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Abstract: In this study, the back electromotive force (EMF) waveforms of a flux switching permanent
magnet (FSPM) machine and variable flux memory permanent magnet (VFMPM) machine with same
main dimension were researched. Firstly, the simulation result showed that the maximum amplitude
of phase back EMF waveform of FSPM machine was 245% larger than that of the VFMPM machine,
and this was verified by the experimental result (243%). Secondly, the phase back EMF harmonics of
the FSPM machine and VFMPM machine were compared, including the enhance flux condition and
weaken flux condition of VFMPM machine. At last, the mutual demagnetization effect, which led to
the difference amplitudes of maximum back EMF waveform between FSPM machine and VFMPM
machine was analyzed. The comparison and analysis of the back EMF waveform will provide some
qualitative advice for the future application research of the FSPM machine and VFMPM machine,
such as application selection, optimization control method and so on.

Keywords: flux switching machine; back electromotive force; harmonics; demagnetization effect;
comparison

1. Introduction

FSPM machine is a kind of stator–permanent–magnet machine with windings and
permanent magnets embedded in the stator, such as linear FSPM machine [1–3] and rotary
FSPM machine [4–6]. For the FSPM machine, it has the characteristic of flux weakening,
which can be used for hybrid electric vehicles (HEVs) or plug-in electric vehicles (PEVs).

In recent years, some rotary FSPM machines with different structures have been
proposed, analyzed and experimented upon. Reference [7] investigated the winding
configuration of a novel bearingless FSPM machine by using the method of copper losses
per radial force amplitude. The test result indicated that the winding configuration of
FSPM machine can be optimized by stacked structure. Reference [8] compared the stator
FSPM machine with the rotor FSPM machine, and the analysis result showed that the rotor
FSPM machine has the advantages of higher torque and lower torque ripple. Reference [9]
investigated and compared the effects of permanent magnet materials on the C-core stator
FSPM machine, and the research result proved that, the higher the magnetic remanence,
the better the electromagnetic performance of C-core stator FSPM machine. In addition,
some other structures of FSPM machines had also been investigated in recent years, such as
the dual-armature FSPM machine [10], double-stator hybrid FSPM machine [11], yokeless
and segmented armature axial field FSPM machine [12].

In addition, a novel flux switching machine (variable flux memory permanent magnet
(VFMPM) machine) based on the FSPM machine was proposed and researched. Refer-
ence [13] investigated the on-load demagnetization performance of hybrid switched flux
magnet memory machine, References [14,15] put the main research on the filed regulation
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of flux switching memory machine, Reference [16] designed and optimized the iron-loss of
flux switching memory machine and Reference [17] made a investigate on the leakage flux
of hybrid variable flux memory machine.

Although the FSPM machine and VFMPM machine are promising candidates for
electric vehicle (EV) application, and they have the advantages of higher efficiency, higher
torque density and wider speed range [18], the performance difference between these
two machines has not been investigated in detail by papers. The abovementioned papers
generally focused on the research on FSPM machine or VFMPM machine, but did not
involve performance comparison. Therefore, the comparative research of these two kinds
of flux switching permanent magnet machines was beneficial for their selection and specific
application in certain types (torque range, speed range, etc.) of electric vehicle (EV). Under
the condition of same main dimension structure, this paper focuses on the similarities and
differences between the FSPM machine and VFMPM machine, especially the back EMF
waveform and mutual demagnetization effect.

The two kinds of flux switching machine considered in this paper are shown in
Figure 1. Figure 1a shows the classical structure of FSPM machine. If the FSPM machine
in Figure 1a is surrounded by the outer stator, filed regulating windings and permanent
magnet LNG52, the device becomes a novel machine, namely the VFMPM machine, as
shown in Figure 1b.
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Figure 1. Two kinds of flux switching machines. (a) FSPM machine; (b) VFMPM machine.

In our previous paper [19], we mainly focused the research on the VFMPM machine,
including such topics as pole-arc optimization, skewed slot degree selection, enhance
flux, weaken flux and so on. In this study, the back EMF waveforms of FSPM machine
and VFMPM machine were researched, and the main dimensions of FSPM machine and
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VFMPM machine were the same, including the rotor, stator (inner stator for VFMPM
machine), permanent magnet NdFe35, axial length, number of armature windings, stator
teeth, rotor poles, etc.

The main contributions of this paper are as follows. Firstly, the operational principles
of the VFMPM machine, including the back EMF waveform analysis, permanent magnet’s
magnetization and demagnetization, were analyzed. Secondly, on the basis of the theoreti-
cal analysis, the back EMF waveforms of the FSPM machine and VFMPM machine were
simulated by finite element analysis software, and the maximum amplitude of the back
EMF waveform of the FSPM machine was 245% larger than that of the VFMPM machine.
Thirdly, two prototypes of the FSPM machine and VFMPM machine were constructed, and
the back EMF waveforms of the FSPM machine and VFMPM machine were tested. The
experimental result indicated that the maximum back EMF waveform amplitude of the
FSPM machine was 243% larger than that of the VFMPM machine, and the phase back
EMF harmonics of the FSPM machine and VFMPM machine were unanimity. Lastly, the
reason for the different amplitudes of the maximum back EMF waveform between the
FSPM machine and VFMPM machine was analyzed, including the mutual demagnetization
effect in VFMPM machine. These analyses and comparisons will provide some qualitative
advice for future research on the FSPM machine and VFMPM machine, such as application
selection, optimization control and so on.

2. Back EMF Analysis of FSPM Machine and VFMPM Machine

In order to compare the back EMF waveforms of the FSPM machine and VFMPM
machine, the corresponding relationship between the magnetic field distribution of machine
and the relative position between stator and rotor was simulated by finite element analysis
software. In view of the in-depth research on the back EMF waveforms of FSPM machine
by professor W Hua et al. [20,21], this paper puts the main focus on the analysis of back
EMF waveforms of the VFMPM machine, including the operation principle, straight slot
and skewed-rotor structure of rotor, and magnetization and demagnetization of LNG52.

2.1. Operation Principle Analysis

Figure 2 shows an operation period of the back EMF waveform of the VFMPM
machine, including the radial cross-section, relative position between rotor and stator, and
flux linkage. It can be concluded from Figure 2 that the armature windings, field regulating
windings, NdFe35 and LNG52 are installed in the stator. In addition, the magnetization
direction of NdFe35 and LNG52 are tangential and radial, respectively.

The operation process of the back EMF waveform period can be divided into four
main positions. When the relative position of rotor tooth (P point) and phase winding A1
is shown in Figure 2a, the flux linkage of phase A is maximum, as shown by point a in
Figure 2e. Conversely, the flux linkage of phase A is minimum (point c in Figure 2e), since
the relative position of rotor tooth (P point) and phase winding A1 is shown in Figure 2c.
Figure 2b,d shows the zero-crossing of flux linkage, corresponding to point b and point d
in Figure 2e.

Through the differential calculation of flux linkage in Figure 2e, the back EMF wave-
form of Phase A can be obtained, as shown in Figure 2f.

The purpose of field regulating windings is to inject the pulse current and then change
the working point of LNG52. If the working point of LNG52 is changed, the air gap flux
density between rotor and stator will also change. Simultaneously, the amplitude of back
EMF waveform of the VFMPM machine can be increased or decreased, and this is referred
to as enhance flux or weaken flux in some papers.
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Figure 2. Relative position between rotor and stator of VFMPM machine, and the corresponding
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d; (e) Phase flux linkage waveform; (f) Phase back EMF waveform.

2.2. Back EMF Waveform Analysis of Machine with Straight Slot and Skewed Slot

The rotor structure of the FSPM machine and VFMPM machine is very simple (no
embedded the windings or permanent magnet), and only the silicon steel sheets are
superimposed around the motor shaft, as shown in Figure 3. Therefore, both the straight
slot and skewed slot of the rotor are easy to manufacture and equip. However, compared
with the straight slot of the rotor, the skewed slot of the rotor can improve the sinusoidal
degree of back EMF waveforms.
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Figure 3. Straight-slot-type and skewed-slot-type rotors.

The detailed theoretical research of skewed-slot-type rotor can be seen in Refer-
ences [22–24]. In this section, the discrepancy between the straight-slot-type rotor and
skewed-slot-type rotor is discussed through simulation and harmonics analysis.

For the straight-slot-type rotor of the FSPM machine and VFMPM machine, if we
divide the mechanical rotating degree θ into N equal parts, and simultaneously calculate
the straight-slot-type back EMF waveform with different mechanical rotating degree 0,
θ/N, 2θ/N, . . . , θ, the relationship between skewed-slot-type back EMF waveform and
straight-slot-type back EMF waveform can be written as follows:

esk(θ) =
1

N + 1

(
N

∑
k=0

est(θk)

)
(1)
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where esk(θ) is the skewed-slot-type back EMF, est(θk) is the straight-slot-type back EMF
and θk = kθ/N.

For example, under the condition of initial rotation degrees of straight slot, we get 0◦,
1◦, 2◦, 3◦, 4◦and 5◦, the six straight-slot-type back EMF waveforms of the VFMPM machine
that are shown in Figure 4a. Then, if we calculate the average value of the abovementioned
six straight slot-type-back EMF waveforms, the skewed-slot-type back EMF waveform of
VFMPM machine with 5◦ can be achieved, as shown in Figure 4b. Therefore, the back EMF
waveform relationship between the straight-slot type and skewed-slot type of the VFMPM
machine is explained in Figure 4a,b.
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back EMF waveform; (c) Back EMF harmonics comparison of straight-slot type and skewed-slot type.
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Actually, Figure 4a,b shows the simulation results of back EMF waveform of VFMPM
machine in the weaken flux condition, which is further elaborated in the latter section of
this paper.

From the harmonics comparison of Figure 4c, it can be concluded that the harmonic
contents of skewed-slot-type back EMF waveform are less than those of the straight slot
type, which is beneficial for the optimization control and stable operation of machine.

2.3. Magnetization and Demagnetization Analysis of LNG52

Compared with the FSPM machine, the VFMPM machine has an additional function
of field regulating, which can be realized by the magnetization and demagnetization of
permanent magnet material LNG52. As shown in Figures 1b and 2a, the magnetization
and demagnetization of LNG52 can be realized by the filed regulating windings, and the
operational process is shown in Figure 5.
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Figure 5. Magnetization and demagnetization of LNG52.

According to the electromagnetic theory of permanent magnet [25–27], Figure 5 indi-
cates that the no-load working point of LNG52 can be shifted by changing the amplitude
and direction of current of filed regulating windings. For example, after applying a nega-
tive pulse current with appropriate amplitude to the filed regulating windings, the no-load
working point of LNG52 can be demagnetized from B2 to B3. On the contrary, the no-load
working point of LNG52 can be magnetized from B3 to B2 by the opposite current of filed
regulating windings. If the amplitude of pulse current is large enough, the magnetiza-
tion and demagnetization process can occur in the third and fourth quadrant of Figure 5
(not drawn).

Moreover, although the coercive force of LNG52 is much less than NdFe35’s, 56 and
625 kA/m respectively, the magnetization and demagnetization of LNG52 will have some
influence on the working point of NdFe35, which can be verified by comparing the back
EMF waveform amplitude between FSPM and VFMPM machine (see Section 5).

3. Simulation of FSPM Machine and VFMPM Machine

Through the analysis on back EMF waveforms, the simulation models for the FSPM
machine and VFMPM machine were built respectively. The main dimension parameters
of the FSPM machine and VFMPM machine are shown in Table 1. From Table 1, it can
be seen that the main dimension parameters of the FSPM machine and VFMPM machine
are the same, and the difference between the two kinds of machines lies in the installation
of permanent magnet LNG52 and field regulating windings in the VFMPM machine, as
shown in Figure 2a of FSPM machine.
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Table 1. Main dimension parameters of FSPM machine and VFMPM machine.

Descriptions FSPM VFMPM

Stator

Outer radius 65.5 mm 79.2 mm
Inner radius 35 mm 35 mm
Tooth width 8.22 deg 8.22 deg
Axial length 75 mm 75 mm

Quantity of slots 12 12
Materials (iron core) DW360_50 DW360_50

Rotor

Outer radius 34.5 mm 34.5 mm
Tooth width 10 deg 10 deg
Axial length 75 mm 75 mm

Poles 14 14
Materials (iron core) DW360_50 DW360_50

NdFeB35
Thick 3.5 mm 3.5 mm

Length 15 mm 15 mm
Magnet coercive force 625 kA/m 625 kA/m

LNG52
Length None 12 mm
Thick None 5 mm

Magnet coercive force None 56 kA/m

Others

Air gap wide 0.5 mm 0.5 mm
Turns of armature winding per phase 140 140

Turns of field regulating winding per LNG52 None 60
Maximum current of field regulating winding None 15 A

DC-link voltage 220 A 220 A
Rated current 5 A rms 5 A rms

Resistance per phase 0.9 Ω 0.9 Ω
Rated power (approximate value) 1 kW 1 kW

Rated speed 3000 rpm 3000 rpm

3.1. Back EMF Waveforms of FSPM Machine with Straight Slot and Skewed Slot

Through the finite element analysis software ANSYS (a calculation and analysis soft-
ware usually used in the hydrodynamics, circuit science, electromagnetism, etc.), Figure 6a
illustrates the mesh dividing of FSPM machine. In Figure 6a, the surface deviation of mesh
dividing is 0.44 mm, and the normal deviation of mesh dividing is 15 deg. Figure 6b is
a simulation model of FSPM machine. The main elements are the copper of windings,
permanent magnet NdFe35, iron core (DW360_50) of stator and rotor, and the vacuum of
air gap. From Figure 6b, it can be seen that the maximum flux density is about 1.7 T~1.8 T,
which has not reached the saturation state of DW360. Moreover, there is leakage flux
outside the stator, and this is caused by the change of relative position between stator
and rotor. However, the leakage flux cannot reduce the air-gap flux density dramatically,
because the tangential magnetization of NdFeB35 improves the assembled magnetic effect
between stator and rotor (air gap).

Based on the simulation model of Figure 6b, Figure 6c compares the back EMF
waveforms of the FSPM machine with the straight-slot-type rotor and skewed-slot-type
rotor (5 degree). It can be seen that the back EMF waveform of skewed-slot-type rotor
is closer to sinusoidal than that of straight-slot-type rotor, but the back EMF waveform
amplitude of the skewed-slot-type rotor is slightly smaller than that of the straight-slot-type
rotor (79.5 and 82.9 V, respectively).



World Electr. Veh. J. 2021, 12, 149 9 of 19World Electr. Veh. J. 2021, 12, x  13 of 24 

 

 

(a) 

 

(b) 

 

(c) 

Figure 6. Cont.



World Electr. Veh. J. 2021, 12, 149 10 of 19
World Electr. Veh. J. 2021, 12, x  14 of 24 

 

 

(d) 

Figure 6. Simulation model and back EMF waveform comparison. (a) Mesh dividing; (b) 

Simulation model; (c) Comparison of back EMF waveforms (1000 r/min); (d) Harmonics 

comparison of back EMF waveforms. 

After normalization, Figure 6d shows the harmonics analysis of back EMF 

waveforms of straight-slot-type rotor and skewed-slot-type rotor (5 degree). From Figure 

6d, it can be seen that the second, third, fifth, eleventh, fourteenth and sixteenth harmonics 

are very significant in the back EMF waveforms of the straight-slot-type rotor, and the 

second, third and fifth harmonics are the main components in the back EMF waveforms 

of skewed-slot-type rotor. In general, the total harmonic distortion (THD) of the back EMF 

waveforms of the FSPM machine with the skewed-slot-type rotor is 1.79%, which is less 

than that of the FSPM machine with the straight-slot-type rotor (5.6%). 

3.2. Back EMF Waveforms of VFMPM Machine with Skewed Slot 

Due to the sinusoidal of back EMF waveform of skewed-slot-type rotor, the VFMPM 

machine’s rotor was designed as a skewed slot. Moreover, the same skewed slot of the 

rotor can enhance the comparability of the back EMF waveforms between the FSPM 

machine and VFMPM machine. 

Figure 7 shows the simulation models of weaken flux condition (magnetization of 

LNG52) and enhance flux condition (demagnetization of LNG52) of the VFMPM machine, 

and the mesh division is the same as that of the FSPM machine. Different from the 

simulation model of the FSPM machine, the elements of permanent magnet LNG52 were 

added in the stator of VFMPM machine. In the weaken flux model of Figure 7a, a lot of 

leakage flux will occur between the outer stator and inner stator, and this will decrease 

the amplitude of the back EMF waveform of the VFMPM machine. On the contrary, in the 

enhance flux model of Figure 7b, the leakage flux is decreased and the amplitude of the 

back EMF waveform of VFMPM machine will be increased. In Figure 7b, the direction of 

magnetic field strength of LNG52 is just an ideal assumption, and it is analyzed in detail 

in Figure 12d of Section 5. 

Figure 6. Simulation model and back EMF waveform comparison. (a) Mesh dividing; (b) Simulation
model; (c) Comparison of back EMF waveforms (1000 r/min); (d) Harmonics comparison of back
EMF waveforms.

After normalization, Figure 6d shows the harmonics analysis of back EMF waveforms
of straight-slot-type rotor and skewed-slot-type rotor (5 degree). From Figure 6d, it can
be seen that the second, third, fifth, eleventh, fourteenth and sixteenth harmonics are very
significant in the back EMF waveforms of the straight-slot-type rotor, and the second, third
and fifth harmonics are the main components in the back EMF waveforms of skewed-slot-
type rotor. In general, the total harmonic distortion (THD) of the back EMF waveforms of
the FSPM machine with the skewed-slot-type rotor is 1.79%, which is less than that of the
FSPM machine with the straight-slot-type rotor (5.6%).

3.2. Back EMF Waveforms of VFMPM Machine with Skewed Slot

Due to the sinusoidal of back EMF waveform of skewed-slot-type rotor, the VFMPM
machine’s rotor was designed as a skewed slot. Moreover, the same skewed slot of the rotor
can enhance the comparability of the back EMF waveforms between the FSPM machine
and VFMPM machine.

Figure 7 shows the simulation models of weaken flux condition (magnetization of
LNG52) and enhance flux condition (demagnetization of LNG52) of the VFMPM machine,
and the mesh division is the same as that of the FSPM machine. Different from the
simulation model of the FSPM machine, the elements of permanent magnet LNG52 were
added in the stator of VFMPM machine. In the weaken flux model of Figure 7a, a lot of
leakage flux will occur between the outer stator and inner stator, and this will decrease the
amplitude of the back EMF waveform of the VFMPM machine. On the contrary, in the
enhance flux model of Figure 7b, the leakage flux is decreased and the amplitude of the
back EMF waveform of VFMPM machine will be increased. In Figure 7b, the direction of
magnetic field strength of LNG52 is just an ideal assumption, and it is analyzed in detail in
Figure 12d of Section 5.
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Figure 7. Simulation models of weaken flux and enhance flux. (a) Weaken flux model of VFMPM
machine (magnetization of LNG52); (b) Enhance flux model of VFMPM machine (demagnetization
of LNG52).

With the demagnetization of LNG52, Figure 8 shows the change of back EMF wave-
forms during the enhance flux process of the VFMPM machine. In Figure 8, the amplitude
of the demagnetization pulse current (current of enhance flux) is 12 A, and the demag-
netization current pulse width is 45 ms. After the demagnetization, the amplitude of the
back EMF waveforms was increased from 13.68 to 29.2 V. In the enhance flux process,
the amplitude of the back EMF waveforms is 39.5 V. Moreover, when the amplitude of
demagnetization pulse current was increased to 15 A (or larger than 15 A), the amplitude of
back EMF waveforms of VFMPM machine was about 32.5 V (no longer increasing). There-
fore, for the skewed-slot-type rotor, the simulation results indicated that the maximum
amplitude of the phase back EMF waveform of the FSPM machine was 245% larger than
that of the VFMPM machine.



World Electr. Veh. J. 2021, 12, 149 12 of 19World Electr. Veh. J. 2021, 12, x  16 of 24 

 

 

Figure 8. Enhance flux process of VFMPM machine. 

Moreover, the back EMF waveforms of the VFMPM machine under the weaken flux 

process are illustrated in Section 4 of this paper, and the harmonics comparison of the 

back EMF waveforms of Figure 8 (weaken flux condition and enhance flux condition) are 

illustrated in Reference [19]. 

For a detailed comparison between the simulation and experimental results, please 

refer to Reference [19]. 

4. Experimental Validation 

In order to verify the results of the theoretical analysis and simulation, two 

prototypes of the FSPM machine and VFMPM machine with the same main dimensions 

and skewed-slot-type rotor were manufactured, as shown in Figure 9a. The parameters 

are shown in Table 1. Figure 9b shows the test rig of the back EMF waveforms. 

 

 

 

 

 

 

Figure 8. Enhance flux process of VFMPM machine.

Moreover, the back EMF waveforms of the VFMPM machine under the weaken flux
process are illustrated in Section 4 of this paper, and the harmonics comparison of the
back EMF waveforms of Figure 8 (weaken flux condition and enhance flux condition) are
illustrated in Reference [19].

For a detailed comparison between the simulation and experimental results, please
refer to Reference [19].

4. Experimental Validation

In order to verify the results of the theoretical analysis and simulation, two prototypes
of the FSPM machine and VFMPM machine with the same main dimensions and skewed-
slot-type rotor were manufactured, as shown in Figure 9a. The parameters are shown in
Table 1. Figure 9b shows the test rig of the back EMF waveforms.

Figure 10 shows the test results of the phase back EMF waveform of the FSPM machine
and VFMPM machine. Both machines have a speed of 1000 r/min, driven by a servo motor.
Figure 10a shows that the amplitude of the back EMF waveform of the FSPM machine is
74.4 V. After the enhance flux of the VFMPM machine by demagnetization current 12 A,
the amplitude of the back EMF waveform of the VFMPM machine is 30.6 V, as shown in
Figure 10b.

Furthermore, in the enhance process, if the demagnetization current was increased by
more than 12 A, the amplitude of the phase back EMF waveform of the VFMPM machine
could not be increased. Therefore, the experimental result showed that the maximum
amplitude of the back EMF waveform of the FSPM machine was about 243% larger than
that of the VFMPM machine’s.

The weaken flux process is illustrated in Figure 10c, where the minimum amplitude of
the phase back EMF waveform of the VFMPM machine is 15.6 V (after the magnetization
current 12 A), corresponding to the simulation result of Figure 4b.

Figure 11 shows the comparison of the harmonics (THD) of back EMF waveforms
of the FSPM machine and VFMPM machine, including the weaken flux condition and
enhance flux condition of VFMPM machine. From Figure 11, it can be seen that the second,
third, fourth and fifth harmonics are the main harmonics of the FSPM machine and VFMPM
machine (weaken flux condition), and the fourth, fifth, sixth and seventh harmonics account
for the main harmonics of enhance flux condition of the VFMPM machine.
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However, the THD of the FSPM machine and VFMPM machine are unanimity, includ-
ing the weaken flux condition and enhance flux condition of the VFMPM machine, which
are 2.56%, 2% and 2.39%, respectively.
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Figure 10. Back EMF waveforms of FSPM machine and VFMPM machine. (a) Back EMF waveform
of FSPM machine; (b) Back EMF waveform of VFMPM machine after enhance flux; (c) Back EMF
waveform of VFMPM machine after weaken flux.
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5. Discussions of the Maximum Back EMF Waveform Amplitude Difference between
FSPM Machine and VFMPM Machine

From the simulation and experimental results, it can be founded that the maximum
amplitude of back EMF waveform of FSPM machine is larger than that of VFMPM machines.
One reason for this phenomenon is that the mutual demagnetization effect occurred in the
permanent magnets NdFeB35 and LNG52 of the VFMPM machine. The detailed analysis
of the mutual demagnetization effect is as follows.

Firstly, two points in the NdFeB35 (point 1) and LNG52 (point 2) are selected respec-
tively, as shown in Figure 7a, aiming at calculating their magnetic flux density (B) and
magnetic field strength (H). Secondly, if LNG52 is not installed in the VFMPM machine,
then the VFMPM machine can be regarded as an FSPM machine; the magnetic flux density
(B) of NdFeB35 (point 1) is shown in Figure 12a. Thirdly, when LNG52 is installed in
the VFMPM machine, the variation of magnetic flux density (B) of NdFeB35 (point 1)
and LNG52 (point 2) during the enhance flux of the VFMPM machine is also shown in
Figure 12a. Figure 12b shows the variation of magnetic field strength (H) of NdFeB35
(point 1) and LNG52 (point 2), corresponding to the Figure 12a.

Based on Figure 12a,b, Figure 12c shows the key variation of magnetic flux density (B)
and magnetic field strength (H) of VFMPM machine. Figure 12a–c indicates that, when the
enhance flux process (demagnetization of LNG52 by field regulating windings) is finished,
the LNG52 is magnetized by the NdFeB35, and the magnetic flux density (B) of LNG52
(point 2) is increased from 0.48 to 0.61 T (magnetic field strength, H, is increased from −61.5
to −46.1 KA/m).

Furthermore, the total enhance flux process has some influence on the working point
of NdFe35. The magnetic flux density (B) of NdFeB35 (point 1) is decreased from 0.908 to
0.867 T, and the magnetic field strength (H) is decreased from −249 to −277 KA/m.

Therefore, after the demagnetization of LNG52 by field regulating windings, the
LNG52 will also be magnetized by the NdFeB35 simultaneously. This phenomenon explains
why the amplitude of back EMF waveforms of the VFMPM machine is decreased from 39.5
to 29.2 V in Figure 8, and also presents the reason why the maximum amplitude of the back
EMF waveform of the FSPM machine is larger than that of the VFMPM machine.

The above analysis also means that, under the effect of NdFeB35, the direction of
the magnetic field strength (H) of LNG52 cannot be changed, but decreased, as shown in
Figure 12d.
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Figure 12. Detailed analysis of mutual demagnetization effect in VFMPM machine. (a) Variation of
magnetic flux density (B); (b) Variation of magnetic field strength (H); (c) Key variation of magnetic
flux density (B) and magnetic field strength (H); (d) Decrease of magnetic field strength of LNG52.

If we magnetize the permanent magnet LNG52 in the direction of yellow arrow of
Figure 12d, then the weaken flux will occur in the VFMPM machine.

6. Conclusions

Based on the numerical simulation and experimental research, the back EMF wave-
forms of the FSPM machine and VFMPM machine with the same dimension were compared,
including the amplitude and harmonics of back EMF waveforms. By comparison, it was
founded that the maximum amplitude of the back EMF waveform of the FSPM machine
was larger than that of the VFMPM machine, i.e., 245% and 243% in the simulation and
experimental results, respectively. Furthermore, the harmonics of the back EMF waveforms
of the FSPM machine and VFMPM machine were compared, including the enhance flux
condition and weaken flux condition of the VFMPM machine, and the THDs were between
2% and 3%.

Moreover, the reason for the amplitude difference of the maximum back EMF wave-
form between the FSPM machine and VFMPM machine was analyzed, including the
mutual demagnetization effect in the VFMPM machine. The detailed analysis and com-
parison of the two kinds of electrical machines will provide some qualitative advice for
the application selection of the FSPM machine and VFMPM machine in electric vehicles
(EVs), and may be beneficial for the optimization control of these two kinds of electrical
machines to adopt the same method (not involves the magnetization and demagnetization
of LNG52).

The comparison of the back EMF waveforms of these two kinds of electrical machines
will provide some support for further research, including the comparison of the speed
range, torque range, power density, dynamic performance and so on.
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