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Abstract: Due to the complex changes in battery state, the accurate and fast estimation of battery
state of charge (SOC) is still a great challenge. Here, a fast estimation method of battery impedance
and SOC based on a multi-level PI observer is proposed. The observer model reflects the change of
the battery state characteristics through the dynamic impedance, and then the system compensation
factor is added to the observer to dynamically adjust the parameters of the battery model. The
effectiveness of the algorithm is verified by the compound dynamic stress test (DST) experiment. The
results show that the introduction of the compensation factor enables the system to tolerate a certain
degree of impedance fluctuation and capacity attenuation and the maximum SOC estimation error
can be kept within 2%.

Keywords: battery; state of charge; impedance; state observer; compensation factor

1. Introduction

To solve the problems of energy crisis and environmental pollution, electric vehicles
have achieved more and more attention. Power batteries have developed rapidly as the
main energy storage devices for electric vehicles [1]. Accurate and reliable state estimation
is one of the core functions of battery management [2]. Battery states usually include state of
charge (SOC), state of health (SOH), state of power (SOP), state of energy (SOE) [3–6], where
SOC is the most basic and important state estimation parameter. The Battery Management
System (BMS) requires a reliable SOC estimation method to determine the current state
of the battery, from which the current actual power consumption, battery safety, and
battery life are inferred. Different from battery parameters measured directly online, such
as voltage and current, SOC cannot be directly obtained by measurement in practical
applications [7]. Typically, SOC can be characterized by the amount of active material in
the battery, which is affected by many factors, such as voltage, current, temperature, aging,
etc. These factors are coupled to each other, which add a lot of difficulty to SOC estimation.

In order to solve the above problems, many SOC estimation methods were pro-
posed [8,9]. Among them, the coulomb counting method is a widely used method for SOC
estimation because of its simplicity and effectiveness [10]. However, there are also some
problems that cannot be ignored, such as: (1) The signal drift of the sensor and the noise
generated by the actual operation of the vehicle lead to the formation of cumulative errors,
which greatly reduces the estimation accuracy. (2) Initial value SOC0 is difficult to deter-
mine. (3) The actual available capacity of the battery will change dynamically due to factors
such as aging, discharge rate, temperature and so on. Many other methods were proposed
to solve the drawbacks of the Coulomb counting method. One of the effective methods
to improve the accuracy of SOC estimation is to use the unique correlation between the
measurable parameters of battery and SOC, such as open-circuit voltage method [11] or
electrochemical impedance spectroscopy [12]. However, these methods require long peri-
ods of resting for batteries, which is not suitable for practical control and these measurable
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parameters are also affected by internal or external factors, such as battery aging [13].
The model-based method is another popular SOC estimation method. The purpose of
the model-based method [14] is to gradually converge the output parameters (such as
voltage) of the model to the target value during the recursive process and then obtain an
estimated value of the battery state parameters. The model-based method requires an
accurate battery model to correctly reflect the battery characteristics and they estimate
battery SOC using typical regression algorithms of modern control theory, including least
squares [15], filters [16,17], neural networks [18], fuzzy control algorithm [19], sliding mode
observer [20] and other methods. Meanwhile, charge imbalance is a very common problem
in multi-battery SOC estimation. The module-based battery charge balancing system [21]
proposes a mathematical model to accelerate the battery charge balancing and improve the
system performance.

The model-based method has higher computational accuracy and can solve the prob-
lem of the uncertain initial value in SOC estimation. The Kalman-based method is one of
the popular model-based models. It can get high accurate estimations based on known
noise statistics even when the initial SOC is unknown. However, this method still requires
an accurate battery model and is applicable only in some specific cases. Neural networks
can be adapted to all batteries, but need a lot of data for training. Sliding mode observers
can suppress external disturbances and modeling errors, but their biggest drawback is the
chattering effects. In addition, rapid changes of battery parameters in actual conditions
may cause the estimation method to diverge due to its inability to adapt. The adaptive
algorithm can evaluate and correct unknown or uncertain system model parameters and
noise statistical characteristics. However, its stability is relatively low and the convergence
analysis method lacks universality.

To improve the accuracy and reliability of the SOC estimation for the real engineering
problem, a two-stage PI observer method is used to estimate the impedance and SOC
of lithium-ion batteries. The integrator of the PI observer can give the observer better
robustness in modeling uncertainty. It can improve the accuracy by suppressing the system
interference and speed up the computation efficiency of the SOC estimation [22]. It is well
known that the capacity and impedance change with battery aging, which further affects
the estimation results of SOC. Thus, the online calculated dynamic impedance can be used
to initially determine the status of battery usage. A compensation factor ξ is added to
modify the impedance of the observer model, which is used to account for the effect of
battery aging. It is derived from the average dynamic impedance during the last discharge
cycle of batteries and used to compensate for part of the system error due to the attenuation
capacity during the current discharge cycle. Thus, the method can automatically match the
PI observer at different battery capacities or other conditions by the influence of the factor
above, instead of modifying the parameters of the PI observer itself. Comparing with the
method based on several observers such as a sliding mode observer [20] and a dual-circuit
observer [23], the PI observer is fast and accurate. Although the sliding mode observer is
easy to design, it may encounter the problems of large chatting effect and poor tracking
performance, while the double-loop observer has lower complexity but lower accuracy.
The proposed observer can improve the estimation performance in different usage of the
battery while ensuring a simple calculation.

This paper is organized as follows: Section 2 introduces the SOC estimation method
based on multi-level PI state observer. In Section 3, the proposed method will be validated
under the conditions of the composite dynamic stress test (DST) and the results will be
comprehensively analyzed. Finally, the conclusions of this study will be given in Section 4.

2. SOC Estimation Based on PI Observers

The accuracy of battery measured parameters and battery aging state are considered
as the main factors affecting SOC estimation here. The dynamic impedance technique
and two PI state observers will be combined into an estimation method for SOC and
battery impedance. The overall structure of the two-stage PI observer system is shown in
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Figure 1. The left in Figure 1 is the first-level PI observer which is used for estimating the
battery impedance, and the right is the second-level PI observer which is used for the SOC
estimation. Next, a compensation factor ξ is also introduced in the system to compensate
for part of the capacity loss due to usage of battery, which is obtained by the average of
battery impedance at last cycle.
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2.1. Introduction of the Electrochemical Battery Model

For the two stages of PI observer, a battery model is needed first. Compared with the
complex battery models such as the distributed parameter equivalent circuit model [24]
and the distributed electrochemical model [25], a combined model consists of Shepherd
model, Nernst model, and Unnewehr universal model [26] is more suitable for the PI
observer. This combined model is more able to directly reflect the external characteristic
relationship between voltage and SOC of battery, which is formulated as follows:

CCV = E0 − R·I − k0·soc− k1

soc
+ k2· ln(soc) + k3· ln(1− soc) (1)

where CCV is battery terminal voltage. I represents measured current, which is positive
during discharge and negative for charging. R is battery impedance. E0, k0, k1, k2, k3 is the
undetermined coefficient of the battery model. Note the battery impedance R will vary at
different battery SOC and usage.

According to the above battery model structure in Equation (1), the change in the
battery terminal voltage can be considered mainly to be the result of the SOC change
and the voltage division caused by the battery impedance R. In general, inaccurate SOC,
parameter measurement errors, and changes in battery impedance can also cause errors in
the output of the above model.

2.2. First-Level PI Observer for Impedance Estimation

Considering the possible influence of system noise and measurement noise in practical
application, a PI observer will be used to obtain the battery dynamic impedance to eliminate
the influence of noise. A simple and fast calculation of dynamic impedance [27] can be
defined as the change rate of voltage with the change of current. It can be expressed as:

Rζ,k =
∆U
∆I

=
|Uk −Uk−1|
|Ik − Ik−1|

(2)
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where Rζ,k is the battery dynamic impedance. Uk, Uk−1, Ik, Ik−1 are the battery measured
voltages and current at k and k− 1, respectively. Figure 2 is the result of battery impedance
obtained from the relevant experiments at different sampling intervals, taking SOC = 0.5.
As shown in Figure 2, when the time interval is between 0 and 0.3 s, the impedance changes
gently, but after 0.3 s, the impedance changes sharply. The result declares that the short
sampling interval can reduce the influence of current on the calculation result of dynamic
impedance. The sampling interval adopted in this paper is 0.1 s.
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Figure 2. Battery impedance at different sampling intervals (SOC = 0.5).

In order to find out the relationship between the dynamic impedance and battery
operating current, a set of experiments with different currents at discharge is designed,
as shown in Table 1, and the details of the impedance test are shown in Section 3.1. The
battery changes from one discharging current to another current. The voltage and current
are recorded before and after the transition. Then the impedance is calculated using
Equation (2). There are four kinds of current considered, namely I1 to I4. The discharge
rate of the current is 1C, 2C, 3C, and 4C, respectively (i.e., I1 is 1C, I2 is 2C, I3 is 3C and I4
is 4C). Seven test cases are carried out and can be divided into three groups, which are able
to display the relationship between different dynamic impedance and static impedance. In
Table 1, the group 1–3 represent the same initial current, same of the end current, and static
impedance test which sets the end current to zero, respectively.

Table 1. Battery discharge condition.

Group Discharge Condition

1
∆I1 I4 − I3
∆I2 I4 − I2
∆I3 I4 − I1

2
∆I4 I3 − I1
∆I5 I2 − I1

3
∆I6 I4 − 0
∆I7 I1 − 0

The impedance comparison results are shown in Figure 3. It can be seen that the
values of dynamic impedance Rζ,k and static impedance Rreal,k are very similar at the same
SOC but at different currents. Therefore, it can be considered that the effect of current
on impedance can be ignored, that is, Rreal,k ≈ Rζ,k. The small difference in impedance
during the discharge period may be caused by the inaccurate measurement parameters
during operation.
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The PI state observer will be used to obtain the battery impedance that filters out
the effects of noise. The basic structure is shown in the feedback loop on the left side of
Figure 1. The first-stage PI observer adjusts the feedback gain by scaling the scale factor
as follows:

µk = Kp·
(

errk +
1
Ti
·

k

∑
i=0

erri

)
(3)

where µk is the feedback gain. Kp is the scaling factor that adjusts the feedback gain. Ti
represents the time of integration. errk means the error between the model output and the
measured parameters at time k, as shown in Equation (4).

errk = Rreal,k − Rm,k (4)

Rreal,k is the static impedance at time k, as the input signal of the first-level state
observer. Rm,k represents the output value of the impedance model at time k. This model
reflects the relationship between the battery impedance and the SOC, such as Equation (5),
expressing the characteristics of the battery impedance variation. Where ∂R

∂soc is a polyno-
mial about the SOC obtained from experimental data.

Rm,k = R′real,k−1 +
∂R

∂soc

∣∣∣∣
sock−1

·(sock − sock−1) (5)

Finally, the output impedance parameter R′real,k based on the PI state observer is
as follows:

R′real,k = R′real,k−1 + µk (6)

2.3. Second-Level PI Observer for SOC Estimation

The model required for the second-stage PI observer used for SOC estimation at
time k, as shown in Equation (7), is a discrete form of Equation (1). The second-stage
observer updates its model state parameters according to the output of the first-stage PI
state observer, with the battery current and SOC as model inputs, and the battery voltage
as the model output.

CCVm,k = E0 − R·It,k − k0·sock −
k1

sock
+ k2· ln(sock) + k3· ln(1− sock) (7)

where CCVm,k, It,k is battery terminal voltage and measured current at k time. The related
process of the second-stage PI state observer is shown on the right side of Figure 1, and the
feedback adjustment algorithm is as shown in Equation (8):

µk,v = Kp,v·(errk,v +
1

Ti,v
·

k

∑
i=0

erri,v) (8)
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where Kp,v is the scale factor used to adjust the feedback gain of the observer. Ti,v is the
time of integration. erri,v is the error between the measured voltage CCVk and the model
voltage CCVm,k at time k, expressed as:

errk,v = CCVk − CCVm,k (9)

Therefore, the SOC estimation of the PI observer based on multi-level feedback is
derived as follows:

SOCk = SOCk−1 +
η It·Ts

3600 · Cn
+ µk,v (10)

However, the battery impedance and battery capacity will change with the using of the
battery, which will reduce the processing effect of the current observer and the estimation
accuracy of the SOC. Therefore, in addition to using the first-stage observer to calculate the
battery impedance online, a compensation factor ξ is also introduced in the second-stage
state observer model. The compensation factor corrects the impedance parameter in the
model to compensate for the partial battery capacity that is attenuated due to operation.
The system can realize accurate SOC estimation under different aging degrees of the battery
due to the influence of the compensation factor. Therefore, the battery impedance in this
model is redefined as shown in Equation (11).

R = ξ·R′real (11)

where R′real is output signal of the first-stage PI observer, battery impedance. R is the
impedance in the model that can adapt to the current second-stage observer.

During the entire cycle of the battery, the observer parameter is treated as a fixed value,
and the compensation factor ξ alters the model characteristic parameters according to the
usage of the battery. Since the battery SOH usually presents an exponential change with the
number of cycles [28], the changes in the compensation factor mentioned will be updated
in the form of Equation (12). R f resh is used as the initial value of battery impedance. Rave is
the average impedance of the battery obtained under the nth battery discharge cycle, to
update the observer compensation factor under the (n+1)th battery discharge cycle.

ξ = log
(

a ∗
R f resh

Rave
+ b
)

(12)

The method is simple in calculation and high in precision. The compensation factor ξ
can adjust the matching degree between the battery model and the observer according to
the battery impedance, and improve the adaptability of the SOC estimation method.

3. Verification and Discussion

In this section, the improved experiment based on the Dynamic Stress Test is intro-
duced. The basic parameters of the battery used are listed in Table 2. Next, it will be
verified that the proposed PI observer with the compensation factor ξ is universal in dif-
ferent usage of batteries. Finally, the performance of fault tolerance of the compensation
factor is analyzed.

Table 2. Battery parameters.

Battery type ISR18650PC
Battery capacity 2.6 Ah
Working voltage 4.2–2.75 V

Maximum continuous discharge current 15 A
Initial Impedance ≤30.0 mΩ
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3.1. Experiment Design

The experimental data used in this paper are obtained on an experimental platform
with high-precision sensors. As shown in Figure 4a, the battery test bench consists of a
battery test instrument with eight independent channels, a thermal chamber, and a hosting
computer. Figure 4b illustrates the battery test projects, including the characterization test
and aging test. Their loading profiles are displayed in Figure 5.
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As shown in Figure 5a, the capacity test is usually executed to measure the battery
capacity. The battery is firstly charged at the CC (constant current)-CV (constant voltage)
mode and then discharged with a constant current of 1 C until the terminal voltage reaches
the discharge cut-off voltage. Figure 5b shows the impedance test at different SOC. The
battery is discharged at a current of I1 (e.g., 1C), followed by a current of I2 (e.g., 2C) for
40 s. In this case, the battery releases 10% of its capacity and it executes 10 cycles. Finally,
the experimental data are used to calculate the impedance of different SOC according to
Equation (2), and the SOC and impedance are fitted by a polynomial as shown in Figure 3.
The DST cycles are employed to verify the proposed states estimation method. Its current
profile is shown in Figure 5c. A set of battery aging tests are also carried out by the
DST cycles.

The battery model described in Equation (2) uses the least−squares method for
parameter identification. The results are shown in Table 3. The reference SOC is also
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calculated based on the experimental data using the Coulomb counting method. In order to
be able to verify the performance of the proposed algorithm, the simulation also simulates
the effects of actual conditions including sensing noise, drift current, and unknown capacity.

Table 3. Battery model parameters.

Parameter Value

E0 3.459
k0 −0.039
k1 0.001
k2 0.066
k3 −0.070

Based on the Dynamic Stress Test (DST) in the USABC Electric Vehicle Battery Test
Manual, the experiment will be modified to simulate the load changes of pure electric
vehicles due to road conditions and traffic situations. As shown in Figure 6, based on the
characteristics of the driving conditions of pure electric vehicles, three different modifica-
tions are made based on the DST standard test. A complete discharge cycle of the battery
will be accomplished alternately by four different discharge standards in the figure until
the energy is exhausted. The battery voltage, current and discharge energy will be recorded
during the experiment. A number of batteries with different degrees of aging are used to
verify the accuracy of the proposed estimation method. The current and voltage of the
battery under DST cycles as shown in Figure 7.
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3.2. Verification and the Results

The new battery does not need to consider the issue of dynamic capacity, so the
compensation factor at this time is set to 1. Figure 8 shows the dynamic impedance of a
new battery in a complete DST cycle and the battery impedance after processing by the state
observer. The dynamic impedance in the Figure is extremely susceptible to measurement
noise. Through the first-stage PI state observer, the battery impedance can filter out the
effects of noise and show a steady trend of change, which can avoid unreasonable SOC
estimates for the second-stage observer. When artificially adding measurement noises or
erroneous SOC initial values to the system input signal, the comparison between the SOC
in the state observer and the SOC reference in the experiments is shown in Figure 9a. In
order to verify the applicability of the proposed SOC estimation method based on the PI
observer, the method described in Ref. [29] (DEKF) is also used in the SOC estimation.
Figure 9b shows the error between the estimated results and the reference SOC. The errors
estimated by the PI observer and the DEKF can be controlled within ±2%. The errors are
mainly due to imperfections of the battery model. Meanwhile, compared with the DEKF
method, the SOC estimated by the PI observer converges to the exact value more quickly
under the wrong initial SOC. The results show that the proposed method can quickly
and accurately compensate the initial error of SOC and the cumulative error caused by
measurement noise in new batteries.
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The compensation factor ξ mentioned is predicted based on the average impedance
of the battery obtained under each uninterrupted discharge cycle of the battery. This
paper selects the discharge cycle data under different states of a battery to determine the
compensation factor. The exact parameter in Equation (12) is obtained by fitting as follows:{

ξ = log
(

a ∗ R f resh
Rave

+ b
)

including : R f resh = 0.03 Ω, a = −1.502, b = 4.216
(13)

The battery multiplex DST experimental data under two different usage (after 100
discharges and 300 discharges) was used to verify the SOC estimation method mentioned.
The values of the model compensation factor are calculated by Equation (13) to be 1.0999
and 1.211, respectively. Figure 10a,b contains the dynamic impedance Rζ,k of the battery
measured, and model parameter R updated of the second-stage observer. The impedance R
is greater than the dynamic impedance Rζ,k in order to compensate for part of the capacity
degradation caused by battery aging. The deeper the battery ages, the greater the deviation
between R and Rζ,k.
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The results of the SOC estimation are shown in Figure 11. The SOC estimation result
without compensation factor causes the observer to fail due to the change in capacity and
impedance, and the final error >±2%. The SOC estimation result with the compensation
value controls the error within ±2%.
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3.3. Analysis for Fault Tolerance of the Factor ξ

Inaccurate results of battery impedance directly affect the processing effect of the
state observer. The red wave line in Figure 12a is the measured battery impedance under
experimental conditions. The impedance gradually increases as the number of cycles
increases, accompanied by significant fluctuations. As the number of cycles increases,
the fluctuations also become more obvious. In addition, the measurement error will also
have an impact on the calculation results of impedance, which increases the difficulty of
accurate estimation of the SOC. Therefore, this section will analyze the fault tolerance
of the compensation factor ξ. The gray area in Figure 12a is the reasonable impedance
calculated under the premise of accurate estimation of SOC, according to the DST cycle
condition data under different cycle conditions of the battery. In other words, as long as
the calculated result of the impedance R is located in the gray area in Figure 12a, the SOC
estimation value is guaranteed to be within a reasonable range. Similarly, the reasonable
system compensation factor is in the gray area in Figure 12b, and the standard system
compensation factor is the red wave line in Figure 12b. As the battery usage increases, the
accuracy of the system model may decrease, but the observer’s compensation factor ξ and
impedance estimation can have a larger fault tolerance area.
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4. Conclusions

In order to adapt to the variability of battery state, this paper proposes a two-stage PI
state observer with compensation factor to realize online estimation of battery impedance
and SOC. The Dynamic Stress Test (DST) under different conditions verifies the real-time
and universality of the method. The main conclusions are as follows:

1. The experimental results show that the two-stage PI observer method can obtain reli-
able data results in the presence of unknown initial SOC, current drift, measurement
noise, or inaccurate battery capacity.

2. The compensation factor can adjust the model parameters online according to the
battery usage, compensate part of the capacity loss and keep the system robust.

3. The proposed SOC estimation method is capable of obtaining satisfactory accuracy in
different use states for test batteries. The SOC error can be kept within 2%.

4. The proposed SOC and battery impedance estimation have a simple structure and are
easy to implement.
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