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Abstract: In the years to come, Connected and Automated Vehicles (CAVs) are expected to substan-
tially improve the road safety and environmental impact of the road transport sector. The information
from the sensors installed on the vehicle has to be properly integrated with data shared by the road
infrastructure (smart road) to realize vehicle control, which preserves traffic safety and fuel/energy
efficiency. In this context, the present work proposes a real-time implementation of a control strategy
able to handle simultaneously motion and hybrid powertrain controls. This strategy features a
cascade of two modules, which were implemented through the model-based design approach in
MATLAB/Simulink. The first module is a Model Predictive Control (MPC) suitable for any Hy-
brid Electric Vehicle (HEV) architecture, acting as a high-level controller featuring an intermediate
layer between the vehicle powertrain and the smart road. The MPC handles both the lateral and
longitudinal vehicle dynamics, acting on the wheel torque and steering angle at the wheels. It is
based on a simplified, but complete ego-vehicle model, embedding multiple functionalities such
as an adaptive cruise control, lane keeping system, and emergency electronic brake. The second
module is a low-level Energy Management Strategy (EMS) of the powertrain realized by a novel
and computationally light approach, which is based on the alternative vehicle driving by either a
thermal engine or electric unit, named the Efficient Thermal Electric Skipping Strategy (ETESS). The
MPC provides the ETESS with a torque request handled by the EMS module, aiming at minimizing
the fuel consumption. The MPC and ETESS ran on the same Microcontroller Unit (MCU), and the
methodology was verified and validated by processor-in-the-loop tests on the ST Microelectronics
board NUCLEO-H743ZI2, simulating on a PC-host the smart road environment and a car-following
scenario. From these tests, the ETESS resulted in being 15-times faster than than the well-assessed
Equivalent Consumption Minimization Strategy (ECMS). Furthermore, the execution time of both the
ETESS and MPC was lower than the typical CAN cycle time for the torque request and steering angle
(10 ms). Thus, the obtained result can pave the way to the implementation of additional real-time
control strategies, including decision-making and motion-planning modules (such as path-planning
algorithms and eco-driving strategies).

Keywords: energy management strategy; smart roads; connected and automated vehicles; model
predictive control; ADAS; model-based design; processor-in-the-loop

1. Introduction

Driver and passenger safety has led to a great development of Advanced Driver
Assistance Systems (ADASs) in new vehicle projects. ADASs are defined as vehicle-based
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intelligent safety systems, which could improve road safety in terms of crash avoidance,
crash severity mitigation and protection, and post-crash phases. This has become possible
thanks to the improvement of sensor technologies installed on the vehicle [1], with the
aim to obtain a more comprehensive description of the environment [2]. Moreover, while
ADAS allow the vehicle to be automated, communication between vehicles and the road
infrastructure is needed to improve driving awareness and prevent the unknown intentions
of other road users [3]. Cooperative-Intelligent Transportation Systems (C-ITSs) aim at
connecting vehicles to each other and to the road infrastructure, the so-called smart road,
increasing traffic safety and efficiency [4]. Therefore, the combination of ADASs and C-ITS
results in a Connected and Automated Vehicle (CAV), which opens the way to a new era in
the design of cooperative control systems considering both in-vehicle and roadside aspects.
In this perspective, the work in [3] described the state-of-the-art and future challenges and
opportunities for CAVs, defining the main components of the future transportation systems
and considering a holistic approach to deal with challenging tasks such as constrained
optimal control problems and energy management strategies.

Concerning control aspects, a CAV requires the adoption of extended nonlinear time-
varying models to simulate both the vehicle and the environment, so as to design an
efficient control strategy. Moreover, the vehicle to be controlled needs to be subjected to
multiple constraints, involving both actuator limits and constraints on maneuvers. Thus,
because of its ability to exploit available models and satisfy constraints in control systems,
the Model Predictive Control (MPC) is particularly suitable for CAVs. Concerning energy
management, the Energy Management Strategy (EMS) of the powertrain deals with the
issue of handling the energy flows in the Hybrid Electric Vehicles (HEVs) between the
Internal Combustion Engine (ICE), Electric Motor (EM), and battery.

The contribution of this work is twofold and aims at developing an integration strategy
that allows running both motion and powertrain control in real-time on a single MCU.
First, the MPC strategy proposed in this work controls both the lateral and longitudinal
dynamics of a vehicle, considering a simplified single-track model, and it was assumed
that not only the motion references for the vehicle and constraints on the speed, but also
some of the model parameters that depend on the road conditions, e.g., friction, slope
and curvature, would be received from the smart road infrastructure through a C-ITS
service. The controller had two outputs, the steering angle of the wheels and the torque
request for the powertrain. The torque request was handled by the EMS through the
ETESS proposed by the authors in previous works [5,6]. The ETESS aims at minimizing
the HEV fuel consumption, and it requires a reduced computational effort with respect
to existing strategies (i.e., ECMS) such that it can run on the same control unit of the
MPC. This particular implementation was the second main contribution, since for the first
time, a vehicle dynamics control algorithm and a powertrain management strategy were
demonstrated to run in real time on the same embedded control unit.

The simplified vehicle model and the EMS proposed in this work allowed the em-
bedded real-time implementation of a model-based design module (implemented in the
MATLAB/Simulink environment, a typical approach of automotive applications) that
connects in cascade the MPC and ETESS. A single Microcontroller Unit (MCU), considering
the high-performance Arm-Cortex M7 MCU STM32H743ZI on the development board
NUCLEO-H743ZI, was used. The aim of the real-time implementation was to demonstrate
by Processor-In-the-Loop (PIL) testing that the computational burden of the cascade be-
tween the MPC and ETESS on the same MCU was lower than 10 ms, the typical cycle time
of CAN messages for torque and steering, based on the methodology used by the authors
in [7].

The execution of both the motion and powertrain control on a single MCU would
enable further developments in which the MCU would act as an Internet of Things (IoT)
gateway between the vehicle and the surrounding environment. In particular, this gateway
would allow the following communications:

• Vehicle to Vehicle (V2V);
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• Vehicle to Infrastructure (V2I);
• Infrastructure to Vehicle (I2V).

Thus, the presented solution allows considering a new hardware architecture in
which the powertrain and motion controls are directly coupled from a CAV perspective.
Furthermore, since a low number of state variables for the vehicle dynamics were used
and a simplified EMS was adopted, this study aimed at demonstrating that the approach
can be extended with additional control algorithms (i.e., path planning, eco-driving), still
using the same MCU and the same CAN cycle time.

The remainder of the paper is organized as follows. Section 2 is a revision of the
state of the art about MPC for CAVs and about EMS. Section 3 describes the proposed
method to: (i) design a simplified but complete nonlinear single-track ego-vehicle model
and its linearization in order to allow the implementation of an adaptive MPC; (ii) define
the powertrain model and the ETESS strategy. Section 4 describes: (i) the comparative
assessment between ETESS and ECMS; (ii) the PIL test on the selected MCU. Section 5 and
Section 6 discuss the results as well as the limitations of the current approach and future
developments, respectively.

2. Related Work

This section presents the relevant scientific background about MPC for CAVs and
EMS for hybrid powertrains.

2.1. MPC for CAVs

Recent technologies and control strategies have found several fields of application
for tracking problems. For example, in [8], a novel control strategy has been proposed for
enhanced operation and control of DC microgrid systems (based on photovoltaic modules,
battery storage systems, and DC load), enabling a maximum power point tracking (MPPT).
In [9], the authors propose an adaptive neuro-fuzzy inference system (ANFIS) for blade
pitch control of the wind energy conversion systems (WECS) instead of the conventional
controllers. Additionally, MPC has acquired more and more robustness and has been
applied in various fields. For example, the work of [10] shows the robustness of MPC
application for robotic manipulators, in order to track regular and irregular trajectories,
comparing it with other techniques. The work in [11] shows the robustness of MPC for data-
driven models. In the field of CAVs, MPC has been indicated as the most promising control
technique, as reported in [3], due to: (i) its ability to handle Multi-Input-Multi-Outputs
(MIMO) systems (without the need to design more PIDs and corresponding decouplers);
(ii) proven and fast optimization methods; (iii) its ability to handle constraints on control
variables (and their relative rate of charge) and outputs variables. Thus, in this paper, the
choice of control strategy, given the application context, fell on MPC.

MPC is not new in autonomous driving applications, both for longitudinal vehicle
dynamics and lateral control. In [12], an MPC acts as an upper controller for platooning to
obtain the desired longitudinal acceleration and a PID acts as lower controller to determine
either engine throttle or brake input. In [13], a step-by-step linearized MPC has been
used for longitudinal dynamics starting from a low-order model. In [14], an adaptive
MPC is proposed for lateral control in lane keeping problems, where longitudinal velocity
is assumed constant and the goal is to minimize the distance from lane center line and
the steady state heading angle error, while satisfying the respective safety constraints.
In [15], the integration of a Linear-time-varying Model-predictive-control (LTV-MPC) is
presented. The model is designed to stabilize a vehicle during sudden lane change or
excessive entry speed in curve, with a slip controller that converts the desired longitudinal
tire force variation to pressure variation in the brake system. The approach uses a 3DOF
vehicle model taking into account both yaw rate and side slip angle of the vehicle, while
the slip controller is a gain scheduled proportional controller with feed-forward action,
validating the performances through simulation.
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The MPC strategy proposed in this work acts as a high-level controller, operating as
an interface between the Smart Road and a hybrid powertrain. Thus, on one side the MPC
manages vehicle maneuvers acting on the steering angle and wheel torque, based on the
information from the surrounding environment, considering:

• Intelligent Speed Adaptation (ISA) from Smart Road Infrastructure (e.g., point-to-
point speed);

• ADAS Maps (e.g., TomTom) and systems to determine steering maneuvers;
• Environmental and road data (e.g., wind speed and road friction) provided by Infras-

tructure to Vehicle (I2V) communication;
• Parameters and measurements from vehicles located ahead (e.g., its acceleration,

speed and mass) provided by Vehicle to Vehicle (V2V) communication;
• ADAS functionalities to maintain a certain safety distance from the vehicle located ahead.

On the other hand, the torque request provided by MPC is handled by the EMS
through the ETESS strategy proposed by the authors in previous works [5,6]. In this way,
the MPC occupies two layers of the real-time control for CAVs presented in [3]: (i) motion
control; (ii) powertrain control.

MPC implementation on automotive Electronic Control Units (ECUs) is difficult due
to real-time constraints. In fact, in the automotive field, the trend predicts the usage of
Field Programmable Gate Arrays (FPGAs) [16] and there are feasibility studies in the field
of vehicle platoons [17], but not yet real applications on homologated CAVs.

For this reason, the MPC presented in this work has been tested on a real MCU, not
based on FPGA but on a high-performance Arm-Cortex M7 MCU. This kind of MCUs
will probably drive the future of the mobility [18,19], due to their low costs and good
performance. In this work, the development board NUCLEO-H743ZI equipped with a
STM32H743ZI MCU [20] has been used, due to the possibility provided by ST Microelec-
tronics to enable PIL Testing [21] in the MATLAB/Simulink environment, which is the
main software development tool for Model-Based-Design in the automotive field. PIL
testing is a fast procedure that does not require high investments (i.e., buying a real-time
Hardware In the Loop simulator) and setup times. Thus, it is particularly suitable for a
real-time test at an early stage of a project [7].

2.2. EMS for Hybrid Powertrains

Additionally, EMS for hybrid powertrains has been widely investigated in the current
literature. The task of EMS is to solve a minimization problem, subjected to system
dynamics and constraints, defining a constrained optimization problem. As an example,
refs. [22,23] report that the limited energy storage capability of the batteries, for an optimal
control formulation, may be interpreted as a terminal state constraint. Hence, since the HEV
battery cannot be recharged through the grid, its terminal charge is fixed as a constraint,
usually equal to its initial/nominal value. If the driving future information is known, the
problem can be simply solved by employing Global Optimization Strategies such as the
Pontryagin Minimum Principle (PMP) [24] or Dynamic Programming (DP) [25]. However,
knowing the entire driving cycle means it is impossible to implement it for use in a real
vehicle due to the lack of future information. These strategies are usually defined as offline
since they are used as “theoretical targets” to find the optimal results obtained by the
hybrid vehicle. On the other hand, the Local Optimization Strategies (LOSs) are based on
present or past information, and are the so-called online strategies. In this case, the problem
is subdivided into a sequence of local problems. Hence, there is no need for information
about the entire driving mission, making possible its application to a real vehicle. It is worth
underlining that the LOS does not provide the optimal solution to the control problem,
but only a suboptimal one. The most known is the Equivalent Consumption Minimization
Strategy (ECMS) [26], which can be considered as an online variant of the PMP. Recent
works introduced in the optimization problem the possibility to adapt the EMS according
to forecasts of vehicle velocity or power request at the wheels, such as in [27,28].
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In this work, the EMS uses the ETESS strategy, proposed by the authors in [5,6]. ETESS
aims at minimizing HEV fuel consumption, and it requires a reduced computational effort
with respect to existing strategies (i.e., ECMS), such that it is more suitable to the be run on
the same control unit of the MPC.

2.3. Integration of MPC with EMS

The integration of MPC with EMS is examined in [29] as an evolution of energy
management and a future trend, also discussing the need of validation processes based
on Model In the Loop (MIL), Software In the Loop (SIL) and Hardware In the Loop (HIL).
In [30], a survey about the state of the art in EMS for connected HEVs and PHEVs (Plug-in
HEVs) has been presented, considering, in particular, MPC for eco-driving on connected
vehicles using V2I communication. In [31], an MPC for HEVs in car-following scenarios
has been implemented to investigate the interplay between fuel economy, vehicle exhaust
emissions, and inter-vehicle safety. Specifically, an MPC-based controller is developed to
optimize the vehicle speed and engine torque for better fuel economy and fewer exhaust
emissions while ensuring inter-vehicle safety. In [32], an MPC-based energy management
strategy is proposed, in which the predicted velocity and SoC (State of Charge) trajectory is
regarded as reference signal, demonstrating that the fuel economy of HEV is improved by
considering velocity prediction and SoC trajectory planning.

In this work, an embedded real-time implementation of a model-based design module
that connects in cascade MPC and ETESS is proposed, and a low-cost test strategy, named
PIL, has been used in order to verify, at this first step of the project, the real-time execution
of the coupled motion and powertrain controls.

3. Methodology

This section first shows a complete nonlinear ego-vehicle model, which is then lin-
earized to allow the design and implementation of an adaptive MPC control strategy.
This strategy implements functionalities for autonomous driving, considering as control
variables the steering angle at the wheels and wheels’ torque. The last control variable
provides the power demand for the implemented EMS.The second part of this section
reports the powertrain and driveline model and, finally, the ETESS implementation.

3.1. Vehicle Model

In order to design the MPC, a simplified but complete ego-vehicle nonlinear single-
track model for combined longitudinal and lateral vehicle dynamics is used. Then, two
errors (for lateral offset and yaw angle) are modeled to enable the development of Lane
Keeping Systems (LKS). Eventually, a simple car-following model is derived to consider
the relative distance and velocity from an ahead vehicle. All quantities are expressed in SI
units unless otherwise explicitly stated.

This model will allow designing Adaptive Cruise Control (ACC), Lane Keeping
System (LKS), and Emergency Electronic Brake (EEB) for ADAS, but it can be used for
cooperative driving control strategies as well, considering the V2X (Vehicle to everything)
and I2V (Infrastructure to Vehicle) communications between vehicle and Smart Road, for
example, by using the C-ITS services ISA (Intelligent Speed Adaptation) or in-Vehicle
SPeeD limits (VSPD) [4].

3.1.1. Single-Track Model

The single-track model is derived from the four-wheeled model presented in [33],
according to the following three assumptions

1. Only the front wheels are considered to be driving, so the overall wheels torque τw
is the sum of the torque at front wheels during accelerations. Furthermore, τw is
assumed as the sum of the torque at all the wheels during braking;
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2. The steering angles of the front wheels are equal to δ and the small angle approxi-
mation is used [34], considering that the control range on the steering angle at the
wheels is [−5, 5]◦; thus, sin δ ≈ δ and cos δ ≈ 1;

3. The longitudinal slip ratio σij (the subscripts ij indicate the positioning of the wheel
on the vehicle, i.e., front right f r, front left f l , rear left rl and rear right rr) is considered
negligible and defined as follows

σij =


Re f f ωij−vx

vx
, during acceleration

Re f f ωij−vx
Re f f ωij

, during braking
(1)

where Re f f is the effective wheel radius, ωij is the specific wheel speed and vx is the
longitudinal vehicle speed [34].

From assumption 3, it follows that

Re f f ωij = vx, (2)

From the wheel dynamics, defined in (3), the longitudinal tire forces Fxij can be derived,
depending on the longitudinal acceleration, considering (2), and on wheel torque for each
wheel τwij

Iωω̇ij + Re f f Fxij = τwij , (3)

where Iw is the moment of inertia of the wheel [33]. With the assumptions above and
considering the lateral speed vy and the yaw angle rate ωψ, a simplified nonlinear single-
track model is obtained, characterized by three state variables xdyn = [vx vy ωψ]T in three
equations(

m +
4Iw

R2
e f f

)
v̇x =

τw

Re f f
+ mωψvy − L3ω2

ψ − Faero − Frestot −mgsinθ+

− 2δCα

(
δ−

vy + L f ωψ

vx

) , (4a)

mv̇y = −mωψvx + L3ω̇ψ + δ

(
τw

Re f f
− 2

Iwv̇x

R2
e f f

)
+ 2Cα

(
δ−

vy + L f ωψ

vx

)
+

− 2Cα

(
vy − Lrωψ

vx

) , (4b)

I3ω̇ψ = L3v̇y + L3ωψvx + 2L f δ

(
τw

2Re f f
− Iwv̇x

R2
e f f

)
+ 2L f Cα

(
δ−

vy + L f ωψ

vx

)
+

+ 2LrCα

(
vy − Lrωψ

vx

) , (4c)

where m is the vehicle mass, the term Faero is the aerodynamic drag force, defined as
Faero = 0.5ρACd(vx + vw)2, with ρ being the air density (possibly provided by the Smart
Road via I2V based on the altitude; in this case, it is assumed at sea level), A is the
maximum vehicle cross area, Cd is the drag coefficient depending on vehicle body shape
and vw is the wind speed (provided by the Smart Road via I2V). The term Frestot refers to
the sum of the front and rear wheels’ rolling resistance forces, defined as Frestot = Cr(Fz f +
Fzr) = Crmg cos θ, where Cr = 0.01(1 + vx/100) is the rolling resistance, Fz f and Fzr are
the normal tire forces, at the front and at the rear of the vehicle, calculated as in [34] and
their sum is mgcosθ, where θ is the road slope angle (supposed to be known by Inertial
Measurement Unit in vehicle and/or ADAS Maps and/or I2V). The term mgsinθ is the
gravity force component along the vehicle longitudinal axis, while Cα is the cornering
stiffness of the tire, L f , and Lr are the distances of the front and rear tire centers from
the vehicle Center of Gravity (CoG), respectively. The terms L3 and I3 are defined in [33]
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depending on the wheel masses, the vertical moment of inertia, and the front-axle track of
the vehicle.

3.1.2. Equations of Errors with Respect to the Road

In order to implement an LKS, a dynamic model is considered. It is based on two
additional state variables, expressed in terms of position and orientation errors with respect
to the road reference system [34]. Thus, as shown in Figure 1, defining e1 as the lateral
displacement (the distance of the CoG of the vehicle from the center line of the lane)
and e2 as the relative yaw angle error concerning the road centerline (angle between
the longitudinal velocity direction and the tangent to the center line), considering the
road radius Rr is large so that the small angle assumptions can be made and supposing
that the road curvature Rc = 1/Rr is known from in-vehicle ADAS map and/or I2V
communication, the desired yaw rate of the vehicle is defined as in [34] as

Ψ̇re f = Rcvx. (5)

The dynamics of lateral displacement, according to [34] is

ė1 = vy + vxeψ, (6)

being eψ = Ψ−Ψre f , where Ψ is the yaw angle of the vehicle (Ψ̇ = ωψ), this implies that

ė2 = ωψ − Rcvx. (7)

Defining xe = [e1 e2]
T , two additional states are added to the ego-vehicle model,

which are assumed as measurable by ADAS sensors and maps.

Figure 1. Errors with respect to the road.

3.1.3. Car-Following Model

If the ego-vehicle is preceded by another car, the relative distance and velocity from
the ahead vehicle have to be considered. These measures are available considering radar
and/or LiDAR and/or camera sensors commonly used in ADAS.

This study considers both the presence of an ahead vehicle and V2V (Vehicle to Vehicle)
communication; thus, two additional states are necessary, e.g., the velocity of the vehicle
located ahead vah and the relative distance dr of the ego-vehicle from the latter, as shown in
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Figure 2. Assuming the availability of a Smart Road, this model takes into account the road
slope θ, the wind speed vw, and the road friction σr provided by C-ITS (e.g., I2V) services.
In addition, since the MPC acts on the ego-vehicle only, the traction/braking force of the
ahead vehicle uah is assumed to be known thanks to the V2V communication, considering
the longitudinal slip ratio to be negligible. Thus, the additional states to consider for the
complete ego-vehicle model are defined below

mahv̇ah =uah−σrvah−Kah(vah + vw)
2−mahg sin θ, (8a)

ḋr = vah − vx, (8b)

where Kah = 0.5ρAahCdah
(Aah is the maximum cross-area of the ahead vehicle and Cdah

its
drag coefficient) and mah is the ahead vehicle mass [34]. All these parameters are assumed to
be known and transmitted through V2V to the ego-vehicle. Then, the states xext = [vah dr]T

are added to the other state variables to define the complete ego-vehicle model, as detailed
in the next section.

Figure 2. Car following.

3.1.4. Complete Nonlinear Ego-Vehicle Model

The complete model of ego-vehicle is featured by the following states, control inputs
and outputs

xv = [xdyn xe xext]
T , uv = [τw δ]T , yv = [vx ey eψ dr]

T (9)

and the corresponding state space equations are (4a)–(4c), (6), (7), (8a), (8b).

3.1.5. Linearization of the Complete Ego-Vehicle Model

Aiming to allow MPC to work around a reference trajectory, the nonlinear model (9)
is linearized if the reference speed and/or road curvature change, even at each iteration
if needed, in order to obtain a linear time-varying system [35]. The reference speed vre f
is assumed to be known via C-ITS and sensor fusion of radar and/or LiDAR and/or the
camera provided by ADAS. For the same reason, road curvature and therefore Ψre f are
known as well. The wheel steering reference δre f is given by the following relation [34]

δre f =
1

Rc
(Lv + mv2

re f

Cαr Lr − Cα f L f

2Cα f Cαr Lv
), (10)

where Lv = Lr + L f , Cαr = Cα f = Cα, considering single-track model assumptions. The
torque set point τa during acceleration is given by (4a) at the equilibrium, while during
braking, the brake model [36] is adopted to get the set-point trajectory, e.g.,

Ṗ =
150Kcub

τbs
− P

τbs
, (11)

where P is the amount of pressure produced behind the brake disk, while applying the
brake pedal and KbP is the brake torque, with Kb being the gain of the braking system. The
parameter τbs is the lumped lag obtained by combining two lags relating to the dynamics of
the servo valve and the hydraulic system, Kc is the pressure gain and ub is the percentage
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of pressure on the brake pedal. Moreover, ub is provided by a simple driver model featured
by a PI control acting on the derivative of the speed reference, to model a driver’s behavior
during braking, which is useful to obtain a reference.

The set-point trajectory for lateral velocity vlat is given by the solution vy of (4b) at the
equilibrium, while the set points for e1 and e2 are both equal to zero. Eventually, the set
point of vah is assumed to be known via ADAS and V2V and the desired relative distance
is defined as

ddes = dsa f e = L + Thvx, (12)

where dsa f e is the theoretical safety distance depending on the ego-vehicle length L and a
response time Th ∈ [1.5, 2] s of the ego car during braking [7].

The state, input and output variables of the linearized system are defined as

δxv = [xdyn − x̄dyn xe − x̄e xext − x̄ext]
T , (13a)

δuv = [τw − τ̄s δ− δ̄s]
T , (13b)

δyv = [vx − vre f e1 − ē1 e2 − ē2 dr − dsa f e]
T , (13c)

where x̄dyn = [vre f vlat Ψ̇re f ]
T , x̄e = [ē1 ē2]

T = [0 0]T and x̄ext = [vre f dsa f e]
T are the

set points for the states of the complete model; τ̄s = KbP during braking, while τ̄s = τa
otherwise is the set point for the wheel torque; δ̄s = δre f is the one for the wheel steering
angle; vre f is the reference speed.

Thus, the linearized time-varying system, obtained from Jacobian computation, in the
continuous time is

δẋv(t) = Ac(t)δxv(t) + Bc(t)δuv(t), (14a)

δyv(t) = Ccδxv(t), (14b)

where Ac(t) and Bc(t) are the dynamic matrix and the input matrix (time varying from
linearization process), respectively, and Cc is the output matrix (constant, because it selects only
the four states featuring the outputs) [37]. For MPC purposes, this model is discretized as

δxv(k + 1) = Am(k)δxv(k) + Bm(k)δuv(k), (15a)

δyv(k) = Cmδxv(k), (15b)

where Am(k) = Ac(k) + In1 ∆t, Bm = Bc(k)∆t and Cm = Cc are the dynamic, input and
output matrices of the discretized model [37], ∆t is the sampling time and In1 is the identity
matrix of dimension n1 (number of states of the complete ego-vehicle model).

The sampling time is chosen equal to 10 ms (the typical cycle time of the CAN message
for the torque request). The list of parameters and their values used in the ego-vehicle
model is shown in Table 1. Those values refer to a commercial small utility vehicle.

Table 1. Parameters of the ego-vehicle model.

Parameter Description Description

m Vehicle mass 1055 kg
Re f f Effective wheel radius 0.29 m

0.5ρACd Aerodynamic force coefficient 0.503 kg/m
L Vehicle length 3.571 m
Th Reaction time for safety distance evaluation 2 s
Iw Moment of inertia of the wheels 1.85 kgm2

Iz Yaw moment of inertia 1338.2 kgm2

L f Dist. vehicle’s CoG to front wheel axis 1 m
Lr Dist. vehicle’s CoG to rear wheel axis 1.3 m
Cα Longitudinal tire stiffness 67,689 N/rad
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Table 1. Cont.

Parameter Description Description

τmax Maximum wheel torque 664 Nm
τmin Maximum braking torque at the wheel −850 Nm
δmax Maximum steering angle at the wheel 3◦

δmin Minimum steering angle at the wheel −3◦

τbs Braking phase time constant 0.2 s
Kb Gain for braking system 14
Kc Gain for pressure of brake 1
vw Wind velocity 0.55 m/s
θ Slope angle 0 rad
ts Simulation time 1 ms
∆t Sampling time 10 ms

3.2. Model Predictive Control

MPC aims to optimize a quadratic cost function by realizing two goals: minimizing
the error between the outputs of the plant model (provided by linearization of the complete
ego-vehicle model) and the references and enforcing the constraints. This control strategy
is able to obtain prior knowledge of the linearized model by predicting its future behavior.

The preliminary steps considered in the design of the controller via the MPC
method are:

1. Modeling the system to control, described by Equations (4a)–(4c), (6), (7), (8a), (8b),
whose states, inputs and outputs are defined in Equation (9).

2. Linearizing and discretizing the model, as described in Equations (13a)–(13c) and
(14a)–(15b).

3. Augmenting the model, by concatenating states and outputs of the linearized and
discretized model [38].

4. Defining a cost function.
5. Setting the constraints on input and/or output variables.

Then, an optimization algorithm finds the optimal solutions for the unconstrained
case and for the constrained case valid for the considered model. In this way, an adaptive
MPC on the time-varying linearized and discretized system is obtained.

The control system predicts the q outputs (q = 4 in this work) over an established
time window. In particular, it predicts Np values (Np = 10 in this work) of the outputs,
where Np is called “prediction horizon”. Thus, MPC computes, at each iteration, a control
trajectory (for each control variable) of Nc samples, where Nc (Nc = 5 in this work) is called
“control horizon”. However, according to the Receding Horizon Control (RHC) approach,
only the current p inputs (p = 2 in this work) are provided to the plant under control, i.e.,
the wheel torque and steering angle of the vehicle.

In order to obtain a sub-optimal solution, the procedure described in [38] is used,
based on Hildreth’s method, particularly useful for fast MPC implementation, as showed
in [39–41], both for automotive and other kind of applications (i.e., UAV and underwater
vehicles).

In this work, the linearized and discretized model is augmented considering it as
increment of the control signal ∆u = δuv. Then, a quadratic cost function is considered,
defined as:

J = (Yre f −Y)T(Yre f −Y) + ∆UTQ∆U (16)

where Yre f ∈ RNpq is the vector of the current q references replicated Np times, Y ∈ RNpq is
the vector of the evaluated Np output predictions, obtained through algebraic passages
and ∆U ∈ RNc p is the vector of control inputs over the control horizon [38]. Furthermore,
Q ∈ R(Nc p)×(Nc p) is a diagonal matrix with suitable weights for each value of the control
trajectory ∆U. In detail, Q = blockdiag(Qp, . . . , Qp), with Qp = diag(qtb, qδ), where qtb
(qtb = 50 in this work) refers to traction and braking wheel torque and qδ (qδ = 7e4 in this
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work) refers to steering at the wheels. The weights are here chosen based on the simulation
results obtained by Model In the Loop (MIL) tests in MATLAB/Simulink (version R2020b)
for the test cases discussed in the last section.

Within the MPC control framework, in addition to minimizing the index in (16),
inequality constraints for current inputs, future inputs and future outputs can be set
according to [38]. To reduce the computational load and given the RHC control logic,
inequality constraints are set only for the current inputs and on the relative distance from
the ahead vehicle, as: [

τmin − τ̄s
δmin − δ̄s

]
≤ δuv(k) ≤

[
τmax − τ̄s
δmax − δ̄s

]
, (17)

− d̄sv ≤ dr(k)− dsa f e(k) ≤ 100. (18)

In particular, in (18), a soft constraint on dr is imposed, to accept at most a term equal
to d̄sv (1 m in the case studies) below the theoretical safety distance dsa f e. Furthermore, the
upper bound of 100 m is selected to keep the distance between the two vehicles limited.

The constrained problem can be solved only locally and, in order to obtain a fast
computational burden with the objective to run adaptive MPC in a CAN cycle time (10 ms),
as will be shown in the results section, in this work Hildreth’s Quadratic Programming
procedure is used. Then, defining ∆URHC as the first two elements of the obtained sub-
optimal control, by adding to ∆URHC the set points of control variables, the corresponding
vector of control inputs uv is obtained.

The overall flow chart for MPC implementation through model-based design approach
and for MPC execution on a real MCU is shown in Figure 3. Thus, at each time step
the control algorithm waits for a new CAN message containing updated vehicle and
environmental data (i.e., reference speed from C-ITS and/or ADAS sensors, road curvature,
vehicle speed, lateral displacement, yaw angle error and relative distance). Then, when
new data are available, the algorithm at first executes linearization and discretization, then
the linearized model is augmented and MPC evaluates the global solution. If constraints
are not violated, then the receding horizon allows to update the wheels torque and the
steering angle at the wheels at the current time step, and then the execution returns to wait
for a new CAN message. If there is a violation on constraints, then Hildreth’s method is
executed in order to find a sub-optimal solution. Thus, the receding horizon is applied.
Eventually, the execution restart waiting for a new CAN message.

3.3. Powertrain and Driveline Model

The vehicle investigated in this work presents a combined series-parallel powertrain
composed of an ICE, two electric motor/generator units (EM and EG), a battery pack
(Ba), a power converter (PC), three clutches (Cl1, Cl2, and Cl3), a differential (Di f f .) and
three gear-boxes (GB1, GB2, and GB3). The powertrain schematic is depicted in Figure 4.
Either series or parallel driving can be activated, depending on the clutches position.
Battery charging can be realized though EG engaging Cl3. Possible driving modes and the
corresponding engagement/disengagement of the clutches are summarized in Table 2. The
presence of three clutches, on one side, complicates powertrain control, but, on the other
side, avoids loadless operation when a unit is not used, reducing friction losses.
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Figure 3. Adaptive MPC flow chart for model-based design approach.

Figure 4. Hybrid powertrain configuration.
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Table 2. Driving modes and clutch positions.

Driving Mode Clutch 1 Clutch 2 Clutch 3

Braking x X x
Pure electric driving x X x

Pure thermal engine driving X x x
Hybrid parallel driving X X x

Battery charging in series mode x X X
Battery charging in parallel mode X X X

A static model of the powertrain and the driveline was implemented in the Simulink
environment. It includes all components depicted in Figure 4, where ICE, EM, and EG are
described by their efficiency maps, while PC and Ba are characterized by fixed parameters,
listed in Table 3.

Table 3. Powertrain and driveline main data.

Parameter Description Value

V (cm3) Engine displacement 999
ρo Geometric compression ratio 10.5:1

B (mm) Cylinder bore 70
s (mm) Cylinder stroke 80.5

n Number of cylinders 3
v Number of valves 6

Pmax_ICE (kW) Maximum engine power 51
Tmax_ICE (Nm) Maximum engine torque 92

NGB1 Number of gear ratios of GB1 6
ηGB1 ICE gear efficiency 0.97
ηDi f f Final-drive ratio efficiency 1

Pmax_EM (kW) Maximum electric motor power 67.35
Tmax_EM (Nm) Maximum electric motor torque 165

NGB2 Number of gear ratios of GB2 2
ηGB2 EM gear efficiency 0.99

Pmax_EG (kW) Maximum electric generator power 59.01
Tmax_EG (Nm) Maximum electric generator torque 240

NGB3 Number of gear ratios of GB3 1
ηGB3 EG gear efficiency 1

Rbat (Ω) Battery internal resistance 0.375
Vbat (V) Battery voltage 400

Qmax (Ah) Battery capacity 1.78
SoCrange (%) Battery SoC limits 20÷ 90

ηPC Efficiency of the power converter 0.92

3.4. Efficient Thermal Electric Skipping Strategy

The ETESS is a simplified logic that replaces the conventional power split approaches
with an alternative utilization of the thermal and electric units for the fulfillment of the
power demand at the vehicle wheels (Pdem). The power demand is evaluated starting from
the wheels torque provided by MPC as follows:

Pdem =
vxτw

Re f f
(19)

The choice between these two motors depends, at each time, on the comparison
between the actual fuel rate of the ICE (when it operates to fully satisfy the power demand,
if possible) and an equivalent fuel rate associated with the pure electric driving of the
vehicle (Figure 5).
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The identification of the equivalent fuel rate (ṁ f , el) is based on the concept that, in
a series configuration, the power delivered by the EM to fulfill the power demand at the
wheels was produced by the thermal engine in an undefined time, while working in its
operating point of minimum brake specific fuel consumption (BSFCmin). Since such power
flux from the thermal engine to the wheels involves some losses in the GB3, in the EG, in
the PC, in the EM, in the GB2, and in the differential, the equivalent fuel rate in the pure
electric mode is defined as follows:

ṁ f ,el = c0 ·
Pdem · BSFCmin

ηGB3 · ηEG · η2
PC · ηEM · ηGB2 · ηDi f f

, (20)

where c0 is a tuning constant introduced to realize the energy balance for the battery
between the beginning and the end of the driving cycle, ηEG is the efficiency of the EG,
ηEM is the efficiency of the EM, ηPC is the efficiency of the power converter, ηGB3 is the
GB3 efficiency, ηGB2 is the GB2 efficiency and ηDi f f is the efficiency of the differential. The
Joule losses occurring into the battery pack are not explicitly considered in this formulation
to preserve its mathematical simplicity.

Power Demand

ṁf,th ṁf,el

Compare

Pure Thermal 
Mode

Pure Electric 
Mode

Parallel Mode 
(EM Support)

if PICE < Pdem

if ṁf,th < ṁf,el if ṁf,th > ṁf,el

GB1 Efficiency, 
Selected Gear

GB2 Efficiency, 
Selected Gear

GB3 Efficiency

BSFCmin,
PC Efficiency

 Fuel Rate Map

Vehicle Speed

EM and EG 
Efficiency Maps

Figure 5. Flowchart schematizing the logic of ETESS.

The fuel rate in the pure thermal mode (ṁ f , th) only depends on the power demand,
on the GB1 efficiency (ηGB1 ) and on the losses in the differential:

ṁ f ,th =
Pdem · BSFC
ηGB1 · ηDi f f

. (21)

The BSFC is the actual brake specific fuel consumption of the ICE operating with the load
and the speed related to the power demand at the wheels and the vehicle velocity, respectively.

The only degree of freedom for the evaluations of both ṁ f , th and ṁ f , el is the gear selec-
tion of the related gear-boxes. The latter is straightforwardly carried out by choosing the one
that leads to the lowest fuel rate, complying with the constraints on minimum/maximum
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rotational speed and on maximum deliverable torque. Given the above definitions, the
strategy for the selection between the pure electric mode and the thermal engine driving
can be summarized by the following two inequalities{

ṁ f ,th ≤ ṁ f ,el , pure thermal mode
ṁ f ,th > ṁ f ,el , pure electric mode.

(22)

In summary, the ETESS method can be considered as a specialization of the ECMS, in
which the only allowed power split values are either 0 or 1.

The introduction of such simplification is expected to involve a certain penalization
of the fuel economy compared to the PMP or the ECMS, but, on the other hand, a much
reduced computational effort. In the ETESS approach, in fact, the choice between the pure
thermal mode and the pure electric driving does not need any discrete map exploration:
the ICE operating point to be inquired for the evaluation of ṁ f , th is univocally determined
by the tractive power demand, the vehicle speed, and the losses along the driveline from
the wheels to the engine (such evaluation has to be repeated only for the available gears of
the gearbox linked to the ICE). Similarly, ṁ f , el is univocally determined by the traction
power demand, the vehicle speed, the losses along the driveline, and the dissipation in the
electric units.

To avoid the onset of chattering, the actual switch between pure thermal driving to
pure electric one (and the contrary) is realized only when the fuel rate advantage deriving
from the driving mode switch exceeds the one in the current mode of a tunable quantity
(about 0.22 kg/h in the present work).

The ETESS logic activates the parallel mode only when the ICE is not able to fully
supply the vehicle power demand by itself. In this case, the ICE works at the maximum
rated power, while the EM furnishes the remaining power to fulfill the power demand.
The regenerative braking (which is activated when the wheel power demand becomes
negative) is realized by the EM.

Since the aforementioned definition of the equivalent fuel rate needs an a priori
knowledge of the vehicle speed to correctly select the c0 tuning constant, the ETESS, in
the above-presented formulation, can be considered an offline strategy. For this reason, to
realize a real-time implementation, Equation (20) can be replaced by the following one:

ṁ f ,el = c̄0scorr
PdemBSFCmin

ηGB3 ηEGη2
PCηEMηGB2 ηDi f f

, (23)

where c̄0 is a vehicle-dependent constant (which is obtained by preliminary simulations
performed in offline mode, where c̄0 is adjusted to realize a battery charge sustaining
driving mode) and scorr is an adaptive correction depending on the current SoC of the
battery [42], whose dynamics equation is:

˙SoC = − I(t)
Qmax

, (24)

where I(t) is the instantaneous battery current. This latter is estimated by a simple zeroth
order model:

I(t) =
Vbat −

√
V2

bat − 4PbatRbat

2Rbat
, (25)

where Rbat and Vbat are assumed to be only function of the current SoC and Pbat is the
power exchanged by the battery (positive if drained from the battery). scorr evaluation
is based on the mathematical function proposed in [5,6]. It is worth underlining that,
differently from other methods (such as the “Rule-Based” strategies), the ETESS is versatile
and also suitable to any HEV architecture. The reliability and effectiveness of ETESS have
been verified in previous works along different driving cycles [6,43,44].
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4. Results

In this section, two main results will be shown. The first one is related to the compari-
son between ETESS and ECMS strategies, in order to validate ETESS efficacy, running both
of them on a PC-Host.

Then, the performances and related computational burden has been verified through
PIL testing on a real MCU, which characterizes the second main result obtained by this
work. The PIL testing is based on scenarios related to two autonomous driving test cases
for CAVs.

4.1. Comparative Assessment between ETESS and ECMS

The potential of ETESS is here verified against a well-assessed EMS, namely the
ECMS [26]. This last is based on the minimization, each time step, of the equivalent fuel
rate, defined as:

ṁ f ,eq[u(t), t] = ṁ f [u(t), gear(t), t] + c̄0scorr(SoC)
Pbatt[u(t), t]

Hi
, (26)

where ṁ f is the actual fuel consumption of the ICE, while the second term represents a fuel
consumption related to the electric power consumption of the battery, Pbatt. Hi is the low
heating value of the fuel, while c̄0 and scorr have the same meanings of analogous terms in
Equation (23). The equivalent fuel rate is evaluated at each time step for eleven values of
the power split, u. This ECMS implementation includes the possibility of battery charging
through a power surplus delivered by the ICE and then converted into electricity by the
EG unit.

Both ETESS and ECMS are implemented in Simulink and directly coupled to the
powertrain and driveline model introduced before. In this way, a comparison as fair as
possible between the energy management strategies is realized through the Model In the
Loop (MIL) approach, namely, considering the execution in a Simulink environment on a
PC-host equipped with Intel Core i5 with CPU at 2.50 GHz and 8 GB RAM.

The results obtained by ECMS and ETESS along three type-approval driving cycles,
namely WLTC, NEDC, and FTP-75, are summarized in Tables 4 and 5 in terms of fuel
consumption per 100 km and computational time, respectively.

Table 4. Comparison between the fuel consumption by ETESS and ECMS along three type-approval
driving cycles.

Fuel Consumption (l/100 km) WLTC NEDC FTP-75

ECMS 4.18 3.69 3.24
ETESS 4.18 3.71 3.24

Difference (%) +0.0 +0.5 +0.0

Table 5. Comparison between the computational time (in MIL testing) of ETESS and ECMS along
three type-approval driving cycles.

Computational Time (s) WLTC NEDC FTP-75

ECMS 678.09 440.22 710.18
ETESS 52.46 35.05 52.87

Difference (%) −92.26 −92.04 −92.55

Tables 4 and 5 highlight that the ETESS returns results similar to the ECMS, but in a
shorter computational time, with a reduction of about 92% in all cases. With the aim to
better assess the above control strategies, as an example, in Figure 6a (Target speed profile
in Figure 6a), the instantaneous trends of SoC (Figure 6b) and power split (Figure 6c)
along the WLTC are depicted. Moreover, the comparisons of ICE, EM, and EG powers are
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reported in Figure 7a–c. The instantaneous results from ECMS and ETESS present very
similar trends. In most of the cycle, an alternate driving between ICE and EM occurs for
both strategies, which means power split equal to 0 or to 1. Main differences emerge in the
last portion of the cycle, after 1700 s, and at the beginning of the medium-speed section of
the cycle, between 600 and 700 s, where, in the case of ECMS, ICE furnishes more power
than the one needed at the wheels, leading to battery charging. On the contrary, during
the high-speed portion of the cycle, between 1550 and 1700 s, the EM supports the ICE to
fulfill the power demand at the wheels, with power splits between 0 and 1. This is also
evidenced by the differences between ECMS and ETESS in the SoC trends. Despite these
instantaneous differences, the overall results of fuel consumed along the WLTC are almost
the same, as shown in Table 4.

On the basis of the ETESS performance validated in MIL, this strategy seems to be the
better one for the integration with the MPC and the development of code generation on
the MCU. Thus, further results will be analyzed through PIL testing in the next section,
also considering simulated ADAS functionalities and C-ITS services.
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Figure 6. (a) Target speed (km/h). (b) Battery SoC (%) between ETESS and ECMS. (c) Power split
between ETESS and ECMS.

4.2. PIL Test for CAVs Equipped with EMS

In this section, the results of PIL tests are presented. To this aim, Simulink Coder
for STMicroelectronics NUCLEO boards is used, while the executions of MPC, ETESS,
and ECMS are tested on the NUCLEO-H743 [20]. The latter is a new high-performance
board for optimized control, equipped with an ARM Cortex-M7 running up to 480 MHz,
424 Core-Mark/1027 DMIPS executing from Flash memory [20]. The board includes also
a FD-CAN interface useful for future Hardware In the Loop (HIL) testing. The objective
of the PIL test is to verify that the C-Code generated for running on the NUCLEO-H743
both MPC and ETESS/ECMS has a cycle execution time lower than 10 ms (the typical cycle
time for torque requests and steering). The PIL testing procedure is based on asynchronous
serial communication (USART) between the NUCLEO board and PC-Host. In Figure 8, the
block scheme of the PIL testing architecture is shown. In particular, ego-vehicle and hybrid
powertrain models, road parameters and references generation for vehicle speed and road
curvature run in MATLAB/Simulink environment on a PC-Host (the same one used in the
previous section for the comparison between ETESS and ECMS). Furthermore, the CAN
communication (featured by updated references, vehicle and road data, wheel torque and
steering angle at the wheels provided through MPC, and ICE/EM Torque and selection) is
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simulated via USART. Through this protocol, MPC control strategy and EMS executed on
NUCLEO exchange data with the modules executed on the PC-Host (i.e., vehicle dynamics,
powertrain, simulated road environment).
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Figure 7. Power (kW) comparison between ETESS and ECMS: (a) ICE; (b) EM; (c) EG.

Figure 8. Block scheme for PIL testing.

In the following test cases, the reference vehicle speed vre f is supposed to be the
minimum between vah and the value provided by the Smart Road (i.e., new speed limits
and/or point-to-point speed by ISA) simulated on the PC-Host:

1. ISA, EEB, and ACC in the longitudinal direction: The simulated Smart Road pro-
vides the ego and ahead vehicles with a speed reference equal to 50 km/h (initial
condition). After 20 s, the vehicle located ahead breaks hard for five seconds (the
speed quickly drops from 50 to 5 km/h) and the ego-vehicle executes an EEB. The
new limit is kept at 5 km/h for 5 seconds by the Smart Road (ISA). Then, being no
collision, the Smart Road provides a new speed profile to allow the ahead vehicle to
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reach a new speed limit of 30 km/h (ISA) in 30 s, while ACC acts on the ego vehicle.
Later, after further 30 s, the Smart Road resets the speed limit at 50 km/h (ISA) and
the ahead vehicle reaches the limit in 30 s, while the ACC continues acting on the ego
vehicle. The results are shown in Figure 9:

• The tracking of vre f from vehicle speed vx (Figure 9a) has a small overshoot
around 140 s in order to allow the achievement of the desired relative distance
dsa f e (Figure 9b) at steady state. The relative distance never falls below the safe
distance;

• At first, EM is working; after around 100 s, the ICE driving starts, when the
battery SoC falls below 57% (Figure 9c,d).

2. LKS, ACC in both longitudinal and lateral directions: ADAS Maps and C-ITS are
supposed to provide the road curvature (Rc) profile in Figure 10d. ACC and LKS act
simultaneously on the ego vehicle. The speed limit is 50 km/h and the ahead vehicle
applies slow braking from 50 to 40 km/h in 30 s (until the end of the road curvature).
The ahead vehicle remains at that speed for 20 s and then it reaches the speed limit of
50 km/h in 30 s. The results are shown in Figures 10 and 11:

• Lateral displacement and yaw angle errors are shown in Figure 10a,b and go to
zero when curvature ends (Figure 10d); e1 has peaks in absolute value below
1 cm, e2 has a minimum at about −0.05◦. The steering angle at the wheels
(Figure 10c) follows the trend of road curvature with a maximum at 0.37◦;

• The tracking of vre f from vehicle speed vx (Figure 11a) has a similar behavior of
test case 1, with a small overshoot around 140 s in order to allow the achievement
of the desired relative distance dsa f e (Figure 11b) in the steady state. The relative
distance never falls below the safe distance;

• At first, EM is working; then a pure ICE driving activates when the SoC falls
below 57% (Figure 11c,d).
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Figure 9. Test case 1: (a) speed (km/h); (b) relative distance (m); (c) ICE/EM/Wheels power (kW);
(d) battery SoC (%).
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Figure 10. Test case 2: (a) lateral displacement (m); (b) yaw angle error (deg); (c) steering angle at the
wheels (deg); (d) road curvature (m−1).
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Figure 11. Test case 2: (a) speed (km/h); (b) relative distance (m); (c) ICE/EM/Wheels power (kW);
(d) battery SoC (%).

When the simulation in PIL mode ends, Simulink generates the code execution pro-
filing report. The results of the considered test cases are resumed in Table 6. The report
shows a maximum execution time for MPC of 3.186 ms, with a corresponding CPU usage
of 31.90%; in test case 2, this is the most demanding in terms of computational burden. The
average execution time for both test cases is about 3 ms (average CPU utilization at 30%)
when the linearization and the consequent update of the model matrices are computed,
while it decreases at 0.26 ms (average CPU at 2.643%) when no linearization is computed,
e.g., when the longitudinal reference speed and the curvature are constant. Regarding EMS,
Table 6 shows that ETESS is about 15 times faster than ECMS. Furthermore, as its CPU
utilization is much lower than that required from MPC, it can be used on the same MCU,
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since the sum of MPC and ETESS average execution times (about 3.22 ms in the worst case)
is much lower than the typical cycle time of a CAN message for an updated engine torque
request (10 ms). This result confirms the possibility to develop this control strategy for
both CAV and hybrid powertrain in the considered MCU, encouraging the continuation
the experimentation.

Table 6. PIL testing results in the worst test case.

Task MPC ETESS ECMS

Maximum CPU Utilization (%) 31.90 0.40 7.93
Average CPU Utilization (%) 30.30 0.36 5.36

Maximum Execution Time (ms) 3.186 0.04 0.79
Average Execution Time (ms) 3.031 0.035 0.530

4.3. Robustness Test of MPC against Model Parameter Uncertainties

In order to check the effectiveness of the proposed MPC against the ego-vehicle model
parameter uncertainties, a robustness test has been executed. In particular, three parametric
variations have been considered: a variation of ±30% for drag coefficient and cornering
stiffness, and a variation load on vehicle mass. Regarding the latter one, the minimum load
is equivalent to the 0.95% of the nominal mass. At the maximum load, the mass is the 30%
greater than the nominal one. The parametric variations are shown in Table 7.

Table 7. Parametric variations of the ego-vehicle model.

Parameter Min. Value Nominal Value Max. Value

Drag coefficient 0.224 (Cdmin
) 0.320 (Cd) 0.416 (Cdmax )

Vehicle mass (kg) 1023 (mmin) 1050 (m) 1371 (mmax)
Cornering Stiffness (N/rad) 34,878.9 Cαmin 49,827.0 (Cα) 64,775.1 (Cαmax )

Considering test case 2 of the previous section, two simulations has been performed
by varying the above-mentioned parameters: in one case, all the parameters are increased
to the related maximum values with respect to the nominal case; in the other case, the
opposite variations are applied. The results are shown in Figures 12 and 13. In particular,
the most obvious result regards the lateral displacement e1 (Figure 12a), which is affected
by lower but acceptable variations (well below 1 cm) in the steady state: about 1 mm
considering mmax, Cdmax and Cαmax , and 5 mm for mmin, Cdmin

and Cαmin . Regarding the yaw
angle error e2, there are no substantial variations with respect to the nominal case, while
the steering angle at the wheels δ shows a variation of the maximum peak of about 0.01◦

in the case of minimum parametric variations. Both the speed vx (Figure 13a) and the
safety distance dr (Figure 13b) reach the steady state condition more slowly in the case
of maximum parametric variations, while remaining close to the reference. The wheel
power (Figure 13c) in the steady state is approximately 1 kW higher when parameters are
at maximum values, while it is approximately 0.5 kW lower with minimum values. As
shown in Figure 13e,f, considering the maximum parameters variations, the ICE activation
occurs 14 s earlier than the nominal case, while for the minimum parameters variations
this occurs about 9 s later. Congruently, the SoC (Figure 13d) decreases faster when the
vehicle load is greater and the EM satisfies alone the power request at the wheels (initial
phase of the maneuver).
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Figure 12. Robustness test (blue: nominal values, dashed red: maximum values, dashed black:
minimum values)—(a) lateral displacement (m); (b) yaw angle error (deg); (c) steering angle at the
wheels (deg); (d) road curvature (m−1).
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Figure 13. Robustness test (blue: nominal values, dashed red: maximum values, dashed black:
minimum values)—(a) speed (km/h); (b) relative distance (m); (c) wheel power (kW); (d) battery
SoC (%); (e) EM power (kW); (f) ICE power (kW).
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4.4. Sensitivity Tests of MPC against Model Parameters Uncertainties

For the sake of brevity, the results of the sensitivity tests are shown under the form
of global performance indices. More specifically, Tables 8–13 collect the deviations of
instantaneous trends, in terms of Maximum Absolute Error (MAE) and Root Mean Square
Error (RMSE), with respect to their values obtained with nominal parameters for outputs
and inputs of the ego-vehicle model (vehicle speed, relative distance, lateral displacement,
yaw angle error, wheels power and steering angle at the wheels). The first column describes
the test case (single parametric variation) and the other two MAE and RMSE, respectively.
The analysis of the tables highlights that e1 is more sensitive to the reduction in tire
cornering stiffness, deviating from the nominal value by about 1.9 cm. Additionally, an
increase in the vehicle mass affects the lateral displacement by about 1.6 cm. Vehicle speed
and relative distance are primarily affected by the load variation, which implies that MAEs
and RMSEs are higher at the maximum load (m = mmax). In particular, the MAE of dr in
this condition is equal to 2.98 m. Despite this deviation, this does not imply a problem
of safety, as Figure 14b) clearly shows. The wheel power is more sensitive to the vehicle
mass and tire cornering stiffness, while parametric variations do not significantly affect the
steering angle at the wheels.

Table 8. MAE and RMSE for e1.

Test Case MAE (cm) RMSE (cm)

m = mmax 1.5730 0.5498
m = mmin 0.2681 0.0771
Cd = Cdmax 0.1000 0.0977
Cd = Cdmin

0.1005 0.0981
Cα = Cαmax 1.1073 0.2007
Cα = Cαmin 1.8863 0.6208

Table 9. MAE and RMSE for e2.

Test Case MAE (deg) RMSE (deg)

m = mmax 0.0148 0.0010
m = mmin 0.0027 0.0002
Cd = Cdmax 0.0007 0.0001
Cd = Cdmin

0.0007 0.0001
Cα = Cαmax 0.0116 0.0008
Cα = Cαmin 0.0169 0.0011

Table 10. MAE and RMSE for vx.

Test Case MAE (km/h) RMSE (km/h)

m = mmax 0.5203 0.1476
m = mmin 0.1152 0.0261
Cd = Cdmax 0.1534 0.0407
Cd = Cdmin

0.1430 0.0364
Cα = Cαmax 0.0343 0.0040
Cα = Cαmin 0.0374 0.0060
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Table 11. MAE and RMSE for dr.

Test Case MAE (m) RMSE (m)

m = mmax 2.98 1.03
m = mmin 0.46 0.15
Cd = Cdmax 0.47 0.28
Cd = Cdmin

0.47 0.26
Cα = Cαmax 0.06 0.04
Cα = Cαmin 0.11 0.07

Table 12. MAE and RMSE for wheel power.

Test Case MAE (kW) RMSE (kW)

m = mmax 0.98 0.51
m = mmin 0.58 0.09
Cd = Cdmax 0.53 0.40
Cd = Cdmin

0.53 0.41
Cα = Cαmax 0.73 0.03
Cα = Cαmin 0.55 0.02

Table 13. MAE and RMSE for δ.

Test Case MAE (deg) RMSE (deg)

m = mmax 0.0105 0.0019
m = mmin 0.0018 0.003
Cd = Cdmax 0.0002 0.0000
Cd = Cdmin

0.0002 0.0000
Cα = Cαmax 0.0075 0.0014
Cα = Cαmin 0.0139 0.0025
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Figure 14. Sensitivity test (blue: nominal case (m), dashed red: maximum case (mmax), dashed black:
minimum case (mmin)) with parametric variations on vehicle mass—(a) speed (km/h); (b) relative
distance (m); (c) wheels power (kW); (d) battery SoC (%); (e) EM power (kW); (f) ICE power (kW).
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5. Discussion

The paper presented a novel integrated control architecture featuring, at the same
time, both motion and powertrain controls. The motion control is entrusted to an MPC
strategy devoted to implementation of different ADAS functionalities (i.e., ACC, EEB,
LKS). On the one hand, the choice of the MPC is motivated by the study on the survey
in [3], which indicates why this control strategy is the most suitable for CAVs. Another
reason is that MPC allows one to solve a constrained optimization problem for MIMO
systems, considering constraints on both outputs and control inputs. This feature is very
useful from both autonomous and cooperative driving perspectives, due to the interaction
between the vehicles and the surrounding environment (i.e., constraints on steering and
safety distance, updated speed limits). It is also well known that using standard control
techniques based on independent control algorithms and/or conventional controllers (i.e.,
PIDs) to solve multivariable tracking problems subject to specific constraints requires the
usage of saturators, anti-wind up strategies, and decoupling regulators.

The present MPC is based on a simplified ego-vehicle model that allows the interface
with a Smart Road, which provides, through C-ITS services, updated speed profiles (i.e.,
ISA), environmental and road conditions (i.e., wind speed, road friction, road slope and
curvature), including model parameters needed by the control algorithm (i.e., air density,
ahead vehicle mass and cross-area). As a novel contribution, the present MPC is coupled
with ETESS, which is a hybrid powertrain energy management strategy devoted to deliv-
ering the required wheel torque while optimizing the fuel consumption. The design of
ETESS proved to be a light energy management strategy that can be executed on the same
MCU used for MPC.

Both MPC and ETESS have been designed through a model-based-design approach
in Simulink. As known, this approach was extensively tested and supported by various
standards (i.e., ISO 26262, AUTOSAR), for software development in automotive indus-
try [45–47]. The execution time of the whole strategy (MPC + EMS, comparing ETESS
with ECMS) has been verified through PIL tests, using the ST Microelectronics NUCLEO-
H743ZI2 equipped with MCU ARM STM32H743ZI2. The choice of this MCU was due to
the failure of some tests conducted, in a previous stage, on another development board,
the STM32F429I-DISC1, equipped with the MCU STM32F429ZI. On this board, it was not
possible to execute MPC over a CAN cycle time (10 ms); in fact, in that case, the PIL test
showed an average execution time of about 17 ms. The main difference between the two
MCUs was the clock frequency: 180 MHz (STM32F429ZI) vs. 480 MHz (STM32H743ZI2).
The price of the selected development board is lower than the previous one (on Mouser
Europe [48]): EUR 29.19 (STM32F429I-DISC1) vs. EUR 23.79 (NUCLEO-H743ZI2). Thus,
with the selected MCU, the execution time of the whole strategy presented in this paper
decreased of about 80%.

The results showed that ETESS is about 15 times faster than ECMS (see Table 6);
thus, considering that in general the MCUs are brought to the performance limit, this
result is important as it allows the use of advanced control strategies (such as MPC) as
an intermediate layer between the vehicle powertrain and the Smart Road. The achieved
results encourage to continue the work, since PIL test demonstrated that motion and
powertrain controls featured by the presented MPC coupled with ETESS, altogether, are
executed in about 3.22 ms (see Table 6). Thus, considering that the whole CAN cycle
time for torque request and steering angle at the wheels is typically 10 ms, about 6.8 ms
remain to implement, in the same MCU, other control algorithms, which will regard, in
particular, path planning problems and eco-driving strategies. In this regard, path planning
algorithms will allow the real-time estimation of the road curvature, which in this study
is assumed to be known via simulation. Similarly, using real communication channels
(e.g., cellular network or ad hoc Dedicated Short-Range Communication—DSRC) with the
surrounding environment (in this work the Smart Road and V2V/V2I/I2V provide known
information through simulation) and by knowing, for example, the origin–destination
route with the associated road topology, the various alternative available routes and the
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state of road traffic, the implementation of eco-driving strategies could be possible on the
same MCU. In this way, the same hardware architecture could be used, not only for motion
and powertrain controls, but also for decision making and motion planning, covering the
whole layer that in [3] is named “Real-Time Control and Planning”.

In this work, a Smart Road has been simulated in order to provide the ahead vehicle
with point-to-point speeds (i.e., ISA), wind velocity, road friction, road slope and air
density. V2V communication has also been simulated for car-following data exchange (e.g.,
ahead vehicle information such as speed, mass, acceleration). This allowed us to test, very
efficiently (PIL on inexpensive development boards), both motion and powertrain controls,
considering two test scenarios based on a simple car-following (see Figures 9–11): one in the
longitudinal direction only, involving the C-ITS service ISA and the ADAS functionalities
EEB and ACC; another one in both longitudinal and lateral directions, involving road
curvature, LKS and ACC. The results showed good tracking properties of the MPC in terms
of reference speed, safety distance and lane keeping.

In order to check the effectiveness of the proposed controller against ego-vehicle model
parameter uncertainties, robustness and sensitivity tests have been performed. Three pa-
rameters were subjected to variations: (i) drag coefficient Cd; (ii) cornering stiffness Cα; (iii)
vehicle mass m. The robustness test (Figures 12 and 13) shows good tracking performance
for the vehicle speed and the achievement of the safety distance in the steady state. A
slight deviation of about −5 mm from the nominal case in the steady state was induced by
maximum parameters variations on the lateral displacement. This implies that in future
developments, appropriate calibration processes should be carried out on the weights of
the MPC, in order to try to improve this condition.

An additional test was performed in order to check the sensitivity of the MPC with
respect to single parametric variations. The results shown in Tables 8–13 show that, among
the tested parameter configurations, the highest deviations from the reference are reached
with the the maximum load (m = mmax).

All in all, considering the RMSE index, the above variations are quite contained, except
for the wheel power, which is obviously higher if the vehicle load is greater. For future
developments, a calibration process on the parameters of the MPC (i.e., weights, prediction
and control horizons) should be performed in order to reduce RMSE for e1, vx and dr for
the full load condition. The cornering stiffness specifically influences some variables, that
are lateral displacement e1 and wheel power. The variation of Cα determines RMSE to be
quite contained, slightly affecting the steady state error. Eventually, the variations of the
drag coefficient Cd affect the wheel power more significantly.

At the current state, the present work is part of the research project named “Borgo
4.0”. This project has the ambitious objective, by the end of 2023, to test cooperative
driving and energy management strategies in the real environment of Lioni, a small town
in the province of Avellino (south Italy). In particular, the tasks of the authors on the
aforementioned research project, in collaboration with NetCom Engineering S.p.A. [49],
will regard the development of advanced control strategies for motion planning and energy
management (on HEVs and EVs) to be tested in real-scenarios, such as:

• Awareness driving;
• Intersection management;
• Rear-end collisions;
• Long distance travels for HEVs and EVs by using benefit of Smart Road and C-

ITS services.

Furthermore, NetCom Engineering has to develop an IoT gateway enabling the real
communication with the Smart Road infrastructure, providing V2V, V2I and I2V communi-
cations. Thus, the selected MCU can be a hardware module of the aforementioned gateway.

Of course, a subsequent development will involve the validation of the selected MCU,
using more advanced testing techniques, such as HIL with real-time simulators, and real
communication channels (e.g., cellular, DSRC). In this context, the possibility to adopt
a more powerful MCU will be considered. However, the advantage of this strategy has
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been also its development by model-based-design approach. In this way, even if future
developments will require a different MCU, the control algorithm and the correspondent
Simulink modules will not require substantial modifications, since only a different code
generation will be requested (i.e., a different embedded coder or the same one used in this
work, but applied to a more powerful STMicroelectronics MCU).

For this reason, the presented approach is general and can be extended for future
developments, also considering any kind of vehicle and powertrain.

6. Conclusions

The proposed MPC featured as an intermediate layer between vehicle powertrain and
Smart Road. The MPC was integrated with an energy management strategy named ETESS
in order to allow, simultaneously, both motion and powertrain controls.

The Smart Road and V2V/V2I/I2V information (i.e., ISA, wind velocity, road friction,
air density and car-following data exchange, such as ahead vehicle speed, mass, accelera-
tion) were assumed to be known via simulation. Thus, the objective was to demonstrate
the real-time execution on a real MCU of coupled MPC and ETESS through PIL testing, in
order to allow the extension of the work for further developments.

Below, the main outcomes are summarized:

• The average execution time of MPC + ETESS on the same MCU (STM32H743ZI2) was
about 3.22 ms and therefore well below the typical CAN cycle time for torque request
and steering angle, which is 10 ms.

• ETESS was 15 times faster than ECMS; thus, this encourages the implementation of
further control strategies on the same MCU, in order to reach additional real-time
features, such as path planning and eco-driving.

• Along representative maneuvers, MPC showed good tracking properties of reference
speed (with an error below the 0.1% in the steady state) and lane keeping (error below
1 cm for the lateral displacement and 0.025◦ for the yaw angle). MPC allowed us to
keep a relative distance greater than the minimum safety distance during braking
phases and follows the theoretical safety distance in the steady state (with an error
below 0.1%).

• The robustness of MPC against ego-vehicle model parameters uncertainties (drag
coefficient, cornering stiffness and vehicle mass) showed good tracking performance
of the vehicle speed vx and a slight deviation (−5 mm; the maximum allowed is equal
to 35 cm) of the lateral displacement e1 at the maximum parameters variations (m =
mmax, Cd = Cdmax , Cα = Cαmax ). The ICE activation occurred, respectively, 14 s earlier
(maximum parameters variations) and 9 s later (minimum parameter variations),
depending on the battery discharge rate during the early stage of the maneuver.

• The sensitivity tests of MPC against the individual variation of single parameter
of the ego-vehicle model showed a relevant influence of the maximum vehicle
load (m = mmax) towards all variables: lateral displacement e1 (MAE = 1.57,
RMSE = 0.55 cm), vehicle speed vx (MAE = 0.52 RMSE = 0.15 km/h), rela-
tive distance dr (MAE = 2.98, RMSE = 1.0 m) and wheels power (MAE = 0.98,
RMSE = 0.51 kW). With the minimum cornering stiffness Cdmin

, the highest impact
occurred for the lateral displacement (MAE = 1.89, RMSE = 0.6 cm), while with the
maximum one Cdmax , the highest influence was on the wheels power
(MAE = 0.73, RMSE = 0.03 kW). The wheels power was also significantly in-
fluenced by the drag coefficient, showing a MAE = 0.53 kW and a RMSE = 0.4 kW.
Considering the RMSE indices, the variations were quite contained, except for the
wheels power, which, as expected, was higher if the vehicle load and drag coefficient
were greater.

The implementation of MPC and ETESS through model-based-design approach allows
to easily adapt the corresponding Simulink modules for other MCUs. Nevertheless, in
the case of further developments, MCUs exhibiting better performances could be required
and an appropriate calibration process on the MPC parameters (weights, control and
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prediction horizons) could be conducted to improve its robustness and sensitivity. In
particular, the MPC calibration appears appropriate to reduce the 1.89 cm gap with respect
to the nominal case, which has been obtained for the lateral displacement with lower tire
cornering stiffness.

The next developments of this work will include the connection between the proposed
integrated motion and powertrain control strategies with path planning and C-ITS services,
available through V2X communication. Moreover, the HIL testing through a co-simulation
environment will be performed to consider the interaction between the ego-vehicle, other
vehicles and the Smart Road using real communication channels (e.g., cellular network,
DSRC). The HIL testing will also be necessary to overcome the limitations of the current
testing approach (PIL), which is based on asynchronous communication between a PC-Host
and the selected development board (NUCLEO-H743ZI2), while allowing the verification
robust execution in real-time. Through HIL test it will be possible to understand, by im-
plementing other additional control strategies for path planning and eco-driving, whether
the selected MCU can be confirmed. If it will be necessary to change MCU, by using
the model-based-design approach, the implemented control modules will not change. In
addition, further developments will regard the design of other strategies for motion and
powertrain controls, considering, for example, the use of other MPC types, in order to
compare them with the present adaptive MPC. Possible alternatives could be: robust MPC,
NLMPC and Data-Driven MPC, on which there are promising studies in the literature, as
in [50–52].

Eventually, the presented strategy is part of the research project Borgo 4.0, in part-
nership with NetCom Engineering. This project foresees real road test by the end of
2023, in order to verify motion, energy management, decision making and path planning
strategies in different scenarios (such as intersection management, rear-end collisions and
eco-driving) by using the IoT gateway that will be designed by NetCom Engineering. Thus,
the selected MCU could be an hardware module of the aforementioned IoT gateway.
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