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Abstract: Automation and modernization of the grid with the availability of micro-grids including
non-conventional sources of energy are the main constituent of smart grid technology. Most energy
demand is fulfilled by fossil fuel-based power plants. Inadequacy of fuel resources, higher operating
costs, and ever-increasing carbon emissions are the primary constraints of fossil fuels-operated
power plants. Sustainable energy resource utilization in meeting energy demand is thought to be a
preferred solution for reducing carbon emissions and is also a sustainable economic solution. This
research effort discusses an accurate mathematical modeling and simulation implementation of a
sustainable energy resource model powered by solar, grid, and proton exchange membrane fuel cell
(PEMFC) stack and focuses on the energy management of the model. In the proposed model, despite
energy resources being sustainable, consumer side sustainability is achieved by using electrical
charging vehicles (ECVs) to be integrated with sustainable resources. The proposed energy resource
management (ERM) strategy is evaluated by simulating different operating conditions with and
without distributed energy resources exhibiting the effectiveness of the proposed model. PEMFC
is incorporated in the model to control fluctuations that have been synchronized with other energy
resources for the distribution feeder line. In this proposed model, PEMFC is synchronized with grid
and solar energy sources for both DC and AC load with ERM of all sources, making the system
effective and reliable for consumer-based load and ECVs utilization.

Keywords: proton exchange membrane fuel cell; electrical charging vehicles; energy resource
management

1. Introduction

The intelligent grid has a controlled and communicated mechanism for the efficient
energy flow within the power system, but the present demand is to make the grid smart by
employing sustainable energy resources i.e., distributed and renewable energy resources
(RERs). Most energy is fulfilled by coal-operated power plants whose operating cost
is higher than RERs and the carbon emissions cause a bad air quality index (AQI). Ad-
vancement towards distributed energy resources (DERs) for power generation has been
accounted as a better alternative power generation solution to reduce carbon emissions [1].
According to [2] solar energy has a carbon dioxide emission factor of 0.5Ton/MWh and
hydro energy has an emission factor of 0.47 Ton/MWh which is much less than the coal
emission factor per megawatt-hour (MWh). Economically and socially, a photovoltaic (PV)
system is best suited as it overcomes carbon dioxide (CO2) emissions while having a good
payback period [3].
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According to the live AQI forecast, considering the present, i.e., 2020 situation of
Pakistan, there are many cities whose AQI is greater than 100 and that is hazardous per
United States metrics and is shown in Figure 1. So sustainable environment implementation
in the future accounting for all the RERs and the electrical vehicles (EVs), which are
currently 46.2 percent fuel of Pakistan according to [4] and can aid in overcoming the
energy supply and demand gap as well as fairly reduce the carbon emissions. Almost the
same situation is prevailing in other regions of the world.
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Now there is a need to automate the system to overcome the ramp rate by utilizing
renewable energy sources i.e., solar, fuel cells, and wind, controlled by auto-recloser.
Storage batteries are useful to store excess energy which overcomes the duck curve and
use that energy in ECVs modules [5]. Smart and micro-grid systems lessen the need for
a long high-voltage direct current (HVDC) transmission line as power demand can be
consumed by DERs [6]. If the interconnected system has ramp response resources with
non-conventional resources, then this distributed energy system can be utilized during
peak hours [6,7]. Non-conventional power resource availability depends on atmospheric
conditions, so planning and its efficiency calculation can be done with simulation tools like
PVsyst for a solar system.

Power electronics for smart grids provide lossless switching for bulk energy storage
and conversion of power per utilization and a recent advancement is its usage in EVs,
HVDC transmission, and PV system [8–10]. For multi-voltage conversion, multilevel
converters can be used which overcome the flexibility barrier of a specific grid. The
cascaded bridge converters, also called modular multilevel converter, which have multiple
configurations including single, double, and triple bridge cell, which is implementable in
EVs’ charging module as proposed by us. Multilevel converters can be used to control
direct current (DC) voltages and control power losses [11]. For the interfacing of micro-grid
with the DC line, thyristor line converters and IGBT-based voltage source converters are
used for power control, which can lead to system stability. As the fuel cell is also part of
distributed energy sources but its reliability has been increased by using a DC-DC boost
converter for interfacing with the power system. Cascaded network for fuel cells comprises
of DC-to-DC converter with inverter for rectification. High-frequency DC to AC converter
is used in fuel cells to gain high power conversion by cyclo-converters [12,13]. For the PV
system, a boost converter is used having a filter, with the inverter that controls the output
power with boosting input voltage. Aggregation of different renewables sources into a
single inverter is done by a single-ended primary inductance converter. The distribution
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system used for the inverter should be resilient to enable the bidirectional flow of energy
for DERs [14–16]. A challenge is to design the renewable energy system for an optimal
generation with minimum cost. For the optimal operation of PV systems, the PV array has
been set according to the inverter parameters so there is no overvoltage or undervoltage
in the system [17–19]. For the inverter oversizing and under-sizing, its rating should
be equivalent to installed capacity. For industrial purposes, the solar micro-grid can be
beneficial for the prosumer by synchronizing the PV system with the local generator, so
the domestic load of micro-grid (maybe an industrial plant) is utilized by synchronized
PV system [20]. In fuel cells, hydrocarbons are used to extract hydrogen to be used as
fuel while polymer electrolyte membrane has higher energy to be transported to the
customer. Other types of fuel cells include direct methanol fuel cells, solid oxide fuel
cells, and carbonate type which vary in cost and energy density and for their dynamic
operation, a boost converter is used. Fuel cell integration with solar has shown high
economic benefits, an energy conversion efficiency of 60–80 percent, scalability to desired
demand, and flexibility [21]. So, expeditious deployment of sustainable energy sources
sector aided with more mature power electronics in energy sector surely help in meeting
energy demands and achieving green environment.

2. Comparison with the Previous Research

In [21], the author proposed a model where PEMFC stack along with solar cell and
battery has been incorporated with DC bus to control fluctuations having the drawback
of utilization for small scale microgrid. In [22] authors proposed a model for standalone
applications where PEMFC is switched by electrolyzer coming from main DC bus where PV
Source, PEMFC, and ultracapacitor were feeding to main DC Bus. Authors [23] proposed
that integration of PEMFC with solar has shown high economic benefits, energy conversion
efficiency of 60–80 percent, scalable to desired demand, and flexible. For the standalone
hybrid solar and fuel hybrid system proposed by [24], both sources are synchronized,
controlled, and optimized, attached between DC and AC line through an inverter. In our
proposed model, PEMFC is synchronized with universal grid and solar energy source for
both DC and AC load with energy resource management (ERM) of all sources, making the
system effective and reliable for consumer-based load and ECVs utilization. Interference of
Grid and introduction to ECVs with renewable sources to overcome any parametric effect
of load with the sustainable environment is the motivation for our system.

This research effort discusses the modeling and implementation of grid-connected
sustainable energy resources having specific load demand for smart grid utilization. The
proposed ERM is discussed in the later sections. A grid connected PEMFC stack is used
to increase the ramp rate of the conventional source so line loading can be overcome and
the lifetime of that feeder line will be increased. Ramp rate sources are mandatory for
industrial zones lines as for domestic purposes there is a negligible ramp rate. At the
distribution end, grid-connected non-conventional power sources are placed according to
weather conditions with batteries. Non-conventional sources are simulated to check the
subsystem efficiency so after integration, losses will be minimal. ECVs battery charging
station is integrated with the non-conventional source for stepping towards the sustainable
environment as it has a huge attribute in carbon emissions. Line parameters have also been
simulated that help in planning and controllability of the system parameters. Modeling
of microgrids is done as per location with EVs charging application interfaced with the
conventional system to regulate the parameters according to the load demand. It will
increase the system reliability by analyzing the efficiency of the non-conventional sources
at the simulation tools. Electric charging stations aid in managing the duck curve which
arises from conventional resources and to utilize the non-conventional energy resources
for which capacity payments are made to the power plant.
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3. Proposed Energy Resource Management System

The proposed model is on an AC bus that has multiple sources to overcome the
transients and regulated output. The system model constitutes of DERs i.e., PV system and
PEM, interfaced with the AC feeder line by DC to AC inverters having maximum power
point tracking (MPPT) for specified output voltage. Figure 2 depicts the line diagram of
the proposed system. The PV system has multiple series-to-parallel modules while the
fuel cell has multiple stacks as per generation capacity. PEMFC has a backup battery as
its operations are continuous and can save energy during off-peak hours. The inverter
voltage parameter is set according to AC line voltage so these sustainable sources can be
synchronized with the grid. The inverter is designed by the IGBT for the application of
buck converter, controlled to have constant value at the output. The hydroelectric energy
source is also continually feeding to the line by the transformer. PEMFC which has boosted
output has fed to the AC line by inverter. The fuel cell is fueled by the hydrogen having
electrolyte for production of hydrogen at anode end, so after the reaction water is collected
as waste at the cathode.
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The AC feeder line voltage is set as a distribution level voltage of 220 V with a line-
to-line voltage of 440 V. Transmission line parameters are taken to minimal value for the
optimal operation of DERs. The consumer end is modeled by an RLC circuit having power
consumption in kW with specified line inductance and capacitance. For a sustainable
environment, the electrical vehicle charging module is also interfaced with the AC line
through AC to DC converters. The overall system is regularized to meet the AC line
load from the sustainable energy resources and using the application of ECVs to have a
sustainable environment.

Figure 3 shows the algorithm of the proposed ERM system where conditions have been
idealized as system demand for each case of ERM. The priority is given to the PEMFC for
high current so the probability of ERM for PEMFC is in a higher range to overcome current
ramp conditions of the system. For system stability, priority is given to the grid source
to overcome the harmonics and fluctuations in the output. The solar source dependence
priority will be given in the caseload to be greater than the grid so in the overall condition
of ERM, Ev(t) + a(t) > SL(t) + GL(t), the solar source is incorporated with the grid source as
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solar is more economical energy source than others. Solar energy resource has its maximum
consumption during daytime when SL(t) = SLmax. The minimum source priority is given
to the backup battery as it will be used under its state of charge (SOC) condition. The
electrical vehicle module will be a constant load for the system with the variable load of
the consumer.
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4. Erm System Configuration Parameters and the Simulation Model

The detailed system configuration parameters to model a proposed ERM system
are enlisted in Table 1. SN350M-10 solar module with power rating 350 Wp is used in
micro-grid modeling, hybrid converters and inverters are being modeled with theoretical
power conversion efficiencies of 96% and 85% respectively. PEMFC stack of 6 kW with an
efficiency of 60% has been modeled and used for the ERM system. In the proposed system
shown in Figure 3, solar resource dependence has a probability of 0.55, fuel cell stack
resource has the probability of 0.66, fuel backup battery with the probability of 0.22, the
grid is with the probability of 0.88, for the operation of distribution line with varying load
demand of consumer and ECVs. The probability of respective energy resources originates
from ERM by evaluating the dependence of energy resource for a specific load.

Table 1. Sustainable Sources Specifications.

System Description

Solar System Type: SN350M-10, Nominal Power 350 W, Mono Crystalline, Efficiency: 16%, Operating Temp: 50 degree

Fuel Stack Type: PEM fuel Cell, Power: 6 kW with 45 Vdc output, Fuel: Hydrogen, Efficiency: 60%

Inverter Three-phase AC Inverter, MPPT Controlled, Life Cycle: 25 years, Efficiency: 85%

AC to DC Converter Type: 6 pulse Bridge Thyristor, Efficiency: 96%

DC to DC Converter Type: IGBT controlled Boost converter, Output Voltage: 100 Vdc, Efficiency: 97%

The proposed ERM system shown by the line diagram in Section 3 is implemented and
simulated in MATLAB/SIMULINK environment as shown in Figure 4. It can be observed
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that PEMFC with battery energy storage system (BESS) or battery stack, ECVs system, and
micro-grid is integrated into the local grid. Resource Side Management (RSM) is named for
the measurement and results in the analysis section of the ERM system. Further aspects
relating to the mathematical modeling of the system are discussed in Section 5.
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5. Mathematical Modeling and Implementation of Proposed Erm System

PEMFC uses hydrogen as fuel, decomposes hydrogen into protons and electrons at
the catalytic layer adjacent to the anode. The oxidant oxygen is accumulated at the cathode
catalytic layer, reacts with the hydrogen protons to form water with residual heat too.
PEMFC model has a stack of fuel cells with the losses including electrode losses, electrolyte
losses, and concentration losses and the circuit model is shown in Figure 5.
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The no-load potential is the open-circuit thermodynamic balance for the standard
operating conditions calculated by Nernst Equation. It depends on hydrogen and oxygen
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partial pressure and a higher current causes pressure declination with higher temperature.
The no-load potential is the reversible voltage of the cell due to Gibbs energy, G, and fuel
pressure (i.e., 1.23 V) but due to irreversibility and entropy losses, taken nominal output
ranges from 0.9 V to 1.23 V [25]. So, the no-load potential for the operating condition is

EN,L = Enom +
∆S
2F

(T − T0) +
RT
2F

[ln(PH2) +
1
2

ln(Po2)] (1)

where

∆S = Change in entropy (J/mol)
EN.L = Operating open-circuit voltage of fuel cell
Enom = Ideal open-circuit voltage of fuel cell
PH2 = Partial pressure of hydrogen (atm)
PO2 = Partial pressure of oxygen (atm)
R = Universal constant of gases (8.314 J/K mol)
T = Operating temperature of Cell (K)
TO = Reference temperature of System (K)

As for ideal Enom = 1.23 V so we get,

EN.L = 1.23 + 0.0008(T − 298) + 4.3 × 10−5ln
[

ln
(

PH2

)
+

1
2

ln
(

PO2

)]
(2)

Equation (1) shows the operating voltage of fuel cells under no-load conditions or
reversible conditions. Electrode losses are mainly activation losses as electrode causes the
reaction to be slow by diffusion of oxygen at the electrodes and flow channels. Oxygen
concentration at catalytic after consideration of diffusion at the electrode is given by
Equation (3). Tafel equation has utilized for activation losses result as proposed by [26] in
Equation (4).

CO2 =
PO2

(5.08)(106)
(

e
−498

T

) (3)

Vact = −0.9514 + 0.00312T − 0.00018Tln(I)
+7.4 × 10−5Tln(CO2)

(4)

Electrolytic losses mainly refer to the resistance of protons through the membrane and
electrons through the external circuit of fuel cell constitute ohmic losses. The empirical
equations proposed by [27] were used to find membrane-specific resistance and parametric
constants for membrane Area.

Vohmic = I(Rm + Rc) where Rm =
pMl
A

(5)
where

A = Active area of the cell (cm2)
l = Thickness of fuel cell membrane (cm)
Rm = Resistance of the membrane (Ω)
Rc = Resistance of electrode connections (Ω)
Vact = Activation voltage drop in fuel
Vohmic = Ohmic losses through the PEMFC

There is a maximum limit of fuel consumption for which maximum current density is
allocated. For the maximum current, huge mass transport of fuel causes the drop of the
partial pressure of H2 and O2 at electrodes.

Vcon = −Bln
(

1 − J
Jmax

)
(6)
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where

B = Parametric constant for cell operation
J = Actual current density of cell (A/cm2)
Jmax = Maximum current density of cell (A/cm2)
Vcon = Concentration losses

So, the output operational voltage of the fuel cell stack shown in the circuit model in
Figure 5 is formalized in Equation (7) with single cells, connected layer by layer. Simulink
modeling of PEMFC for the above-formularized model is shown in Figure 6.

Vout = N(ENL − Vact − Vohmic − Vcon) (7)
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Multiple connections of solar cells constitute solar panels while the placement of
solar panels in parallel-series connections constitutes a solar system. As with fuel cells, a
single-cell model is considered for solar system modeling with series and shunt resistance
for internal resistance and leakage losses, respectively.

I = Iph − [Is × exp
(q(V+Rs I))

aVth − 1]− V + Rs I
Rsh

(8)

where

I = Current across single solar cell/current across the single fuel cell
Iph = Current produced by shinning photons
Rsh = Shunt resistance of a solar cell
Rs = Series resistance of a solar cell
V = Voltage across the single solar cell
Vth = Thermal voltage
q = Charge of an electron

The output current will be a difference of shunt current and diode current from the
PV source current.

I = Np Iph − [Np Is × exp
(q(V+Rs I))

aVth − 1]− V + Rs I
Rsh

(9)
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where

Is = Solar cell reverse saturation current
Np = Parallel connected solar panels

For the Grid connection of RERs, boost converters are used for the application to
control specific parameters at the output. For the PV voltage or fuel voltage Vrer and
inductor current I, boost converter can be modeled mathematically as [28].

dVrer

dt
=

1
Crer

(IL − Irer) (10)

dI
dt

=
1

Lrer

(
Vmpp − Vrer

)
− Rrer

Lrer
)IL (11)

where

CRER = Renewable source shunt capacitance
IL = Inductor current of a boost converter
LRER = Series inductance of renewable resources
VRER = Voltage from fuel stack or solar array

For the optimization of DERs, the single cell-based optimization is modeled for the
PEMFC and PV systems. As MPPT tracking is to optimize the power output in PV, the
ideal MPPT point is achieved for specific Vmpp by considering the optimal value of Rs
and Rsh to get optimal Ipv by Equation (9) [29]. The relation between Rs and Rsh for the
optimal MPPT point is given as Equation (12).

Rsh =
Vmpp

(
Vmpp − Impp·Rs

) Ns
Np

Ns
Np

[
Vmpp(Isc − Id

)
]− Pmpp

(12)

where

Id = Saturation current of diodes in the array
Impp = Maximum power point of the current
Ns = Series connected solar panels
Vmpp = Maximum power point of voltage
Isc = Short circuit current of a panel in the array
Pmpp = Maximum power point of solar cell

The demand current, Idemand of fuel cell stack varies with the constant factors and
hydrogen utilization which is given as.

Idemand =
Uopt

2B
(qh2) (13)

where

B = Parametric constant for cell operation
qh2 = Fuel Flow Rate
Uopt = Optimal utilization of PEMFC energy

The optimal range of demanded current in the PEMFC depends on the partial pressure
of hydrogen and optimal utilization of hydrogen. The minimum and maximum optimal
range of hydrogen cell utilization is 80% to 90% taking operational constraints for overused
fueling, underused fueling, and under voltages.

(0.8qh2)

2B
= Imin ≤ Idemand ≤ Imax =

(0.9qh2)

2B
(14)

The operating power delivered to the grid by fuel stack is formulated by output stack
voltage shown in Equation (7) and fuel current dependent on input fuel rate. The solar
power is extracted after power conditioning losses and array losses including inverter
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operating efficiency at the AC bus. So the power at the distribution end of DERs shown in
Figure 4 incorporating the power losses is mathematically modeled as;

Pgrid = [Ppv(1 − λp)(1 − λc) + IFC(Vout)ηin] (15)

where

ηinv = Inverter Efficiency
λc = Power Conditioning Losses
λp = Photovoltaic Array Losses
IFC = Fuel Generated Current
Pgrid = Power Delivered to Grid
Ppv = Extracted Solar Power

The thyristor-based rectifier model is implemented for EVs fast-charging whose DC
link voltage is dependent on the cosine of firing angle which has six ripple pulses per
frequency cycle and is shown in Figure 7.
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6. Simulation Results and Discussions

PEMFC with its backup source will be utilized during Ev(t) > SF(t) as shown in
Figure 3, in case SL(t) + GL(t) is not meeting the ramp load of charging modules during
Ev(t) + a(t) > SL(t) + GL(t) condition. While in case of Ev(t) + a(t) < SL(t) + GL(t), load
demand of Ev(t) and a(t) can be fulfilled without the backup sources. As EVs modules
rating depends on Ampere-hour which can be achieved by the current ramp of fuel cell
stack with its backup. For the simulation of PEMFC, the stack of 65 cells coupled for
45 V DC nominal voltage with 55% stack efficiency, is linked with a boost converter for
higher average DC voltage. PEMFC is regulated by a flow rate selector having ramp
input and flow rate regulator for the current. Figure 5 output of boost voltage interfaced
with fuel Stack designed by chopper circuit, controlled by the duty cycle. As the DC
bus voltage becomes steady after few transients to give a regulated output which gives
a pure sinusoidal wave with no distortion. The chopper circuit makes the lossless DC to
DC conversion which is best suitable for the above cases. The DC bus voltage is shown
in Figure 8.

The DC bus current for the above condition EV(t) > SF(t) is shown in Figure 9 which
is simulated for PEMFC with its backup source utilization for load consumption. EVs
modules are ampere-hour dependent which can be fulfilled by the ramp rate of the fuel
cell stack. The output wave has zero harmonic distortion for the regulated output. Only
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switching losses can be incorporated for ramp current output and steady DC output of
PEMFC which has minimal value.
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Inverters are connected with each solar energy resource and PEMFC for the power
conditioning as shown in Figure 2. Both inverters convert the DC power of resources to AC
power for the distribution feeder line. The inverted output as per load demand is shown in
Figure 10. Both inverters will be operated under Ev(t) + a(t) > GL(t) + SL(t) condition while
for other conditions, it depends on resource management. As solar resource connected
inverter operation mainly depends on load requirement a(t) and PEMFC connected inverter
operated as per ampere-hour-based load of EV modules. Whereas in between grid has
continuous energy resource. Cases for different operating conditions which are shown in
the ERM algorithm are discussed and simulated below. 5
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A three-phase IGBT-based inverter is modeled for the conversion of DERs to AC
power, modeled in MATLAB with LC filter at the output to minimize the ripple and
smoothing of output. LC filter is coupled with closed-loop proportional integral derivative
(PID) Controller and pulse width modulation (PWM) generator, given at gate terminal
of IGBT. Both fuel cell stack and solar panels are integrated with an inverter of the same
conditions for the synchronized output whose DC voltage, inverter output, filtered output,
and modulation index is shown in Figure 10. IGBT inverter has only conduction and
switching losses which has minimal value with no effect on inverter output. The IGBT
switching gives the maximum value of the voltage to the load bus for peak load conditions
so the system meets the demand of load effectively.

Three-phase breakers are interfaced at the DERs line for the optimal control of the sys-
tem while not interfaced at the gridline of the hydroelectric source as a basic methodology
is to synchronize the sources into the grid. Peak and off-peak hours can be adjusted for the
optimal control of DERs. All loads cannot be shifted to DER as highly inductive load make
the DER system unstable. The transformer connected with the AC bus has a Y-Y winding
connection with minimal parameters and has a rating greater than the load components.
EV charging module has assumed the same parameters as for the battery including initial
state, terminal state, maximum charging, and minimal charging for the optimal control of
the system.
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EV charging module for smart grid utilization is taken as DC load for the grid whose
output from thyristor model as simulated in SIMULINK is shown in Figure 11. EVs
charging energy is taken as ampere hour-based load whose concentration is mainly fulfilled
by fuel stack and its backup battery having a high ramp rate. For the operation of the grid
having load demand less than PEMFC resource, demand to be fulfilled by solar and grid
but for EVs demand equal or greater than PEMFC, demand is fulfilled by all resources with
the backup battery too. The constant current demand of the electrical vehicle module is
met by the source with regulated DC output at the output terminal. For the DC output, the
thyristor-based model is utilized whose output is shown in Figure 11.
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The smart ERM flow chart depicted in Figure 3 illustrates the conditions to control
DERs with respective power demands. Solar can be utilized when it is operating with a
maximum output which is consumed when a load is less than the solar resource. Solar
interference is mandatory in case of a load being less than solar otherwise load will have
to shift to grid resource. For the load to be greater than both solar and grid, a choice
of fuel Stack resource is also added with the backup battery. It has been inferred that
under different operating conditions has voltage regulation less than 5% with minimal
ripple waveform. Power conditioning equipment’s simulations show its optimal working
efficiency with less than 1% losses as shown by fuel cell stack simulations and inverter
output. A backup battery is given preference in case of a load to be greater than solar and
grid by discharging until 25% of the state of charge (SOC), as in other caseload is already
less than solar and grid resource so here battery can discharge until 75% of SOC. For the
load to have all resources attached to the grid for the load, the voltage and current output
graphs are shown as calculated for the load in equation 16.

For the operating condition of consumer load and ECV with fuel cell stack, the
situation is taken for the EVs and consumer load both to be greater than Solar and Grid
EV(t) + a(t) > SL(t) + GL(t). All the DERs SL(t) + GL(t) + [FL(t) + EB(t)] are stacked for
the balanced output. The DERs are integrated with the distribution AC bus, connected
with the load end and ECVs module. Six pulses thyristor-based model is used for EVs and
load is denoted by the RLC circuit. The Load is considered to a distribution end load of
200 KW with the fixed bus line to line voltage of 440 KV. So, the current demand of load is
formulated as

ILoad = 200 KW/VLoad = 200 KW/440 V = 454 A (16)

As shown by Figure 12 for meeting the demand of load with PEMFC, grid, and solar
dependence, the waveform is pure sinusoidal and accurate for a load of Equation (16)For
the operating condition of consumer load and electrical vehicle charging module without
fuel cell stack, the output waveform is shown in Figure 13.

The output current has decreased to a significant value as the ramp source of current
of PEMFC has been cut off from the system. In other conditions, the current source of
the load can be met as to cut off the solar source show less regulation in the output wave.
As the consumer is power factor controlled and EVs load has a current dependency, so
the PEMFC source can be mandatory for the stable and balanced output waveform. The
fuel cell stack source has a dependence of 66% which must be mantled in a system under
maximum cases except for S(t) = SLmax under the condition of Ev(t) + a(t) < SL(t) + GL(t).
For the operating condition of consumer load and EV charging module without grid source,
the output waveform is shown in Figure 14.

Under this operating condition, the output waveform is not pure sinusoidal as the
waveform shows harmonic losses. This condition is least interested as shown in ERM
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in Figure 3 that Grid source dependence should have a dependence of 0.88 for efficient
power flow without any losses. For the operating condition without PEMFC, the current
demand is not meeting so has less value of current at the output. while the operating
condition without a grid source has harmonic losses and nonregulated output. So from
these outputs, the ERM dependence of each source can be easily evaluated and cross
verified with Figure 3. While the backup source utilization depends on its SOC so has
minimal dependence of all with a 0.22 working probability.
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7. Conclusions

An alternative distributive energy model is proposed which is better than the usual
distribution system for making the system reliable, flexible, and economical with less
transmission line cost and losses. Simulation of the model under operating conditions
of DERs concerning utilization i.e., DERs with PEMFC, DERs without PEMFC, DERs
without grid source, has a pure sinusoidal waveform with minimal ripple factor, minimal
harmonic distortion, and regulated output as per load demand. Besides the efficiency of
DERs as specified in Table 1, there is minimal harmonic distortion (<1%) as seen from its
waveforms and minimal line losses in the system consisted of IGBT-based inverter and
converters used for pure sinusoidal and regulated output. Simulation of DERs is done for
the specific load in SIMULINK, with resources to be modeled with optimal parameters. The
probability of sources for efficient ERM has been confirmed by simulating the proposed
model under different operating conditions, by which the grid dependence is prior of
all with 0.88 probability to nullify harmonic losses, fuel source dependence of 0.66 for
meeting the high current ramp rate as per a load of ECVs and consumer while the solar
source has 0.55 dependence as solar has less capacity of all sources. This model can be
adapted in countries whose past energy dependence on the national grid, to increase
System reliability and become Energy unit more economical by ERM. Distributed system
resources interfaced with ECVs by ERM leads to cost-effectiveness and sustainability. This
model is implementable in any weak micro-grid for a regulated output with low power
loss as implemented in the paper. The scope of the proposed model can be extended by
analyzing the proposed model to find the Power flow. This will decrease energy cost,
minimize losses and maximize reliability for weak micro-grids.



World Electr. Veh. J. 2021, 12, 70 17 of 19

Author Contributions: H.A.T.: data curation, formal analysis, investigation, methodology, project ad-
ministration, resources, software, validation, visualization, writing—original draft, writing—review
and editing, F.S.: conceptualization, data curation, formal analysis, investigation, methodology,
project administration, resources, software, validation, visualization, writing—original draft, writing—
review and editing M.H.Y.: conceptualization, investigation, formal analysis, software, visualization,
writing—original draft, writing—review and editing. A.I.: conceptualization, investigation, for-
mal analysis, software, visualization, writing—original draft, writing—review and editing H.A.:
conceptualization, investigation, formal analysis, software, visualization, writing—original draft,
writing—review and editing M.H.K.: investigation, formal analysis, visualization, writing—original
draft, writing—review and editing H.E.G.: conceptualization, methodology, formal analysis, investi-
gation, writing—review and editing, supervision. All authors have read and agreed to the published
version of the manuscript.

Funding: This research did not receive any specific grant from funding agencies in the public,
commercial, or not-for-profit sectors.

Conflicts of Interest: The authors declare no conflict of interest.

Nomenclature

A Active Area of Cell (cm2)
AQI Air Quality Index
AC Alternating Current
a(t) Consumers variable load demand
BESS Battery Energy Storage System
DC Direct Current
DERs Distribution Energy Resources
FL(t) Energy from Fuel Stack
G Gibbs Energy
∆G Change in Gibbs Free Energy for useful work (J/mol)
GL(t) Energy from Grid Source
HVDC High Voltage Direct Current
ηinv Inverter Efficiency
λc Power Conditioning Losses
λp Photovoltaic Array Losses
ρm Specific Resistance for the Electrons through the Fuel Membrane (Ω-cm)
B Parametric Constant for Cell Operation
CO2 Oxygen Concentration at the Cathode Catalytic side (mol/cm3)
ERM Energy Resource Management
EB(t) Fuel Stack Linked Battery
CRER Renewable Source Shunt Capacitance
Ev(t) Energy Demand of Charging module
EN.L Operating Open Circuit Voltage of Fuel Cell
ECVs Electrical Charging Vehicles
EVs Electric Vehicles
Enom Ideal Open Circuit voltage of fuel Cell
F Faraday Constant (96.487)
IGBT Insulated Gate Bi-polar Thyristor
I Current across single solar cell/Current across Single Fuel Cell
Id Saturation Current of Diodes in Array
IFC Fuel Generated Current
Iload Consumer Load Current
IL Inductor Current of Boost Converter
Impp Maximum Power Point of Current
Iph Current produced by shinning Photons
Isc Short Circuit Current of Panel in Array
Is Cell Reverse Saturation Current
J Actual Current density of Cell (A/cm2)
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Jmax Maximum Current density of Cell (A/cm2)
l Thickness of Fuel Cell Membrane (cm)
LRER Series Inductance of Renewable Resource
MPPT Maximum Power Point Tracking
Np Parallel Connected Solar Panels
Ns Series Connected Solar Panels
PV Photovoltaic
PEMFC Proton Exchange Membrane Fuel Cell
PID Proportional Derivative Integrator
PWM Pulse Width Modulation
Pgrid Power Delivered to Grid
Ph2 Partial Pressure of Hydrogen (atm)
Pmpp Maximum Power Point of Solar Cell
PO2 Partial Pressure of Oxygen (atm)
Ppv Extracted Solar Power
qh2 Fuel Flow Rate
R Universal Constant of Gases (8.314 J/K mol)
RERs Renewable Energy Resources
RSM Resource Side Management
Rc Resistance of Electrode Connections (Ω)
Rm Resistance of Membrane (Ω)
RRER Renewable Source Resistance
Rsh Shunt Resistance of Solar Cell
Rs Series Resistance of Solar Cell
SOC State of Charge
∆S Change in Entropy (J/mol)
SL(t) Energy from Solar Resource
SL.max Maximum Energy from Solar during Day Time
SF(t) Mix Energy From Fuel Stack and Battery EB
T Operating Temperature of Cell (K)
TO Reference Temperature of System (K)
Uopt Optimal Utilization of Fuel Cell Energy
V Voltage across Single Solar Cell
Vact Activation Voltage Drop in Fuel
Vcon Concentration Losses
Vth Thermal Voltage
Vmpp Maximum Power Point of Voltage
Vohmic Ohmic Losses through the Fuel Cell
VRER Voltage from Fuel Stack or Solar Array
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