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Abstract: Permanent Magnet Synchronous Motors (PMSMs) are widely used in electric vehicles
due to their simple structure, small size, and high power-density. The research on the temperature
monitoring of the PMSMs, which is one of the critical technologies to ensure the operation of PMSMs,
has been the focus. A Pseudo-Siamese Nested LSTM (PSNLSTM) model is proposed to predict the
temperature of the PMSMs. It takes the features closely related to the temperature of PMSMs as
input and realizes the temperature prediction of stator yoke, stator tooth, and stator winding. An
optimization algorithm of learning rate combined with gradual warmup and decay is proposed to
accelerate the convergence during the training and improve the training performance of the model.
Experimental results reveal the proposed method and Nested LSTM (NLSTM) achieves high accuracy
by comparing with other intelligent prediction methods. Moreover, the proposed method is slightly
better than NLSTM in temperature prediction of PMSMS.

Keywords: PMSMs; temperature prediction; NLSTM

1. Introduction

Permanent magnet synchronous motors (PMSMs) are the core components of electric
vehicles due to their excellent power density, efficiency, and prime torque [1]. However,
the high power density will cause a serious temperature increase, which may affect the
working efficiency and even damage the core components of motors [2]. Therefore, an enor-
mous amount of research effort goes into the temperature prediction of the PMSMs to
ensure the safe running of the motors [3,4].

There were three main categories of methods proposed by previous researchers to
predict the temperature of PMSMs as follows: temperature formula, parameter identifica-
tion, and thermal networks. Methods of the first category mainly included finite element
analysis (FEA) and computational fluid dynamics (CFD) [5,6]. The advantages of these
methods are convenient to obtain the temperature of arbitrarily shaped devices. However,
the modeling process of these methods requires high computing complexity [7]. Methods of
parameter identification were mainly realized by flux observation and signal injection [8,9],
which required high precision of the measuring instruments [10]. Lumped parameter
thermal networks (LPTNs) were widely used when methods of thermal networks were
considered [11–13]. Based on the idea of the thermal circuit method, the LTPN method
makes a more detailed partition of motor structure. Depending on the degree of dispersion
of the topology, the thermal network can be composed of several or even hundreds of
nodes. The more discrete the LTPNs are, the more accurate the result will be. However, it
will also bring additional calculations.

With the rapid development of artificial intelligence technology, deep learning models
have been widely applied to temperature prediction in industrial fields. Several models
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based on deep learning were applied to predict the environmental changes such as the
greenhouse and the temperature of sea surface [14]. A long short-term memory (LSTM)
network [15] was first introduced to predict the temperature of PMSMs, and it performed
well in the prediction accuracy [16]. The work presented in [17] showed the feasibility of
the deep residual convolutional loop network in the application of temperature prediction
of PMSMs. It confirmed the feasibility and accuracy of temperature prediction of PMSMs.

The NLSTM network was another deep learning model based on the LSTM network,
which owned a more efficient time hierarchy and flexible processing of internal mem-
ory [18]. It was applied to realize seizure detection combined with convolution neural
networks. The advanced architecture effectively explored the inherent time dependence
hidden in electroencephalogram (EEG) signals and revealed the performance as supe-
rior [19]. The ability of NLSTM to dynamically capture hierarchical time dependencies in
traffic data was verified by using this characteristic. NLSTM could also efficiently access
internal memory when constructing the time layer structure [20].

In this paper, a novel model based on the NLSTM called the PSNLSTM is proposed to
predict the future temperature of PMSMs. Two NLSTM networks with different time steps
are used to capture the time dependence and abstract features of temperature changes.
Abstract features refer to higher-level features, which can better describe the temperature
change characteristics of PMSMs. They are not obtained through simple linear transfor-
mations, and can be more easily learned and calculated by neural networks. Adjustment
of learning rate plays a vital role in the training of the deep learning networks. Thus, an
optimization algorithm of the learning rate is proposed to accelerate the convergence and
improve training performance.

The remainder of this paper is organized as follows: the model of the Pseudo-Siamese
NLSTM network is introduced in Section 2. The temperature benchmark of the PMSMs and
evaluation indicators are introduced in Section 3. Furthermore, the optimization algorithm
of the learning rate is demonstrated in Section 4. The experimental results and assessment
are demonstrated in Section 5. The paper is concluded in Section 6.

2. Pseudo-Siamese Nested LSTM Network
2.1. Nested LSTM Network

The NLSTM network is a novel RNN architecture with multiple levels of memories,
which add depth to LSTM via nesting as opposed to stacking [18]. The architecture of the
NLSTM memory block is shown in Figure 1.
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Figure 1. Structure of the NLSTM memory block.
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The input and output of the NLSTM network are the same as the LSTM network.
Another temporary cell state is added in NLSTM, which is used to transfer the memory
state of the internal memory block. An NLSTM memory block is equivalent to two
LSTM memory blocks in the form of a nested structure. The inner LSTM block, which
is surrounded by dotted lines in Figure 1, becomes the memory function of the external
LSTM block. The memory function is dedicated to managing the long-term information
between the memory blocks.

The external LSTM calculates h̃t−1 and x̃t through the input xt of the current time and
the output ht−1 of the previous time:

ft = σf

(
W f [ht−1, xt] + b f

)
(1)

it = σi(Wi[ht−1, xt] + bi) (2)

ot = σo(Wo[ht−1, xt] + bo) (3)

h̃t−1 = ft � Ct−1 (4)

x̃t = it � σc(Wc[xt, ht−1] + bc) (5)

where ft, it and ot are the three states of the gates, σi, σρ, σf are the sigmoid activation
functions, which realize selective memory and forgetting. They achieve long-term memory
without causing a gradient explosion. σc is the linear activation function. In addition, h̃t−1
and x̃t obtained from external LSTM are input and the hidden state of NLSTM internal
memory function, respectively.

For the internal memory function, the internal operation mode is controlled by the
following equation:

ĩt = σ̃i
(
W̃i
[
h̃t−1, x̃t

]
+ b̃i

)
(6)

f̃t = σ̃f

(
W̃ f
[
h̃t−1, x̃t

]
+ b̃ f

)
(7)

C̃t = f̃t � C̃t−1 + ĩt � σ̃c
(
W̃c
[
h̃t−1, x̃

]
+ b̃c

)
(8)

õt = σ̃0
(
W̃o
[
h̃t−1, x̃t

]
+ b̃o

)
(9)

h̃t = õt � σ̃h
(
C̃t
)

(10)

where σ̃i, σ̃o, σ̃f all are the sigmoid activation function, which are consistent with external
LSTM. σ̃c, σ̃h are the tanh activation function. After a series of operations of the internal
LSTM, the state update of the external LSTM unit is obtained:

Ct = h̃t (11)

Finally, the following equation is used to obtain the last output of NLSTM mem-
ory block:

ht = ot � σh(Ct) (12)

where σh is the tanh activation function.

2.2. Model Architecture Proposed

The Siamese Network is a conjoined neural network architecture shown in Figure 2.
It realizes “Siamese” through weight sharing [21]. If the weights of the neural networks
on the left and right are not shared or the neural networks are different, the architecture is
defined as the Pseudo-Siamese networks. This architecture is widely used in the fields of
information similarity matching and comparison [22,23].
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Network1 Network2

Figure 2. The architecture of the Siamese network.

A novel architecture based on NLSTM and Pseudo-Siamese network calling PSNLSTM
is proposed in this paper. Two NLSTM networks with different time steps are adopted
as the neural networks in the Pseudo-Siamese network. The architecture of the model is
shown in Figure 3. After the temperature benchmark data set of PMSMs is preprocessed, it
is sent to the recurrent layer. In the recurrent layer, one NLSTM network with long time
steps is used to obtain the trend of temperature series changes of PMSMs. The other with
short time steps is used to obtain the detail of the temperature series changes. Through the
above two NLSTM networks, the higher level temperature features of the next moment are
obtained. Then, a full connection layer is added to extract the temperature features for each
NLSTM network. Finally, another full connection layer is used to fuse the temperature
features of different neural networks to get the predicted temperature.
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Figure 3. The architecture of PSNLSTM. Where xt−m, · · · xt−n, · · · xn are one-dimensional tensors as
inputs, n < m. h1

t+1 is the higher level temperature characteristics obtained by NLSTM network with
short time steps, h2

t+1 is the higher level temperature characteristics obtained by NLSTM network
with long time steps, and these are also one-dimensional tensors.
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3. Temperature Benchmark Data Set and Valuation Indicators
3.1. Temperature Benchmark Data Set

The data set used in this experiment is from the Kaggle Data Science online competi-
tion platform. In addition, it is based on a test bench having a three-phase PMSM mounted
(for detailed information of PMSM, see [24]). The data measurement and collection are
provided by the Department of Power Electronics and Electrical Drive of Paderborn Uni-
versity in Germany. Table 1 shows the column labels for the benchmark dataset. It includes
more than 990,000 pieces of data.

Table 1. The column labels of the benchmark dataset.

Parameter Name Symbol

Ambient temperature ϑa
Coolant temperature ϑc
Voltage d-component ud
Voltage q-component uq

Motor speed nmech
Actual torque Tm

Current d-component id
Current q-component iq

Permanent Magnet temperature ϑPM
Stator yoke temperature ϑSY
Stator tooth temperature ϑST

Stator winding temperature ϑSW
unique ID id

All recordings are sampled at 2 Hz. Each measurement session in the data set can
represent the entire electrothermal characteristics of the PMSM well. In addition, this data
set is mildly anonymized, and each set of parameters has been standardized.

In the experiment, 51 measurement sessions in the entire data were set as the training
set, and the one remaining session (id = 32) was set as the test set. The data set was down-
sampled at an appropriate frequency and cleaned. Since each measurement session is
independent of each other, the down-sampling operation is performed separately, retaining
only the same frequency. In addition, from time to time in the training model, data from
different measurement session is not continuous data as input to the model. Finally,
the number of data in the training sets is 32,263, and the number of data in the test sets
is 412.

The temperatures of ϑSY, ϑST and ϑSW are chosen as the prediction object of the
PMSMs. Since the temperature characteristics of these core components are different, we
have separately trained PSNLSTM and the comparative models. In addition, the input of
the model does not include the predicted target temperature feature.

3.2. Evaluation Indicators

There are several common evaluation indicators adopted to evaluate the prediction
accuracy as follows: mean square error (MSE), root mean square error (RMSE), and mean
absolute error (MAE). The definition formulas are as follows:

MAE =
1
n

n−1

∑
t=0
|at − pt| (13)

MSE =
1
n

n−1

∑
t=0

(at − pt)
2 (14)
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RMSE =

√√√√ 1
n

n−1

∑
t=0

(at − pt)
2 (15)

Among them, at and pt respectively represent the true value and predicted value at
the time t.

To assess the volatility of the predicted results, the standard deviation of the prediction
error (STDPE) is introduced, which is defined using the following formula:

dt = pt − at (16)

STDPE =

√
∑n−1

t=0
(
dt − d̄

)2

n− 1
(17)

where dt is the prediction error at time t, and the definitions of the other parameters are the
same as those mentioned above.

Another evaluation indicator, coefficient of determination is represented as R2. It can
reflect the proportion of the variation of dependent variables that can be explained by
independent variables, and its definition formula is as follows:

R2 = 1− ∑n−1
t=0 (at − pt)

2

∑n−1
t=0 (at − ā)2 (18)

It can be used to observe the prediction error compared with the mean reference error.
The value region of R2 is between 0 and 1.

4. Learning Rate Optimization

During the training process of the deep learning models, the optimization of hyper-
parameters plays an important role. As one of the essential hyper-parameters in deep
learning models, the learning rate determines whether and when the objective function
converges to the local optimum. A proper learning rate can help the objective function
converge to an optimum in a proper period. If the value of the learning rate is too small,
the loss of models will decline very slowly. Otherwise, a large learning rate will cause a
considerable variation of parameters when the parameters update, which will lead to the
missing of the optimal point or lead to the rise of the model loss. It is worth noting that
the model requires a different learning rate in each stage of training. When the parameters
fall into the local optimum, a larger learning rate is needed to escape from this point.
Correspondingly, a smaller learning rate is required to approximate the global optimum.

Therefore, it is necessary to adjust the learning rate dynamically during the training
of the model. Thus, gradual warmup is introduced to accelerate the convergence of deep
learning models, which was first mentioned in the literature [25]. After that, the attenuation
of the learning rate should be considered to get the optimal result after several epochs,
instead of keeping the learning rate constant until the end. In this experiment, a novel
optimization algorithm of learning rate is proposed, which combines a gradual warmup
algorithm, cosine annealing algorithm, and Nadam optimizer to realize the update of the
learning rate effectively. This algorithm is designed to accelerate the convergence of the
NLSTM on the PMSMs temperature data set and improve its training performance.

In this optimization algorithm, the learning rate changes can be divided into the
following three stages: gradual warmup, keeping constant, and annealing. First, within a
certain number of training steps, the learning rate gradually increases from a small value
to a preset value. Thus, the overfitting of the network can be avoided. Using a smaller
learning rate can make the model gradually stabilize. After a gradual warmup, the model
has achieved a relatively stable state. Then, using a larger learning rate of training, be
able to make the model more quickly converge to achieve a better training effect. Second,
after the gradual warmup is completed, the model will continue training at the set learning
rate. It also ensures that the model can jump out of the local optimum. After that, the model
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result is close to the global optimum. The learning rate should be attenuated to avoid
the miss of the global optimum. The cosine function is widely adopted to anneal the
learning rate.

In practical applications, the combination of cosine annealing and stochastic gradient
descent (SGD) can speed up model fitting to a certain extent and achieve better fitting
results. Moreover, it is suggested in [26] that learning rate annealing can also be added
when Adam is used. In addition, Adam [27] is different from SGD, which is an optimizer
with first-order and second-order momentum. In Adam, the main parameter update
formula is as follows:

θt = θt−1 −
η√

V̂t + ε
m̂t = θt−1 −

η√
V̂t + ε

(
β1mt−1

1− βt
1
+

(1− β1)gt

1− βt
1

)
(19)

Among them, t is the time step of updating model parameters, θ is the parameter to
be updated, β1 is the exponential decay rate of the first-order moment, η is the learning
rate, ε is the constant term, m is the first-order moment estimation of the gradient, m̂ is
the correction of m, and V̂ is the correction of the second-order moment estimation of
the gradient.

In this learning rate optimization algorithm, we try to use Nadam as an optimizer,
which can be regarded as the combination of Nesterov and Adam [28,29]. In Nadam,
the main parameter update formula is shown below:

θt = θt−1 −
η√

V̂t + ε

(
β1mt

1− βt+1
1

+
(1− β1)gt

1− βt
1

)
(20)

where the definition of each parameter is the same as that of Adam. The momentum mt−1
at time t− 1 is replaced by the momentum at time t, thus taking into account the “future
factor” and achieving the effect of Nesterov.

To verify the proposed optimization algorithm of the learning rate, changes in the
learning rate are observed in Figure 4. The fixed learning rate is set as 0.001, and the total
epochs is set as 100. We define the first 10 epochs as the gradual warmup stage, the next 10
epochs as the keeping constant stage, and the rest as the cosine annealing stage.
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Le
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 r
at
e
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with fixed learning rate

Figure 4. Changes of learning rate using optimization algorithm.

The comparative losses of the model during the training process and validation are
shown in Figure 5. We can observe that, in the first two epochs, the convergence rate of
the proposed optimization algorithm is slower, which is shown in Figure 5a. Because the
first 10 epochs of the optimization algorithm fall into the stage of gradual warmup and
the learning rate is relatively low at the beginning, in the training set, the loss convergence
performance with the optimization algorithm of learning rate is better than that without
the learning rate optimization algorithm.
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Figure 5. The comparative losses of the model. (a) the convergence of the loss function on the training set; (b) the
convergence of the loss function on the validation set.

Figure 5b shows the validation loss curve of the proposed algorithm, which fluctuates
significantly at the beginning of the epochs. In the first 10 epochs, it is in a gradual warmup
stage and the learning rate increases slowly. Therefore, it fluctuates more significantly
than the loss curve of the fixed learning rate. In the latter part of the epochs, it performs
more stably than the loss curve with fixed leaning rate. This is due to the involvement
of the cosine annealing algorithm in the later stage. After the keeping constant stage,
the learning rate enters the cosine annealing stage, and its annealing according to the cosine
function [0,1] interval. In the early annealing stage, the learning rate decreases slowly still
remains at a large value, which helps the Nadam optimizer accumulate momentum out
of the local optimal point and look for a better convergence point. Then, the learning rate
gradually decreases, the model can converge quickly to the best point. Finally, the learning
rate changes slowly with a small value and slowly approaches the optimal point to avoid
missing it. After the above learning rate annealing, the model finally converges to a better
state. Therefore, the proposed algorithm of the learning rate is helpful to accelerate the
convergence and improve the accuracy of the model.

5. Performance Assessment

There are two different NLSTMs in PSNLSTM. The grid search method is used to
match the lengths of time steps, then two sizes of time steps for PSNLSTM are set as 7 and
4 to obtain the different temperature features of the PMSMs. Accordingly, we set NLSTM
as one of the comparative models. NLSTM is an advanced variant of LSTM, and LSTM is
widely used in the prediction of temperature series. Therefore, it is necessary to compare
the temperature prediction results of LSTM and PSNLSTM of PMSMs. As mentioned in
Section 2.1, NLSTM is equivalent to two LSTMs which are composed of nested structures.
To prove the superiority of NLSTM structure in temperature prediction of PMSM, stacked
LSTM is also set as a comparative model. The stacked LSTM in this paper has two layers
of LSTM network in the loop layer, called LSTM-2. In this study, LSTM, LSTM-2, NLSTM,
and PSNLSTM, respectively, predict the temperature of the core components ϑSY, ϑST and
ϑSW , and all these models utilizing the temperature features at the moment t to predict the
temperature at the next moment t + 1. The time steps for the comparative models are set
as 7. The other hyper-parameters are listed in Table 2. In addition, the experiment platform
is as follows: Win10 (64 bits), i7-6700HQ Intel(R)Core(TM), 16 GB, GTX960M-2G, and the
versions of the deep learning framework were Keras 2.2.4 and Tensorflow 1.12.0, version of
PyCharm 2020.3.2 (JetBrains, Prague, Czech Republic).
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Table 2. The hyper-parameters of each network in the experiment.

Hyper-Parameter LSTM LSTM-2 NLSTM PSNLSTM

Hidden layer 3 4 4 4
Units 64 (64, 64) 64 64
Time steps 7 7 7 7&4
Weight normal normal normal normal
Optimizer Nadam Nadam Nadam Nadam
Learning rate 0.001 0.001 0.001 0.001
Warm-up epochs 10 10 10 10
Epochs 100 100 100 100
Gaussian noise 1× 10−4 1× 10−4 1× 10−4 1× 10−4

Drop out 0.2 0.2 0.2 0.2

To evaluate the performance of PSNLSTM and learning rate optimization algorithm,
we compare it with LSTM, LSTM-2, and NLSTM for temperature prediction of ϑSY, ϑST and
ϑSW . Tables 3–5 show the performance of each model from the four technical indicators of
MSE, MAE, RMSE, R2, and STDPE.

Table 3. The temperature prediction performance of ϑSY .

Model MSE (%) MAE (%) RMSE (%) R2(%) STDPE

LSTM 0.0927 2.3625 3.0448 99.7374 0.0304
LSTM-2 0.0897 2.2004 2.9947 99.7460 0.3000
NLSTM 0.0627 1.7879 2.5044 99.8223 0.0230
PSNLSTM 0.0508 1.6860 2.2537 99.8561 0.0222

Table 4. The temperature prediction performance of ϑST .

Model MSE (%) MAE (%) RMSE (%) R2(%) STDPE

LSTM 0.1321 2.4961 3.6339 99.8435 0.0661
LSTM-2 0.1683 2.9113 4.1018 99.8006 0.0615
NLSTM 0.0934 2.1675 3.0567 99.8892 0.0510
PSNLSTM 0.0998 2.455845 3.1598 99.8816 0.0467

Table 5. The temperature prediction performance of ϑSW .

Model MSE (%) MAE (%) RMSE (%) R2(%) STDPE

LSTM 0.4380 4.0302 6.6183 99.6873 0.0357
LSTM-2 0.3902 4.4855 6.2463 99.7215 0.0409
NLSTM 0.2609 3.3056 5.1074 99.8138 0.0306
PSNLSTM 0.2198 3.4557 4.6888 99.8430 0.0301

The values of R2 in Tables 3–5 for all of the models are close to 1, which means that
all of these models achieve an excellent fitting effect. NLSTM performs better than LSTM
in the view of R2 because the NLSTM captures more abstract features contained in the
temperature data than LSTM. The design of PSNLSTM with different time steps even
creates the possibility to get more comprehensive information from the data. The NLSTM
with a longer time step contains the temperature information from a longer time ago, which
is conducive to learning the temperature change trend, and theoretically can reduce the
prediction error of the temperature change point to a certain extent. The other NLSTM is
better at learning temperature changes in a short period of time, can grasp the details of
temperature changes, and theoretically can improve the accuracy of non-abrupt tempera-
ture changes to a certain extent. The values of MSE, MAE, and RMSE should be close to 0,
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which reveals the good accuracy of the models. The values of MSE, MAE, and RMSE for
the NLSTM are smaller compared with the LSTM and LSTM-2 in Tables 3–5. Meanwhile,
the performance of PSNLSTM is better compared with the NLSTM in the temperature
prediction of ϑSW and ϑSY. In particular, the MSE of PSNLSTM in Table 5 is 49.82% lower
than LSTM and 43.67% lower than LSTM-2.The performance of PSNLSTM and NLSTM are
generally close for the prediction of ϑST . The first four evaluation indicators of PSNLSTM
are slightly worse than NLSTM, but its STDPE is 8.43% lower than that of NLSTM, that
is, the prediction of PSNLSTM is more stable and its error volatility is lower. In addition,
in the temperature prediction of ϑSY, ϑST and ϑSW , the error volatility of the PSNLSTM
prediction result is the lowest. In order to compare the performance difference between
PSNLSTM and competitive models, the difference of the values between two networks for
MSE, for MAE, for RMSE and for STDPE, respectively, and then the average of the three
values is calculated. In this study, the temperatures of ϑSY, ϑST and ϑSW were predicted, so
there are three previously mentioned averages between each competitive model and PSNL-
STM. Finally, the three averages are averaged, and the averages of evaluation indicators
are obtained, which can describe the overall difference between each competitive model
and PSNLSTM in PMSM temperature prediction. The overall error of PSNLSTM is 25.34%
lower than LSTM, 28.23% lower than LSTM-2, and 3.68% lower than NLSTM. The results
indicate a very slight superiority of PSNLSTM over NLSTM.

The measured and predicted temperatures of the ϑSY and ϑST implemented, respec-
tively, by LSTM, LSTM-2, NLSTM and PSNLSTM are shown in Figures 6 and 7. Moreover,
the prediction error curves of the models are also provided, which is calculated by Equa-
tion (16). The black error curves on the right correspond to the predictions of each model
on the left.
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Figure 6. Temperature prediction of ϑSY for each model. (a,c,e,g) the temperature fitting curves of ϑSY for each model;
(b,d,f,h) the temperature prediction error curves of the ϑSY for each model, which are obtained by subtracting the measured
values from the predicted values.In addition, the error curves correspond to the left fitting curves respectively.
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Figure 7. Temperature prediction of ϑST for each model. (a,c,e,g) the temperature fitting curves of ϑST for each model;
(b,d,f,h) the temperature prediction error curves of the ϑST for each model, which are obtained by subtracting the measured
values from the predicted values. In addition, the error curves correspond to the left fitting curves, respectively.

It can be observed that the prediction temperature curves and measurement curves fit
well for these four deep learning models. The fluctuation of the error curves of PSNLSTM
and NLSTM, as attested visually, is less than the fluctuation of the respective curves
for LSTM and LSTM-2. A less abrupt nature of the error curves is more obvious at the
temperature transition time instants for both PSNLSTM and NLSTM and even a slight
advantage can be attested at those time instants for PSNLSTM over NLSTM.

The measured and predicted temperatures of the ϑSW implemented, respectively, by
LSTM, LSTM-2, NLSTM, and PSNLSTM are shown in Figure 8. It can be observed that the
range of error curves in Figure 8 implemented by the four models, respectively, are more
extensive than in Figures 6 and 7, so the temperature prediction of ϑSW reveals difficulty.
The error ranges of LSTM and LSTM-2 in Figure 8 are about 0.5, while the error range of
PSNLSTM is 0.33. Compared with them, the advantage of PSNLSTM is obvious. Moreover,
PSNLSTM has a slight advantage over NLSTM, which is mainly reflected in the sudden
change points of temperature.

The performances shown in Figures 6–8 are consistent with the results revealed in
Tables 3–5. The weak advantage of PSNLSTM over NLSTM is mainly reflected in the
mutation points of temperature, which is relatively obvious in the most difficult ϑSW
temperature prediction. To a certain extent, it supports the structural feature of PSNLSTM,
which consists of two NLSTMs with different time steps. However, this structure also
improves the accuracy of temperature prediction while increasing a certain amount of
parameters. In this study, the temperature prediction effect for the ϑPM component of the
permanent magnet synchronous motor is not shown because the four deep learning models
mentioned in the article are not ideal for the component. Both PSNLSTM and NLSTM have
certain advantages over LSTM and LSTM-2 in temperature prediction. Compared with
NLSTM, although PSNLSTM is slightly worse than NLSTM in ϑST temperature prediction,
there are many slight indications that PSNLSTM was slightly better than NLSTM overall.
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Figure 8. Temperature prediction of ϑSW for each model. (a,c,e,g) the temperature fitting curves of ϑSW for each model;
(b,d,f,h) the temperature prediction error curves of the ϑSW for each model, which are obtained by subtracting the measured
values from the predicted values. In addition, the error curves correspond to the left fitting curves, respectively.

6. Conclusions

This paper systematically expounds on the current research on the temperature predic-
tion of permanent magnet synchronous motors. The NLSTM, a novel deep learning model,
is chosen to predict the temperature of the PMSMs. Then, the PSNLSTM, which combines
the NLSTM and Pseudo-Siamese networks, is proposed. The learning rate optimization
algorithm of gradual warmup and cosine annealing with the adaptive optimizer Nadam is
also proposed to accelerate the convergence of the model and to improve the prediction
performance. Both the proposed model and optimization algorithm of learning rate are
verified by the experiments. A slight improvement is detected concerning the comparison
of PSNLSTM with NLSTM, while a clear advantage of both is indicated concerning LSTM
and LSTM-2. More details will be confirmed in future studies, which will include more
extended datasets.

Author Contributions: Conceptualization, Y.C. (Yuefeng Cen) and G.C.; methodology, Y.C. (Yong-
ping Cai) and Y.C. (Yuefeng Cen); formal analysis, Y.C. (Yongping Cai) and C.Z.; writing—original
draft preparation, Y.C. (Yuefeng Cen) and Y.C. (Yongping Cai); writing—review and editing, X.Y.,
C.Z., and Y.Z.; visualization, G.C. and X.Y. All authors have read and agreed to the published version
of the manuscript.

Funding: This research was funded by the National Natural Foundation of China (Grant Nos.
Nsfc61902349 and Nsfc61803337).

Acknowledgments: We are grateful to the Kaggle data science competition platform and the Univer-
sity of Paderborn in Germany for their dataset: https://www.kaggle.com/wkirgsn/electric-motor-
temperature (accessed on 1 April 2021).

Conflicts of Interest: The authors declare that there is no conflict of interest. The funders had no role
in the design of the study; in the collection, analyses, or interpretation of data; in the writing of the
manuscript; or in the decision to publish the results.

https://www.kaggle.com/wkirgsn/electric-motor-temperature
https://www.kaggle.com/wkirgsn/electric-motor-temperature


World Electr. Veh. J. 2021, 12, 57 13 of 14

References
1. Fan, T.; Li, Q.; Wen, X. Development of a High Power Density Motor Made of Amorphous Alloy Cores. IEEE Trans. Ind. Electron.

2013, 61, 4510–4518. [CrossRef]
2. Wu, P.S.; Hsieh, M.F.; Cai, W.L.; Liu, J.H.; Huang, Y.T.; Caceres, J.F.; Chang, S.W. Heat Transfer and Thermal Management of

Interior Permanent Magnet Synchronous Electric Motor. Inventions 2019, 4, 69. [CrossRef]
3. Guo, H.; Ding, Q.; Song, Y.; Tang, H.; Wang, L. Predicting Temperature of Permanent Magnet Synchronous Motor Based on Deep

Neural Network. Energies 2020, 13, 4782. [CrossRef]
4. Zhu, Y.; Xiao, M.; Lu, K.; Wu, Z.; Tao, B. A simplified thermal model and online temperature estimation method of permanent

magnet synchronous motors. Appl. Sci. 2019, 9, 3158. [CrossRef]
5. Habibinia, D.; Rostami, N.; Feyzi, M.R.; Soltanipour, H.; Pyrhönen, J. New finite element based method for thermal analysis of

axial flux interior rotor permanent magnet synchronous machine. IET Electr. Power. Appl. 2019, 14, 464–470. [CrossRef]
6. Feng, G.; Lai, C.; Iyer, K.L.V.; Kar, N.C. Improved high-frequency voltage injection based permanent magnet temperature

estimation for PMSM condition monitoring for EV applications. IEEE Trans. Appl. Supercon. 2020, 30, 1–5. [CrossRef]
7. Boglietti, A.; Cavagnino, A.; Staton, D.; Shanel, M.; Mueller, M.; Mejuto, C. Evolution and modern approaches for thermal

analysis of electrical machines. IEEE Trans. Ind. Electron. 2009, 56, 871–882. [CrossRef]
8. Kral, C.; Haumer, A.; Lee, S.B. A Practical Thermal Model for the Estimation of Permanent Magnet and Stator Winding

Temperatures. IEEE Trans. Veh. Technol. 2017, 67, 216–225. [CrossRef]
9. Qiao, G.; Wang, M.; Liu, F.; Liu, Y.; Zheng, P.; Sui, Y. Analysis of Magnetic Properties of AlNiCo and Magnetization State

Estimation in Variable-Flux PMSMs. IEEE Trans. Magn. 2019, 55, 1–6. [CrossRef]
10. Wallscheid, O.; Huber, T.; Peters, W.; Böcker, J. A critical review of techniques to determine the magnet temperature of permanent

magnet synchronous motors under real-time conditions. EPE J. 2016, 26, 11–20. [CrossRef]
11. Balamurali, A.; Kundu, A.; Clandfield, W.; Kar, N.C. Non–invasive parameter and loss determination in PMSM considering

the effects of saturation, cross–saturation, time harmonics and temperature variations. IEEE Trans. Magn. 2020, 57, 8202206.
[CrossRef]

12. Giangrande, P.; Madonna, V.; Nuzzo, S.; Spagnolo, C.; Gerada, C.; Galea, M. Reduced Order Lumped Parameter Thermal Network
for Dual Three-Phase Permanent Magnet Machines. In Proceedings of the 2019 IEEE Workshop on Electrical Machines Design,
Control and Diagnosis (WEMDCD), Athens, Greece, 22–23 April 2019; pp. 71–76.

13. Rostami, N.; Feyzi, M.R.; Pyrhonen, J.; Parviainen, A.; Niemela, M. Lumped-parameter thermal model for axial flux permanent
magnet machines. IEEE. Trans. Electr. Power. Appl. 2017, 49, 1178–1184. [CrossRef]

14. Yu, X.; Shi, S.; Xu, L.; Liu, Y.; Miao, Q.; Sun, M. A Novel Method for Sea Surface Temperature Prediction Based on Deep Learning.
Math. Probl. Eng. 2020, 2020, 1–9. [CrossRef]

15. Hochreiter, S. The vanishing gradient problem during learning recurrent neural nets and problem solutions. Int. J. Uncertain.
Fuzz. 1998, 6, 107–116. [CrossRef]

16. Wallscheid, O.; Kirchgässner, W.; Böcker, J. Investigation of long short-term memory networks to temperature prediction for
permanent magnet synchronous motors. In Proceedings of the 2017 International Joint Conference On Neural Networks (IJCNN),
Anchorage, AK, USA, 14–19 May 2017; pp. 1940–1947.

17. Kirchgässner, W.; Wallscheid, O.; Böcker, J. Deep residual convolutional and recurrent neural networks for temperature estimation
in permanent magnet synchronous motors. In Proceedings of the 2019 IEEE International Electric Machines and Drives Conference
(IEMDC), San Diego, CA, USA, 11–15 May 2019; pp. 1439–1446.

18. Moniz, J.R.A.; Krueger, D. Nested lstms. In Proceedings of the Ninth Asian Conference on Machine Learning (ACML2017), Seoul,
Korea, 15–17 November 2017; pp. 15–17.

19. Li, Y.; Yu, Z.; Chen, Y.; Yang, C.; Li, Y.; Allen, L.X.; Li, B. Automatic Seizure Detection using Fully Convolutional Nested LSTM.
Int. J. Neural Syst. 2020, 30, 2050019. [CrossRef]

20. Ma, X.; Zhong, H.; Li, Y.; Ma, J.; Cui, Z.; Wang, Y. Forecasting transportation network speed using deep capsule networks with
nested lstm models. IEEE Trans. Intell. Transp. 2020, 99, 1–12. [CrossRef]

21. Roy, S.K.; Harandi, M.; Nock, R.; Hartley, R. Siamese networks: The tale of two manifolds. In Proceedings of the IEEE/CVF
International Conference on Computer Vision (ICCV2019), Seoul, Korea, 27 October–2 November 2019; pp. 3046–3055.

22. Hughes, L.H.; Schmitt, M.; Mou, L.; Wang, Y.; Zhu, X.X. Identifying corresponding patches in SAR and optical images with a
pseudo-siamese CNN. IEEE Geosci. Remote Sens. Lett. 2018, 15, 784–788. [CrossRef]

23. Pontes, E.L.; Huet, S.; Linhares, A.C.; Torres-Moreno, J.M. Predicting the semantic textual similarity with siamese CNN and
LSTM. arXiv 2018, arXiv:1810.10641.

24. Wallscheid, O.; Böcker, J. Global identification of a low-order lumped-parameter thermal network for permanent magnet
synchronous motors. IEEE Trans. Energy Convers. 2015, 31, 354–365. [CrossRef]

25. Goyal, P.; Dollár, P.; Girshick, R.; Noordhuis, P.; Wesolowski, L.; Kyrola, A.; Tulloch, A.; Jia, Y.; He, K.J. Accurate, large minibatch
sgd: Training imagenet in 1 h. arXiv 2017, arXiv:1706.02677.

26. Loshchilov, I.; Hutter, F. Decoupled weight decay regularization. arXiv 2017, arXiv:1711.05101.
27. Kingma, D.P.; Adam, B.J. A method for stochastic optimization. arXiv 2014, arXiv:1412.6980.

http://doi.org/10.1109/TIE.2013.2290766
http://dx.doi.org/10.3390/inventions4040069
http://dx.doi.org/10.3390/en13184782
http://dx.doi.org/10.3390/app9153158
http://dx.doi.org/10.1049/iet-epa.2019.0514
http://dx.doi.org/10.1109/TVT.2017.2778429
http://dx.doi.org/10.1109/TIE.2008.2011622
http://dx.doi.org/10.1109/TPEL.2013.2253128
http://dx.doi.org/10.1109/TMAG.2019.2898888
http://dx.doi.org/10.1080/09398368.2016.1209877
http://dx.doi.org/10.1109/TMAG.2020.3019459
http://dx.doi.org/10.1109/TMAG.2012.2210051
http://dx.doi.org/10.1155/2020/6387173
http://dx.doi.org/10.1142/S0218488598000094
http://dx.doi.org/10.1142/S0129065720500197
http://dx.doi.org/10.1109/TITS.2020.2984813
http://dx.doi.org/10.1109/LGRS.2018.2799232
http://dx.doi.org/10.1109/TEC.2015.2473673


World Electr. Veh. J. 2021, 12, 57 14 of 14

28. Reddi, S.J.; Kale, S.; Kumar, S. On the convergence of adam and beyond. arXiv 2019, arXiv:1904.09237.
29. Dozat, T. Incorporating nesterov momentum into adam. In Proceedings of the Workshop track at International Conference on

Learning Representations (ICLR2016), San Juan, Puerto Rico, 2–4 May 2016.


	Introduction
	Pseudo-Siamese Nested LSTM Network
	Nested LSTM Network
	Model Architecture Proposed

	Temperature Benchmark Data Set and Valuation Indicators
	Temperature Benchmark Data Set
	Evaluation Indicators

	Learning Rate Optimization
	Performance Assessment
	Conclusions
	References

