providing insight into conditions that can influence the TEC of their EVs. Overall, the
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use of ML in predicting the TEC might be used to improve the performance of various
models of EVs.
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