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Abstract: Aiming at the accelerated aging problem that may occur during the use of high specific
energy lithium-ion batteries, this article proposes a method to judge the accelerated aging of lithium-
ion batteries. Taking the IC curve and DV curve as the starting point, the complete characteristic
curve of the new battery is used as a comparison benchmark, and the battery characteristic curves of
different aging stages are compared and analyzed, and the parameters that have obvious changes
before and after the accelerated aging of the battery are extracted as the characteristics that the battery
has accelerated aging. It is important to establish the relevant characteristic parameter matrix, and
use the logistic regression method to train the accelerating aging model of the battery to realize
the diagnosis of accelerating aging fault. In view of the fact that lithium batteries rarely undergo a
complete charging process, the characteristic parameter sets established in this paper are based on
the IC curve and the DV curve in the 15–75% SOC range, which have certain practicability.
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1. Introduction

In order to reduce greenhouse gas emissions and pollution caused by fossil fuels, the
promotion of new energy vehicles worldwide has become a general trend. As the market
share of new energy vehicles increases, the service life and safety of power batteries have
become topics of widespread concern.

Under this circumstance, battery technology is the main source of power for new
energy vehicles, and its development and breakthroughs have become one of the key
technologies restricting the development of new energy vehicles. Lithium-ion batteries
have become the main research object of new energy vehicle power sources due to their
better comprehensive performance and cost advantages. Especially in recent years, in
order to pursue a higher cruising range, a large number of high specific energy ternary
lithium-ion batteries have been used. However, the application of high specific energy
lithium-ion batteries has also brought potential safety hazards. The accelerated aging
phenomenon significantly reduces the service life of the battery and increases the economic
cost [1]. If the battery that has already undergone accelerated aging continues to be used, it
is extremely easy to cause an internal short circuit of the battery, cause a fire, and cause
a serious safety accident. Therefore, realizing the recognition of the inflection point of
accelerated aging of lithium-ion batteries and establishing relevant predictive models are
of great significance to the operation and maintenance of lithium batteries [2].

At present, the recognition of the inflection point of accelerated aging of lithium-
ion batteries is mainly based on two ideas. One is based on the life prediction model,
through the known battery operating state, combined with historical data, to estimate the
aging state of the battery, and then use machine learning methods to predict the evolution
trend of battery performance [3–5]. The literature [6] uses an optimized AR model to
predict battery capacity attenuation, and uses a particle swarm algorithm to adaptively
change the model order. The AR model is linear, and the battery capacity decay process
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is usually non-linear. This difference will cause the model to underfit in the long-term
prediction process; within the literature [7], starting from the lithium-ion battery charging
voltage and charging current curve, a method for battery capacity prediction based on
the sparse Bayesian learning method is proposed. Five characteristics of initial charging
voltage, constant current charging capacity, constant voltage charging capacity, cut-off
charging voltage, and cut-off charging current, are input into the correlation vector machine
regression model. The parameters are used to predict the battery capacity, but the complete
charging curve of the battery needs to be obtained, and the applicability is general. Another
way is to extract the characteristic parameters that have a strong correlation with capacity
changes during battery cycles, and use the characteristics of different characteristics of
the characteristic parameters before and after the inflection point of the battery capacity
diving to set the threshold for stable battery operation. Once the threshold is exceeded, it
is considered that the battery has undergone capacity diving. The literature [8] takes the
median voltage of each constant power charge and discharge cycle of the ternary battery as
the characteristic parameter, and finds the slope of the median voltage V and the number
of cycles’ N curve. When the slope exceeds the preset threshold, the battery accelerates
aging; the preset threshold value needs a lot of experiments to obtain, otherwise it may
lead to prediction deviation. The literature [9] established a linear regression model based
on the capacity data of the stable working area, and established a belt-shaped safety zone
based on the residual distribution obeying the normal distribution. When the capacity
continuously exceeds the seat belt, the battery capacity is considered. It starts diving and
has high reliability. However, in practice, battery capacity parameters are difficult to obtain
directly, and there are certain limitations. On this basis, the literature [10] improved the
method for determining the upper and lower bounds of the belt-shaped safe area. Based
on the idea of probability statistics, the probability of the data point corresponding to the
normal decline of the battery falling in the belt-shaped area reached 95% as the standard.
Through the Monte Carlo simulation of the residual distribution to calculate the probability,
the value of the upper and lower bounds of the safe area is finally determined.

Based on the current research status at home and abroad, the current realization
of the recognition of lithium-ion battery capacity diving is mainly based on data-driven
methods. Although this method requires a large amount of data for training, the prediction
accuracy is greatly affected by the choice of kernel function. There is no need to consider
the complicated internal physical and chemical changes in the battery aging process, only
starting from the historical real-time data of battery operation, which has high practical
value. However, most of the current methods still need to obtain a complete charging
curve of the battery. In response to this phenomenon, this article proposes a method for
diagnosing whether accelerated aging occurs according to the change in the characteristic
curve of a part of the battery (15–75%). Taking the IC curve and the DV curve as the
entry point, the complete characteristic curve of the new battery is used as a comparison
benchmark, and the battery characteristic curves of different aging stages are compared and
analyzed, and the parameters that have obvious changes before and after the accelerated
aging of the battery are extracted as the characteristics of whether the battery has accelerated
aging. It is possible to establish the relevant characteristic parameter matrix, and use the
logistic regression method to train the accelerating aging model of the battery to realize the
diagnosis of accelerating aging fault. The characteristic parameter sets established in this
paper are based on the IC curve and the DV curve in the range of 15–75% SOC, which have
certain practicability.

2. Accelerated Aging Characterization Parameters and Change Characteristics of
Lithium Batteries

This section is mainly based on the capacity increase curve (IC curve) and voltage dif-
ference curve (DV curve) of the lithium battery to extract the characteristic parameters that
characterize the accelerated aging of the battery, and establish the relevant characteristic
parameter matrix. Taking the DV curve of the new battery as a benchmark, it is possible
to obtain the DV curve of the battery under different aging states, use the DTW method
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to match the curve, analyze the change of the DV curve of the lithium battery during the
aging process, and extract the obvious difference before and after the accelerated aging of
the lithium battery. The characteristic parameters of the lithium battery characterize the
accelerated aging state of the lithium battery; based on the main peak area of the IC curve
of the new battery, the change of the main peak area of the IC curve of the lithium battery
during the aging process is analyzed to characterize the aging state of the lithium battery.

2.1. Curve Matching Method

Dynamic time warping (DTW) can shorten or enlarge two time series of unequal
length, and realize two time series of unequal length by converting the one-to-one align-
ment of the midpoints of the two time series into one-to-many [11] alignment, and then
compare the similarity between the two sequences. Supposing there are two time se-
ries, X = (X1, X2 . . . Xn) and Y = (Y1, Y2 . . . Yn), whose lengths are m and n (m 6= n),
respectively. The point-to-point distance function chooses the Euclidean distance, and its
distortion of the path can be expressed as:

w = w1, w2, . . . wk, . . . wKmax (m, n) ≤ K < m + n (1)

At the same time, the twisted path requires continuity and monotonicity, so the
following three constraints need to be met:

(1) Boundary conditions: w1 = (1, 1), wK = (m, n)
(2) Continuity: if wk−1 = ( a′, b′), wk = (a, b), then (a− a′) ≤ 1, (b− b′) ≤ 1;
(3) Monotonicity: if wk−1 = (a′, b′), wk = (a, b), then 0 ≤ (a− a′), 0 ≤ (b− b′).

wk = (a, b) means the Euclidean distance between point in X and point in Y. The DTW
algorithm is to minimize the sum of the distances and use it to represent the similarity of
two curves [11].

DTW(X, Y) = min

√
∑K

k=1 wk

K
(2)

2.2. Characteristic Parameters in DV Curve

The voltage difference curve (DV curve) is obtained by deriving the OCV-capacity
curve of the battery, which represents the voltage change of a unit capacity lithium battery.
Through the horizontal comparison analysis between the DV curve of the battery with
accelerated aging and the battery without accelerated aging, the characteristic parameters
that can characterize the accelerated aging of the lithium battery are extracted, and then
through the longitudinal comparison and analysis of the DV curve of different aging stages
in the aging process of the lithium battery, one can judge the change rule of characteristic
parameters before and after accelerated aging of the lithium battery, and then use the
change of characteristic parameters to judge whether the lithium battery has accelerated
aging failure.

As shown in Figure 1 below, as the lithium battery ages, the overall DV curve shifts
to the left. At this time, the difference between the two DV curves cannot be directly
analyzed. Take the complete DV curve of the new battery as a benchmark and use the
DTW algorithm to align the DV curve of the same battery at different aging stages with it,
and then calculate the points and points between the two curves after alignment within
the range of 40–60% SOC. The Euclidean distance is taken as one of the characteristic
parameters that characterize the aging state of the lithium-ion battery.
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Figure 1. Comparison of DV curve of new battery and aging battery.

At the same time, the height of the main peak of the IC curve has a strong linear
relationship with the capacity of the lithium-ion battery. When the capacity of the lithium-
ion battery continues to decline with the deepening of aging, the height of the main peak
also decreases, and the height of the main peak of the IC curve corresponds to the DV
trough on the curve; therefore, the minimum trough of the DV curve can be used as one of
the characteristic parameters to characterize the aging state of the lithium battery.

Taking into account that it is difficult to obtain a complete DV curve in practical appli-
cations, the DV curve used as a pairing reference should be a complete curve, including
the range of 0–100% SOC, and the matching DV curve can include 20% of any segment of
the DV curve within 70% SOC range.

2.3. Characteristic Parameters in IC Curve

The capacity increment curve (IC curve) is obtained by deriving the capacity-OCV
curve of the battery, and the change of each peak reflects the different stages of the battery
in the electrochemical reaction process. Among them, the area of the main peak of the
IC curve has a certain correlation with the capacity of the lithium-ion battery. When a
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lithium-ion battery undergoes accelerated aging, the area of the main peak of its IC curve is
usually significantly reduced. This feature can be used as a basis for judging the inflection
point of the accelerated aging of the lithium-ion battery. As shown in Figure 2:

Figure 2. Difference of main peak area of IC curve between new and old battery.

In addition, based on the main peak area of the IC curve of the new battery, the
difference between the main peak area of the IC curve obtained at different subsequent
cycles and the difference sequence of the main peak area is obtained. This sequence
can reflect the capacity decline of the lithium battery when the battery is aging to a
certain speed.

2.4. Correlation Analysis between the Change of Characteristic Parameters and the Inflection Point
of Accelerated Aging

The characteristic parameters extracted by the above methods should have a certain
correlation with the inflection point of the accelerated aging of the lithium battery. The
main performance is: after the accelerated aging of the lithium battery, the characteristic
parameters should also have obvious changes, that is, the characteristics before and after
the accelerated aging of the lithium battery. The parameters have obvious inconsistencies.

The following Figure 3 shows the capacity change of a certain type of ternary lithium-
ion battery during the aging process. The experiment does a capacity calibration every
200 cycles, and the capacity of the lithium-ion battery begins to dive around 1400 cycles.
Figure 4 shows the variation of the average distance between the 40–60% SOC of the
lithium battery DV curve with the number of cycles, and Figure 5 shows the change of
the minimum valley value at the bottom of the DV curve of the lithium battery with the
number of cycles, at 1600–1800 cycles. When the left and right lithium batteries begin to
accelerate the aging of the inflection point, the characteristic parameters in Figures 4 and 5
also expand rapidly, indicating that the speed of the DV curve shifts upward after the
accelerated aging of the lithium battery increases. Figure 6 shows the change of the main
peak area of the lithium battery IC curve with the number of cycles. When the lithium
battery capacity is in the linear decline stage, the main peak area of the IC curve also
linearly declines, and when the lithium battery capacity starts to dive, the main peak area
also drops rapidly, appearing at the obvious inflection point. Therefore, the characteristic
parameters that are related to the accelerated aging of lithium-ion batteries include: the area
of the two peaks of the IC curve, the distance between the DV curve (40–60% SOC), and the
minimum valley of the DV curve. At the same time, for the main peak, the characteristic
parameter of area is further processed. Taking the main peak area of the IC curve of the
new battery as the benchmark, the difference between the main peak area of the IC curve
obtained at different subsequent cycles and the difference sequence of the main peak area is
obtained, and this sequence is used to represent the lithium battery rate of decline of aging.
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Figure 3. Li-ion battery capacity changes with the varies with the number of cycles.

Figure 4. The distance between DV curves number of cycles.

Figure 5. The bottom of the DV curve changes with changes with the number of cycles.
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Figure 6. The area of the main peak of the IC curve the number of cycles.

The above characteristic parameters all have a certain correlation with the accelerated
aging phenomenon of lithium-ion batteries, and the changes in the characteristic parameters
before and after accelerated aging of the lithium-ion battery can be used to judge the aging
state of the battery.

Finally, a characteristic parameter system including the distance between the DV curve
(40–60% SOC), the minimum valley value of the DV curve bottom, the main peak area of
the IC curve, and the difference sequence of the main peak area is established, as shown in
Table 1.

Table 1. Characteristic parameter system characterizing accelerated aging.

Distance between
DV Curves

The Bottom of the
DV Curve

Area of the Main Peak
of the IC Curve

Difference Sequence
of Main Peak Area of

IC Curve
Lable

. . . . . . . . . . . . . . .

3.70 × 10−6 7.26 × 10−5 49.6 0 0

6.90 × 10−6 7.27 × 10−5 49.0 0.6 0

. . . . . . . . . . . . . . .

2.34 × 10−4 8.58 × 10−5 42.5 7.1 1

3.97 × 10−4 9.16 × 10−5 41.0 8.6 1

. . . . . . . . . . . . . . .

3. Recognition Model of the Inflection Point of Accelerating Aging of Battery

At present, data-driven methods are widely used to predict the inflection point of
accelerated aging of lithium batteries. This method ignores the physical and chemical
reactions inside lithium-ion batteries. It uses battery history and real-time operating data
to determine the aging state of the battery, and predicts its evolutionary law to realize the
battery accelerates the judgment and the prediction of aging.

This section mainly adopts the method of logistic regression to realize the judgment of
accelerated aging of lithium battery. According to the established characteristic parameter
system, the characteristic parameters needed in the cycle are extracted and used as the
training set of logistic regression. After multiple iterations, the optimal solution of the
model parameters is determined, and finally a lithium battery accelerated aging model
is established.

3.1. Logistic Regression and Related Theoretical Basis

The accelerated aging of lithium batteries is approximated as a two-class problem. The
battery is divided into the accelerated aging phase and the non-accelerated aging phase.
The logistic regression method is used to implement a simple binary classification problem
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by converting the Z value in Z = w × x + b into 0 and 1 of the classification task. This
conversion is realized by using the logistic function. The expression is as follows

h (z) =
1

1 + e−z (3)

The Z value output by the regression model is converted into a value between 0 and 1,
which is expressed as the probability that the sample label is 1. When the probability of the
label being 1 is less than the set threshold, it is judged as 0, and when the probability is
greater than the set threshold, it is judged as 1, so as to realize the two classification of data.

3.2. Model Building Method Based on Logistic Regression

In the process of judging whether the lithium-ion battery has accelerated aging using
the logistic regression method, the state when the battery has accelerated aging is marked
as 1, and the state without accelerated aging is marked as 0. Then, getting Z = w × x + b
into Equation (1), we can get:

h (z) =
1

1 + e−(wT+ b)
(4)

Take the logarithm of both sides:

ln
h (z)

1− h (z)
= wT + b (5)

h(z) is the probability that the sample label is, 1 − h (z) is the probability that the sample
label is, then the above formula is rewritten in the form of probability as:

ln
P (y = 1|x)
P (y = 0|x)= wT + b (6)

Therefore, the logistic regression model for the binary classification problem is:

P (y = 1|x) = e (wT+ b)

1 + e (wT + b)
(7)

P (y = 0|x) = 1
1 + e (wT+ b)

(8)

In logistic regression, the maximum likelihood estimation method is used to give
reasonable values of W and b, and the maximum likelihood function is:

L (β) =
m

∑
i =1

[
yiβ

Txi − ln (1 + eβ
Txi)
]
βT=

(
W
b

)
, xi =

(
xi
1

)
(9)

At the time, finding the “β” ˆT that maximizes the value of L is the optimal solution.
To facilitate the solution, one must take the negative number of the above formula and
average it. The loss function of the logistic regression is calculated as:

1
m

L (β) =
1
m

m

∑
i=1

[
yiβ

Txi − ln(1 + eβ
Txi)
]

(10)

To find the βˆT when the minimum value in the above formula is obtained is the
required model parameter. Specifically, iterative methods such as gradient descent can be
used to optimize βˆT. The specific flow chart is as follows in Figure 7:
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Figure 7. Flow chart.

4. Experimental Results and Model Verification

For three batteries that have undergone accelerated aging, the characteristic parame-
ters in Table 1 are extracted every 200 cycles. The status data label of the battery that has
not undergone accelerated aging is 0, and the data label of the state that has undergone
accelerated aging is 1, and a logistic regression is established. Table 2 is the established
training set.

Table 2. Training set.

Distance between
DV Curves

The Bottom of the
DV Curve

Area of the Main Peak
of the IC Curve

Difference Sequence
of Main Peak Area of

IC Curve
Lable

3.70 × 10−6 7.26 × 10−5 49.6 0 0

6.90 × 10−6 7.27 × 10−5 49.0 0.6 0

1.00 × 10−5 7.36 × 10−5 48.5 1.1 0

2.9 × 10−5 7.56 × 10−5 48.0 1.6 0

2.54 × 10−5 7.81 × 10−5 47.3 2.3 0

7.87 × 10−5 8.07 × 10−5 46.7 2.9 0

. . . . . . . . . . . . . . . .

2.34 × 10−4 8.58 × 10−5 41.6 8 1

6.59 × 10−4 9.47 × 10−5 41 8.6 1

. . . . . . . . . . . . . . .
(Limited by the length of the paper, the complete data set is provided in the Supplementary Materials).

The final trained model is:

P =
e0.111×10−3x1+0.514×10−5x2−0.185 x3+1.59 x4−0.0282

1 + e0.111×10−3x1+0.514×10−5x2 −0.185 x3+1.59 x4−0.0282
(11)
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It is necessary to select another battery of the same type to verify the accuracy of the model.
Similarly, the characteristic parameters in Table 1 are extracted every 200 cycles, and the
characteristic parameters are input into the model in sequence according to the number of
cycles. Table 3 shows the results of model verification.

Table 3. Model verification results of a battery of the same type.

Cycles
Distance

between DV
Curves

The Bottom
of the DV

Curve

Area of the
Main Peak of
the IC Curve

Difference
Sequence of

Main Peak Area
of IC Curve

Lable

. . . . . . . . . . . . . . . . . .

200 4.66 × 10−6 7.14 × 10−5 49.0 0 0

400 1.14 × 10−5 7.29 × 10−5 48.4 0.6 0

600 2.91 × 10−5 7.34 × 10−5 47.7 1.3 0

. . . . . . . . . . . . . . . . . .

1400 1.47 × 10−4 7.70 × 10−5 45.2 3.8 0

1600 4.97 × 10−4 8.29 × 10−5 41.7 7.3 1

1800 1.38 × 10−3 9.13 × 10−5 40.2 8.8 1

. . . . . . . . . . . . . . . . . .

Figure 8 shows that the lithium-ion battery has accelerated aging during
1600–1800 cycles, and the model also gives a judgment of accelerated aging of the battery at
1600 cycles, so the established model can accurately determine the acceleration of lithium
batteries’ aging failure.
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Figure 8. Capacity decline curve of a battery of the same model.

5. Conclusions

This paper uses the logistic regression method to realize the judgment of the accel-
erated aging fault of the lithium battery. This method can solve the situation that the
complete charging curve of the battery cannot be obtained in practice to a certain extent,
focusing on the extraction of the charging curve only in the 15–75% SOC range. It aims to
characterize the characteristic parameters of accelerating battery aging, establish the rele-
vant characteristic parameter matrix, and use it as the training set of the logistic regression
method. The logistic regression method is used to train the accelerated aging model of
the lithium-ion battery, and then the characteristic parameters of the lithium battery to be
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tested in the current state are input into the established model to realize the diagnosis of
the accelerated aging fault of the lithium-ion battery. The specific process is as follows:

(1) In view of the fact that it is difficult to obtain the complete charging curve of the
battery, the DTW algorithm is used to realize the matching analysis of the curve, and
the battery characteristic curve in the range of 15–75% SOC is compared with the
complete characteristic curve of the new battery, and the accelerated aging of the
battery is compared. Before and after the change of the battery characteristic curve in
this interval, it is necessary to extract the characteristic parameters that have obvious
changes before and after the accelerated aging of the battery. Finally, a characteristic
parameter system including the distance between the DV curve (40–60% SOC), the
minimum valley value of the DV curve bottom, the main peak area of the IC curve,
and the difference sequence of the main peak area is established.

(2) As the lithium-ion battery ages, the DV curve moves upward, the distance between
the curves expands, and the main peak area of the IC curve decreases. When acceler-
ating aging of the battery occurs, the capacity decay rate increases, and an obvious
inflection point appears, and the corresponding characteristic parameters also change
significantly. The bottom of the DV curve and the distance between the DV curve are
significantly increased, while the main peak of the IC curve is rapidly reduced.

(3) Use logistic regression to train the characteristic parameter set and establish a judg-
ment model for accelerating battery aging. Extract the required characteristic parame-
ters in the characteristic curve of each cycle of the battery to be tested, and input them
into the established model in sequence according to the number of cycles. The model
output 0 means that the battery has not undergone accelerated aging, and the model
output 1 means that the battery has accelerated aging failure.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/wevj12030143/s1, Table S1: Training Set.
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