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Abstract: Electrification and automatization may change the environmental impact of vehicles.
Current eco-driving approaches for electric vehicles fit the electric power of the motor by quadratic
functions and are limited to powertrains with one motor and single-speed transmission or use compu-
tationally expensive algorithms. This paper proposes an online nonlinear algorithm, which handles
the non-convex power demand of electric motors. Therefore, this algorithm allows the simulta-
neous optimization of speed profile and powertrain operation for electric vehicles with multiple
motors and multiple gears. We compare different powertrain topologies in a free-flow scenario and a
car-following scenario. Dynamic Programming validates the proposed algorithm. Optimal speed
profiles alter for different powertrain topologies. Powertrains with multiple gears and motors require
less energy during eco-driving. Furthermore, the powertrain-dependent correlations between jerk
restriction and energy consumption are shown.

Keywords: eco-driving; energy-efficient driving; NLP; DP; optimization; electric vehicles; au-
tonomous vehicles

1. Introduction

In the European Union in 2018, only 0.05% of the final energy consumption of road-
based mobility is electricity [1]. However, today’s mega trends such as urbanization and
sustainability require a shift in road-based mobility systems toward more efficient and
environmentally friendly transport. The advent of Connected Autonomous Vehicles (CAVs)
may change the environmental impact of mobility. Kopelias et al. [2] give a literature
review of possible factors affecting the environmental impact of CAVs and refer to the
vehicle, network and user. The vehicle itself may be affected by alternative fuels or electric
powertrains, new vehicle size and design as well as intelligent operation such as energy-
efficient driving, platooning and intelligent route choice.

Vehicle design, powertrain and operation may change for a CAV. Anselma and Belin-
gardi [3], Tate et al. [4] and Gambhira [5] incorporate energy-efficient driving in powertrain
optimization process to gain a CAV-optimized powertrain. However, in comparison to state-
of-the-art powertrain optimizations for human-driven electric vehicles [6,7], the design space
is narrow. Anselma and Belingardi [3] only review a single electric motor with a single-speed
transmission. Gambhira [5] examines a second powered axle. However, electric powertrains
may consist of multiple motors and gears as a second driven axle and/or a second gear may
result in efficiency gains [8], ([9] p. 86ff). Furthermore, the implemented energy-efficient
driving scenarios are simplified and therefore are not realistic. Anselma and Belingardi [3]
and Gambhira [5] use Dynamic Programming (DP) to calculate speed profiles. Since DP
is computationally expensive, the speed profiles are generated offline for fixed boundary
conditions. Thus, leading vehicles can not be simulated realistically. Tate et al. [4] optimize
the speed profile by smoothing a driving cycle.
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Sciarretta [10] gives a summary about energy-efficient driving: minimal-energy route
navigation, anticipating the road, signal phase and timing, energy-efficient car-following
and others may reduce energy demand of vehicles. However, the potential savings in
literature differ greatly. For anticipated car-following, Sciarretta ([10] p. 14f) reviewed
literature that shows efficiency gains ranging from 0–44% with respect to the leading
vehicle. This range can be explained by different boundary conditions and methodologies.

Energy-efficient driving methodologies may be divided into online and offline appli-
cations. DP is often used as an offline method ([10] p. 164), [11–13], since it can compute the
global optimal solution using nonlinear functions and efficiency maps present as look-up
tables (LUT). Online applications may be used in a model predictive control (MPC) and
react to changing boundary conditions, such as leading vehicles. For fast computation,
these models are often simplified.

Furthermore, methodologies can be incorporated in the three main areas:

• “wheel-to-distance” optimization
• “tank-to-distance” optimization
• minimization of a2

Han et al. [14] describe “wheel-to-distance” and “tank-to-distance” optimizations.
The former neglects the vehicle’s powertrain efficiency, minimizing the power at the wheel.
The latter incorporates the efficiency of the powertrain. Another widely used technique is
the minimization of squared acceleration, especially in car-following scenarios, due to the
quadratic formulation of the problem and thereby fast optimization methods [15–17].

According to Han et al. [14], an optimal “wheel-to-distance” speed profile consists of
three to four stages. If no traffic is regarded, the vehicle should accelerate/decelerate as
fast as possible to a specific speed, keep that speed constant and decelerate with coasting
and/or maximal braking, depending on the vehicle’s recuperative ability.

The powertrain’s efficiency is examined for “tank-to-distance”. Thus, the optimal
speed profile depends on the chosen powertrain. Han et al. [14] differentiate between a
combustion and an electric powertrain. Due to the combustion engine’s poor efficiency
at low load, cruising may not as efficient as a periodic alternation between acceleration
and coasting. This results in what is referred to as a pulse-and-glide (P&G) strategy.
Eo et al. [18] proof savings through P&G on a dynamo-meter for a parallel hybrid electric
vehicle (HEV). Li and Peng [19] optimize the speed profile for a gasoline engine with a
continuously variable transmission (CVT), assuming optimal control and constant efficiency
of the CVT. Thus, the optimal engine speed for each load can be calculated by curve
fitting. Finally, the brake-specific fuel consumption map, which depends on engine torque
and engine speed, can be reduced to a static fuel rate, depending solely on the motor
power, thus reducing the computational burden. However, energy-efficient driving taking
the powertrain’s efficiency into consideration may have multiple degrees of freedom,
since speed and powertrain operation can be optimized. Shao ([20] p. 26ff) optimizes the
speed for a combustion engine with six gears, using mixed-integer programming.

For an HEV, Guo et al. [21] decouple the problem by first minimizing the “wheel-to-
distance” losses and second by optimizing powertrain operation. Other works simultane-
ously optimize speed profile and powertrain operation [20,22,23]. Shao [20] pre-calculates
the most efficient operating points offline and saves them in linearized form. Li et al. [23]
use a constant average efficiency for the electric motor and combustion engine.

For full-electric vehicles, Li et al. [24] optimize the speed profile for a four-wheel-drive
electric vehicle with a motor at each wheel. However, the motor efficiency is neglected.
Shao ([20] p. 93f) considers an electric vehicle with a single motor and single-speed trans-
mission. The resulting electrical motor power depends on motor torque and speed and is
approximated by a polynomial function:

Pel = c00 + c10 ωm + c01 Tm + c11 ωm Tm, (1)
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where c00, c10, c01 and c11 are fitting coefficients and ωm and Tm the motor speed and motor
torque, respectively. Lelouvier et al. [25] optimize the energy consumption of a platoon of
electric vehicles with an MPC. The electric power of the electric motor is modeled based
on Reference [26] with the polynomial function:

Pel = c1 ωm Tm + c2T2
m, (2)

with the fitting coefficients c1 and c2. Han et al. [14] neglect battery losses and aerodynamic
drag and approximate the electric motor power, which is also based on Equation (2),
with c1 = 1. This results in a parabolic speed profile for the electric vehicle. Padilla et al. [27]
optimize the speed profile using sequential quadratic programming by minimizing the
consumed power, representing an electric motor by a quadratic function. All regarded
electric vehicles considering motor efficiency consist of a powertrain with one motor and
single-speed transmission.

Minimizing acceleration avoids unnecessary accelerations and thus saves energy.
Dollar and Vahidi [15] optimize the speed for a platoon, of which the leading vehicle drives
different driving cycles. Efficiency gains are higher for more transient speed profiles of the
leading vehicle, showing the impact of the chosen boundary conditions. Wegener et al. [17]
determine the eco-driving potential of different powertrains by optimizing the speed
by minimizing acceleration. The gained speed profile is used to calculate the energy
consumption of the different powertrains. However, this approach determines how well
the powertrains fit to the resulting speed profile and do not exploit the full potential of the
various powertrains.

In powertrain simulation, energy consumption is often gained by LUTs representing
motor efficiency ([28] p. 87). The required electrical power, gained by motor efficiency
maps, is non-convex, since efficiency drops for low torques and speeds (Figure A1 in
Appendix A). So et al. [12] use DP with an efficiency map of an electric motor for an
electric powertrain with one motor and a single-speed transmission and showed that
energy-efficient driving of an electric powertrain may result in P&G. Except works that use
DP, all further reviewed studies approximate the power of the electric motor by quadratic
functions of torque and speed or minimize acceleration. If acceleration is minimized,
the energy demand must be calculated retrospectively. Thus, the energy savings are due
to avoiding unnecessary acceleration and braking but not due to efficiently using the
powertrain. Quadratic representations of energy demand do not represent the motor
efficiency for low torques. Thus, these techniques result in non-optimal speed profiles.
Furthermore, electric powertrains may consist of multiple motors and gears as a second
driven axle or a second gear may result in efficiency gains. By adding multiple gears or
powered axles, powertrain operation and speed profile may be simultaneously optimized.

To the authors’ knowledge, there exist no online capable eco-driving algorithm that
take realistic motor efficiency into account. In addition, no work was found that considers
multiple motors and multiple gears while simultaneously considering motor efficiency.
Therefore, the scope of the paper is:

• To formulate an online capable optimization of vehicle speed and powertrain op-
eration for different electric powertrain topologies, taking realistic motor efficiency
into account.

• To compare the optimization to a quadratic representation of the electrical power and
to the minimization of acceleration, which are widely used in literature.

• To verify the optimization by a DP algorithm.

2. Methods

In this section we introduce the new eco-driving nonlinear programming (NLP)
algorithm, which allows a simultaneous optimization of speed profile and powertrain
operation for different electric powertrain topologies, taking realistic motor efficiency into
account. Next, the DP algorithm, which is used to verify the results, is introduced. Finally,
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the case studies are presented, which are used to determine the eco-driving potential for
different powertrain topologies.

2.1. Eco-Driving-Algorithm

To gain energy efficient speed profiles for different powertrain topologies, an optimal
control problem (OCP) is transcibed into a NLP with the cost function J, the states x,
the control input u and the equality constraints hi and inequality constraints gj:

min
x, u

J(x, u)

s.t.
dx
dt

= f (x(t), u(t)),

hi = 0,

gj ≤ 0.

(3)

The state vector consists of acceleration a, velocity v and distance s:

x =
[
a v s

]T. (4)

The size of the control vector depends on the powertrain topology. For each motor
k and each transmission gear r, a traction torque Tkr

T and braking torque Tkr
B is added,

where TB describes the braking torque due to recuperation of the motor. A friction brake is
not examined, as this is not used for an electric vehicle during eco-driving. The distinction
between traction torque TT and braking torque TB allows an efficient description of the
discontinuity of the transmission’s and motor’s efficiency around zero torque. Thus,
Equation (5) represents a topology with two motors, of which the first one has a two-
speed transmission:

u =
[
T11

T T11
B T12

T T12
B T21

T T21
B
]T. (5)

To avoid a simultaneous use of one motor’s traction and recuperation torque or the
simultaneous use of two gears, complementarity constraints are introduced, which will be
explained later. The state transitions are incorporated in the equality constraints and can
be formulated as:

ȧ =
da
dt

(6)

v̇ =
1

m λ

(
−Froll − Fair − Fslope + Fpt

)
(7)

ṡ = v, (8)

with the vehicle mass m, the rotational inertia factor λ, which represents an additional mass
due to the spin of rotating mass ([29] p. 82), the roll resistance force Froll, the air resistance
force Fair, the slope resistance force Fslope and the powertrain force Fpt, where

Froll = m g fr cos(α) (9)

Fair = 0.5 ρa ca Aa v2 (10)

Fslope = m g sin(α) (11)

Fpt =
K

∑
k=1

Rk

∑
r=1

ikr
gb

rw

(
ηkr

gb Tkr
T +

1
ηkr

gb
Tkr

B

)
, (12)

with the gravity g, the roll resistance constant fr, the slope α, the air density ρa, the air
resistance constant ca, the vehicle front surface Aa, the number of motors K, the number of
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gears for the kth motor Rk, the wheel radius rw, the constant gearbox efficiency ηkr
gb and

gear ratio ikr
gr for motor k and gear r, respectively.

Furthermore, the OCP is restricted by inequality constraints gj, with the maximal
traction power Pk

max, maximal recuperation power Pk
min, maximal traction torque Tk

max and
maximal recuperation torque Tk

min for each motor k. Here, the inequality constraints are
represented as box constraints:

jmin ≤
da
dt
≤ jmax (13)

amin ≤ a ≤ amax (14)

vmin ≤ v ≤ vmax (15)

smin ≤ s ≤ smax (16)

Pk
min ≤

Tkr
T v ikr

gb

rw
≤ Pk

max (17)

0 ≤ Tkr
T ≤ Tk

max (18)

Tk
min ≤ Tkr

B ≤ 0. (19)

The required electrical power Pel of each motor is determined by two sixth-degree
bivariate polynomial functions Pel,T and Pel,B for traction and recuperation, respectively:

Pel = Pel,T(TT, ω) + Pel,B(TB, ω), (20)

where ω represents the motor speed. The polynomial coefficients are fitted to the electrical
power determined by the original motor map Pel,LUT by minimizing the quadratic difference
between the fit and original motor map at NLUT operating points. To gain realistic behavior,
boundary conditions are introduced, forcing the electrical power to be zero for T = 0 and
ω = 0. Furthermore, an inequality constraint forcing the electrical power to be positive for
T > 0 and negative for T < 0,

min
NLUT,T

∑
j=1

(
Pel,T

(
TT,j, ωj

)
− Pel,LUT,T,j

)2

s.t. Pel,T(TT = 0, ω) = 0,

Pel,T(TT, ω = 0) = 0,

Pel,T(TT > 0, ω) ≥ 0,

(21)

min
NLUT,B

∑
j=1

(
Pel,B

(
TB,j, ωj

)
− Pel,LUT,B,j

)2

s.t. Pel,B(TB = 0, ω) = 0,

Pel,B(TB, ω = 0) = 0,

Pel,B(TB < 0, ω) ≤ 0.

(22)

The overall required electrical power is calculated by summing up all electrical motors
K for all gears R with ωkr representing the motor speed of motor k for gear r:

ωkr =
v ikr

gr

rw
(23)

Pel,all =
K

∑
k=1

Rk

∑
r=1

Pk
el

(
Tkr

T , Tkr
B , ωkr

)
. (24)
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The final cost function consists of multiple weighted sums [30]. The first two penal-
ize jerk and acceleration, the third penalizes energy consumption of all electric motors,
the fourth is used as regularization term of the control vector and the last ones are required
for a realistic powertrain operation. The first of the later terms inhibits the simultaneous
use of one motor’s traction and recuperation torque, the second the simultaneous use of
two gears. To speed up the solver, these complementarity constraints are implemented in
the cost function, similar to a soft constraint:

J = wj

∫ (da
dt

)2
dt

︸ ︷︷ ︸
Jerk

+wa

∫
a2dt

︸ ︷︷ ︸
Acceleration

+wE

∫
Pel,alldt

︸ ︷︷ ︸
Energy

+wr

∫ K

∑
k=1

Rk

∑
r=1

(dTkr
T

dt

)2

+

(
dTkr

B
dt

)2
dt

︸ ︷︷ ︸
Regularization

+

+wscm

∫ K

∑
k=1

Rk

∑
r=1

(
Tkr

T Tkr
B

)2
dt

︸ ︷︷ ︸
Motor operation

+

+ wscg

∫ K

∑
k=1

Rk−1

∑
r=1(Tkr

T

Rk

∑
q=r+1

Tkq
T

)2

+

(
Tkr

T

Rk

∑
q=r+1

Tkq
B

)2

+

(
Tkr

B

Rk

∑
q=r+1

Tkq
B

)2

+

(
Tkr

B

Rk

∑
q=r+1

Tkq
T

)2 dt.

︸ ︷︷ ︸
Gear selection

(25)

A multi-speed transmission represents a mixed integer problem. The result is highly
dependent on the first guess. An initial guess is produced by a relaxed formulation of
the problem—the problem is solved for a vehicle with multiple motors with different
single-speed transmissions, of which each motor and transmission combination represents
one gear in the multi-speed transmission. It is assumed that the lower gear ratios are more
efficient. Thus, for the first guess of the actual problem, the lower gear ratio is active except
for the duration where the solution of the relaxed problem had to switch on the motor with
the higher gear ratio. In a second step, the NLP-solver is initialized with this guess.

2.2. Algorithm in Car-Following

For car-following, the presented algorithm is used within an MPC and is therefore ad-
justed. A smooth ride over a wide speed range is achieved through scaling the coefficients
wj and wa with the square of the initial velocity vinit of the current prediction horizon:

wj,mpc = wj ×max
(

1, v2
init

)
(26)

wa,mpc = wa ×max
(

1, v2
init

)
. (27)

Furthermore, the cost function is extended by two terms, the first penalizes an de-
viation to a nominal inter-vehicle distance, the second avoids maximum recuperation at
the end of the prediction horizon by reducing the costs G by the kinetic energy scaled
with wvEnd:

G = J(wj = wj,mpc, wa = wa,mpc) + ws

∫
(∆s− sv0 − v tref)

2dt︸ ︷︷ ︸
Inter-vehicle distance

−wvEnd 0.5 λ m v2
end,︸ ︷︷ ︸

Kinetic energy

(28)

with the end velocity vend, the inter-vehicle distance ∆s, a constant describing the maximal
inter-vehicle distance at stand still sv0 and the reference time gap tref. The minimum and
maximum allowed distance smin and smax of Equation (16) are defined as:

smin = slv + tg,min v (29)
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smax = slv + tg,max v + sv0, (30)

with slv representing the location of the leading vehicle, tg,min the minimal and tg,max the
maximal time gap between the vehicles.

The problem is implemented in Matlab, using CasADi [31] modeling language and
the IPOPT -solver [32].

2.3. Dynamic Programming

A DP solver was implemented to verify the NLP solver results. Equation (31) presents
the optimization problem, where the subscript n represents the discrete time stepts from the
starting point, N the number of discrete time steps, x the states presented in Equation (4)
and u the discrete control vector, describing the actual acceleration a:

min
x, u

N−1

∑
n=1

J(xn, un)

s.t. xn+1 = fDP(xn, un),

xn ∈ [xn,min xn,max],

un ∈ [un,min un,max].

(31)

fDP(xn, un) incorporates the same physics described in Equations (6)–(11). However,
motor torque is calculated backward based on acceleration a and speed v. For DP, the origi-
nal motor map present as LUT is used to calculate energy consumption. Inequality con-
straints (13)–(16) are also incorporated in the DP algorithm. This implementation generates
a global optimal speed profile within the discretization with respect to all considered states.

2.4. Case Studies

To see the effects of eco-driving for different powertrain topologies, one free-flow
scenario without any traffic and one car-following scenario are simulated. The first scenario
is called city to city (C2C) and should represent a short highway segment. The free-flow
scenario is used to see the universal effects of eco-driving for different powertrain topolo-
gies. However, in real life, leading vehicles may disturb the own speed planning. For the
car-following scenario, the algorithm is used within an MPC. To test fuel economy for
autonomous vehicles, Mersky and Samaras [33] suggest a car-following-test, in which
a leading vehicle drives a driving cycle, while the AV has to follow the leading vehicle.
Inspired by this approach, in this paper the leading vehicle is driving the worldwide har-
monized light vehicles test procedure (WLTP). The prediction horizon is 10 s and the speed
of the leading vehicle is assumed to be known for the prediction horizon. The boundary
conditions for all scenarios as well as the driving style parameters can be seen in Table 1,
where vlv is the speed of the leading vehicle. The reference vehicle parameters are mostly
inspired by the BMW i3. In addition, to see the effects of different powertrains, the vehicle’s
powertrain may be extended by a second gear or a second motor at the second axle. Table 2
shows the vehicle parameters, where m2.gear and m2.motor represent the additional mass of
the two-speed transmission and second driven axle, respectively. The efficiency maps of
the motors were gained by the validated tool presented in Reference [34] (Figure A1). The
first is a permanent magnet synchronous motor (PMSM) and the second is an induction
motor (IM).

The results of the eco-driving NLP algorithm are compared to a quadratic representa-
tion of the electric motor power, representing the state of the art and to the minimization of
a2 as well as to a global optimal solution determined by DP. The presented algorithm is
used for the quadratic representation of motor power. However, the fit of the electric power
is exchanged by a bivariate polynomial fit over the whole operation area of order one
for the motor speed and order two for the motor torque, similar to Equations (1) and (2).
The boundary condition of P(ω, T = 0) = 0 is set. This imitates the approaches of Refer-
ences [14,20,26]. Hereinafter, the eco-driving NLP algorithm representing motor power
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with bivariate polynomials of order six is referred to Poly 6 × 6 and the quadratic represen-
tation is referred to Poly 1 × 2.

Table 1. Scenario parameters.

Parameter C2C Car-Following

Initial acceleration 0 m/s2 0 m/s2

Final acceleration 0 m/s2 0 m/s2

Initial velocity 50 m/s 0 m/s
Final velocity 50 m/s 0 m/s

Final time 100 s -
Final distance 2500 m -

Minimal velocity 40 km/h vlv − 18 km/h
Maximal velocity 120 km/h vlv + 18 km/h
Min./max. jerk ±0.9 m/s3 ±0.9 m/s3

Min. acceleration −3.5 m/s2 −3.5 m/s2

Max. acceleration 2 m/s2 2 m/s2

Minimal time gap - 1.5 s
Maximal time gap - 3.5 s
Reference time gap - 2.5 s

Max. distance at stand still - 5 m

Table 2. Vehicle parameters.

Parameter Value Unit Source

m 1320 kg [35]
λ 1.05 - Estimated
r 0.35 m [35]

Aa 2.8 m2 -
ca 0.29 - [35]
fr 0.01 - Estimated

P1,max 125 (PMSM) kW [35]
TT1 = −TB1 250 Nm [35]

igb11 9.665 - [35]
ηgb11 0.95 - Estimated

igb12 3 - -
ηgb12 0.96 - Estimated

m2.gear 20 kg Estimated

P2,max 36 (IM) kW -
TT2 = −TB2 110 Nm -

igb21 5 - -
ηgb21 0.96 - Estimated

m2.motor 80 kg Estimated

The resulting speed profiles depend on the weighting factors of Equations (25) and (28).
While a comparison between the Poly 6 × 6 and Poly 1 × 2 algorithms is possible with a
fixed set of weighting factors, problems arise for a comparison with an a2-minimization
as the former weights energy to jerk and the later weights acceleration to jerk. Thus,
the comparison to the a2-minimization is conducted only for the C2C scenario with an
additional boundary condition. First the a2-minimization is conducted with the parameter
set of Table 3. Next, the speed profile’s total summed square of jerk ∑ j2a2 is calculated
and introduced as global inequality constraints for further optimizations. Equation (32)
shows the additional inequality constraint, where mj scales the global allowed jerk for the
sensitivity analysis.

gj,g = ∑ j2 − 1
mj

∑ j2a2 . (32)
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The inital value of mj is one. All other weights for all simulations are listed in Table 3.
For all problems, ∆t is set to 0.2 s, however, for the computationally expensive DP algorithm
∆t is set to 1 s.

Table 3. Weighting factors and constraints.

Experiment
(Section) Algorithm wj wa wE wr wscm wscg ws wvEnd

gj,g
Active?

C2C (3.2–3.4) a2 4 1 0 0 0.1 0.2 - - Reference
Poly 6 × 6/Poly 1 × 2 0 0 10−3 0 0.1 0.2 - - Yes

C2C-DP DP 250 0 10−3 0 0 0 - - No
Comparison (4.2) Poly 6 × 6 250 0 10−3 0 0.1 0.2 - - No

Car-following
(3.5) Poly 6 × 6/Poly 1 × 2 0.15 0 10−3 5× 10−4 0.1 0.2 5× 10−3 0.1 No

3. Results

The section presents the results. First, the different fits of motor power are presented,
followed by the results of the free-flow scenario. First, the different algorithms are compared
and later different powertrain topologies. A sensitivity analysis regarding the penalization of
jerk is conducted. Last, the results of the car-following scenario are presented. It is important to
note that the presented energy consumption are all calculated by the original motor efficiency
maps using the calculated torques and motor speeds of the optimizations.

3.1. Comparison of Fits

Energy-efficient driving that minimizes the energy from “tank-to-distance” is about finding
the motor’s proper operation points. Thus, to compare the fits of the electrical power, the
mechanical power is divided by the electrical power to gain the motor efficiency map. This
allows a good comparison of the fits. Figure 1 shows the original map, the fit of Poly 1 × 2,
which represents state of the art and the new presented approach Poly 6× 6, respectively. While
Poly 6 × 6 does represent the general shape of the original motor map, the Poly 1 × 2 does not.
The area of optimal efficiency of Poly 1 × 2 is at low torques, expanding for high motor speeds,
whereas the original and Poly 6× 6 have the best efficiency for high motor torque and medium
speeds. As can be seen later, the imprecise fit of the Poly 1 × 2 does not allow a simultaneous
optimization of vehicle speed and powertrain operation.

Original

0.8
0.850.9

0.930.95

0 5000 10000

Motor Speed in 1/min

0

50

100

150

200

250

T
o
rq

u
e
 i
n
 N

m

Poly 1 2

0.9
8

0.
97

0
.9

6

0
.9

5
0
.9

3

0
.9

0
.8

5

0 5000 10000

Motor Speed in 1/min

0

50

100

150

200

250

T
o
rq

u
e
 i
n
 N

m

Poly 6 6

0.8
0.85

0.9

0.930.95

0.96

0 5000 10000

Motor Speed in 1/min

0

50

100

150

200

250

T
o
rq

u
e
 i
n
 N

m

Figure 1. Comparison of motor efficiency maps between original, Poly 1 × 2 and Poly 6 × 6 fit.

3.2. Comparison of Algorithms

The C2C scenario is used to compare the resulting speed profiles for the different algo-
rithms. First, the powertrain consisting of one motor and single-speed-transmission is used.
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Figure 2a shows the resulting speed profiles for the Poly 6× 6 algorithm, the state of art Poly 1
× 2 algorithm and the minimization of a2. Figure 2b shows the energy savings compared to the
a2-minimization. It can be seen that the speed profiles differ. The optimization with Poly 1× 2
accelerates, drives quasi-constant and decelerates. The Poly 6× 6 optimization accelerates to a
higher speed, coasts and decelerates (P&G). The comparison of the energy savings show an
additional 2.7% of efficiency gain due to the better approximation of the electrical power with
the new presented approach.
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Figure 2. Comparison of different optimization methods for a 1M1G topology (a) speed profiles (b) energy savings to
a2 minimization.

3.3. Comparison of Powertrain Topologies

Figure 3a shows the resulting speed profiles for the C2C scenarios using Poly 6 × 6
for the vehicles with one motor and single-speed-transmission (1M1G), one motor and
two-speed-transmission (1M2G) and two motors with a single-speed transmission each
(2M1G). All speed profiles that are based on Poly 6 × 6 consists of an acceleration, glid-
ing and braking phase. However, the 1M2G and 2M1G topology do incorporate a phase of
almost constant speed. Figure 3b shows the absolute energy consumption for the different
topologies with the Poly 6 × 6 algorithm. In comparison to the 1M1G topology, 1M2G and
2M1G save 7.8% and 8.8% of energy, respectively.
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Figure 3. Comparison of different topologies with Poly 6 × 6 (a) speed profiles (b) energy consumption.
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Figure 4 shows the speed profiles and absolute energy consumption for the same
scenario and same topologies using Poly 1 × 2. In contrast to Poly 6 × 6, the speed profiles
for Poly 1 × 2 are almost identical for the different topologies. While all topologies save
energy with Poly 6 × 6, the savings do not occur in the same way with Poly 1 × 2, due
to a imprecise representation of the efficiency. The speed profiles do not differ since the
original motor with its gear ratio is chosen as optimal operation mode most of the time.
Thus, the actual energy consumption, calculated by the original motor efficiency map, rises
by 0.3% for the 1M2G and 2.2% for the 2M1G in comparison to the 1M1G topology due to
the increased vehicle weight.
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Figure 4. Comparison of different topologies with Poly 1 × 2 (a) speed profiles (b) energy consumption.

Table 4 summarizes the absolute energy consumption for different powertrain topolo-
gies using Poly 1 × 2 and Poly 6 × 6 and the relative difference to the a2 and Poly 1 × 2
minimization of the regarded powertrain topology. To obtain the energy consumption of
the a2 minimization, the speed profile is calculated first and then constrained to optimize
powertrain operation with the Poly 6 × 6 optimization. The results show that the 1M1G
topology is able to reduce the energy consumption by the greatest extent in comparison to
the a2 minimization.

Table 4. C2C results.

Algorithm 1M1G 1M2G 2M1G

a2 Abs. in Wh 424.0 379.9 377.1

Poly 1 × 2 Abs. in Wh 420.2 421.6 429.2
Rel. difference to a2 in % −0.9 +11 +13.8

Presented Poly 6 × 6
Abs. in Wh 408.8 377.1 372.8

Rel. difference to a2 in % −3.6 −0.7 −1.1
Rel. difference to Poly 1 × 2 in % −2.8 −11.8 −15.1

3.4. Sensitivity Analysis: Energy-Efficiency vs. Jerk

To see the interdependency between energy consumption and jerk limitation, fur-
ther simulations using Poly 6 × 6 are conducted, where the global limitation on jerk is
scaled by the factor 1

mj
(Equation (13)). Thus, if mj > 1, the jerk limitation gets stricter while

an decreasing factor gives the optimization more freedom to reduce energy consumption.
Figure 5 shows speed profiles for different levels of jerk restriction in the C2C scenario for
1M1G, 1M2G and 2M1G respectively as well as the final energy consumption. It can be seen
that 1M1G tends to P&G if jerk is less restricted. The other topologies tend to accelerate,
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keep a constant speed and end with a gliding phase and hard braking. The gradients in the
speed profiles get steeper if jerk is less restricted. Furthermore, a second pulse at t ≈ 65 s
before the gliding phase can be seen if jerk is not restricted.
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Figure 5. Speed profiles and energy consumption for different jerk limits and topologies.

The relative difference in energy consumption compared to mj → 0 for different
restrictions on jerk are shown in Figure 6. It can be seen that the energy consumption
rises for higher restrictions on jerk. In particular, the 1M1G-topology increases energy
consumption if jerk restrictions are rising. However, if no restriction is active, energy con-
sumption of the 1M1G topology is almost as low as the energy consumption of the other
topologies (Figure 5). Since the energy consumption for the 1M1G topology is higher if
jerk is restricted, the sensitivity on jerk is higher for this topology.

3.5. Car-Following

The free-flow scenario was used to examine the general effects of eco-driving for
various powertrain topologies. However, for more realistic results, a car-following scenario
is implemented representing stricter boundary conditions. Figure 7 shows the different
resulting speed profiles as well as the original speed of the WLTP. It can be seen that
Poly 6 × 6 smooths the speed profiles, avoiding unnecessary accelerations. Furthermore,
it includes coasting phases. The optimized speed profiles differ slightly in maximum speed
between the powertrain topologies.
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Figure 7. Optimized speed profiles for different topologies and original worldwide harmonized light vehicles test procedure
(WLTP).

Table 5 shows the absolute energy consumption for different powertrain topologies
using different algorithms and the relative difference in the WLTP and Poly 1 × 2 con-
sumption of the examined powertrain topology. Likewise the C2C scenario, the Poly 1 × 2
is not able to reduce energy demand by the same extend like the Poly 6 × 6 algorithm.
For the 2M1G topology, energy consumption increases with Poly 1 × 2 in comparison
to 1M1G. With Poly 6 × 6, energy savings are between 3.7 and 5 percent towards the
energy required driving the original WLTP with the corresponding powertrain. Again,
energy consumption of the multi-speed and multi-motor topologies are lower compared to
1M1G. In comparison to the C2C scenario, the 1M1G topology has the lowest savings due
to eco-driving.
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Table 5. Car-following results.

Algorithm/Cycle 1M1G 1M2G 2M1G

WLTP Abs. in kWh 3.24 2.95 3.0

Poly 1 × 2 Abs. in kWh 3.17 3.16 3.29
Rel. difference to WLTP in % −2.4 +7.2 +9.7

Presented Poly 6 × 6
Abs. in kWh 3.12 2.82 2.85

Rel. difference to WLTP in % −3.7 −4.5 −5
Rel. difference to Poly 1 × 2 in % −1.4 −10.9 −13.4

4. Discussion

First, the results are discussed, followed by the proof of global optimality due to the
comparison to DP. The section closes with the limitations and future work.

4.1. Discussion of Results

The results of the C2C scenario and car-following scenario (Sections 3.3 and 3.5) show
that the optimal speed profile and energy savings due to eco-driving depends on the
powertrain configuration in an electric vehicle.

For the 1M1G topology, the speed profile consists of an acceleration, a coasting and
a braking phase. Constant speed is avoided with the 1M1G topology, since this leads to
low torque and thus low efficiency. Therefore, the vehicle accelerates to a higher speed and
has a longer coasting phase. Although the higher speed increases the power loss due to air
resistance, the better utilization of the motor map results in lower energy consumption.

For the 1M2G and 2M1G topology there is a quasi-constant speed phase after the
acceleration. The second gear with the low gear ratio allows an efficient operation at
constant speed. The same applies to the second motor. Due to the second, smaller motor,
relatively high loads and thereby a high efficiency is achieved while cruising. With the
ability to optimize the load point internally in the powertrain, the 1M2G and 2M1G
topologies have lower energy consumptions than the 1M1G topology.

The sensitivity analysis (Section 3.4) shows the influence of jerk on energy consump-
tion. For all topologies, a reduction in jerk leads to an increase in energy consump-
tion. Vice versa, energy consumption can be reduced by reducing jerk restrictions. This can
be explained by the fact that restricting jerk suppresses the fast setting of an efficient load
point. As a result, vehicles operate longer with poor efficiency. However, the sensitivities
vary between the topologies. While the consumption of the 1M1G topology varies by 19.1%
in the considered scenarios, the consumption of the 1M2G and 2M1G topologies varies
by 10.4% and 8.3%. Again, this can be explained by the possibility of powertrain-internal
optimization. If a jerk limitation prevents a quick set up of an efficient load point, it is
possible for the 1M2G and 2M1G topologies to drive more efficiently by using correct
gear selection or correct load distribution. If, on the other hand, there is no jerk limitation,
any powertrain topology can quickly set an efficient load point, resulting in almost equal
energy consumptions among the topologies. If no comfort is considered, the speed profile
of the 1M1G topology results in P&G, similar to Reference [12]. This is energy optimal
but unrealistic for passenger trips. Penalizing or restricting jerk partially suppresses this
behavior. The other topologies include a cruising phase, even if jerk is not restricted.

The potential savings due to eco-driving depend on the combination of scenario,
powertrain and the reference speed profile. For the C2C scenario, the 1M1G topology
has the highest relative savings, while for the car-following, the 2M1G topology has the
highest relative savings. Optimizing the speed profile means optimizing the operating
points. Thus, powertrains that were previously operated in poor operating points benefit
more than powertrains that were operated at high efficiency during reference.

It was also shown that state-of-the-art optimization methods, here represented as
Poly 1 × 2, optimizing “tank-to-distanc” efficiency, do not suffice for an simultaneous
optimization of speed and powertrain operation for electric powertrains with multiple



World Electr. Veh. J. 2021, 12, 6 15 of 19

motors or gears due to an imprecise representation of the motor efficiency. Since the regions
of best efficiency differ, the optimization chooses the wrong gear and wrong motor which
may result in an increased energy demand. As the state of the art fits the electrical power by
a quadratical function and minimizing it, low torques are preferred. However the original
efficiency map reveals low efficiency for low torques. Thus, in this area the electrical power
over torque is non-convex. The minimization of the real electrical power does prefer high
torque or zero torque, which results in the typical P&G behavior.

The car-following scenario was solved on a laptop with an Intel Core i7-7820HQ with
16 GB of RAM. The average solving time for Poly 6 × 6 is 72 ms for the 1M1G topology.
The 1M2G topology needs 121 ms for the relaxed problem and 62 ms for the actual problem.
For the 2M1G topology, an average solving time of 137 ms is achieved. Thus, the algorithm
is online capable. The Poly 1 × 2 algorithm needs 68 ms for the 1M1G topology.

4.2. Numerical Proof of Global Optimality

The results of the Poly 6 × 6-NLP are compared to the results of the DP, which
calculates the global optimal solution within the discrete solution space. Figure 8 displays
the resulting speed profiles of the DP and NLP with Poly 6 × 6 as well as the resulting
motor torques for the 1M1G, 1M2G and 2M1G topology, respectively.

Likewise, the NLP’s optimal speed profiles, the DP’s optimal speed profiles differ
among the different topologies. For the 1M1G topology, the speed profile consists of
acceleration, coasting and braking. The other topologies include a quasi-constant speed
phase. The acceleration phase for the DP and NLP differ for the 1M1G topology: At t ≈ 20 s,
the DP solution reduces acceleration and motor torque and keeps it constant for a longer
time than the NLP. As a result, the top speed is slightly lower and the coasting phase for the
DP is shorter. However, the final energy consumption, calculated by the original efficiency
map, as in all our experiments, is only 0.9% higher for the NLP, in comparison to the DP.
The speed profiles of NLP and DP for the 1M2G and 2M1G topologies are overlapping by
a great extent. The energy consumption differs by 0.4% and 0.2%, respectively. The 1M2G
topology optimized by DP shifts faster to the second gear (t ≈ 11 s) and has a shorter
coasting phase (t ≈ 71 s). The 2M1G topology only uses the second motor for both solutions.
Again, the coasting phase of the 2M1G topology is shorter (t ≈ 75 s).

Even though there are differences between DP and NLP, the general behavior like the
different segments in the speed profile as well as the general behavior of the chosen gear
and chosen motor comply. Additionally, the final energy consumption coincide within
1% for all topologies. Differences can be explained by the discretization of the DP and the
efficiency map fit of the NLP. Thus, it can be said that the behavior of the Poly 6 × 6-NLP
is valid.

4.3. Limitations and Future Work

So far, only a static gear efficiency and the load-dependent motor efficiency have
been considered. The gear efficiency could be modeled load-dependent, too. In addition,
the modeling of the power electronics and the battery are further possibilities for improving
the algorithm’s accuracy. These can all be combined into one map, which is then fitted.
In addition, a more precise modeling of the idling torques of the different motor types
may be useful. The algorithm is based on state-of-the art vehicle modeling equations
and uses a motor efficiency map of a validated tool. With 13.9 kWh/100 km (neglecting
auxiliary power) for the 1G1M topology, the simulation’s results are reasonable. However,
future work should focus on the validation of the results. Tests on a dynamo-meter,
similar to Reference [18] or the integration of the algorithm in other validated tools should
be addressed.

It should be considered that the powertrains shown are not optimized. This means
that adjusting the motor size and gear ratio can result in further savings. However, this al-
gorithm allows the optimization of the powertrain considering different topologies and
motors under realistic conditions. Thus, it may contribute to an extension of the solution
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space and the consideration of realistic scenarios for the powertrain optimization of CAVs,
compared to References [3–5].
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Figure 8. Comparison of Dynamic Programming (DP) and nonlinear programming (NLP) for city to city (C2C) scenario.

The first presented case study represents a free-flow scenario, without any disturbing
traffic, the second represents a car-following scenario, in which the vehicle has to con-
sider a leading vehicle. Traffic measures, like traffic lights and speed limits are spatial
based characteristics but the presented algorithm is implemented in time domain. Thus,
both scenarios had to be simplified. The scenarios do have a constant speed limit and
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no spatial based speed restrictions due to corners are implemented. For more realistic
scenarios the algorithm can be called iteratively or can be implemented in the spatial
domain. The algorithm’s integration in existing, validated simulation tool boxes allows
more complex scenarios and powertrain simulations.

5. Conclusions

It has been shown that current online-capable eco-driving algorithms are not capable
of optimizing speed and powertrain operation for electric vehicles with multiple gears
and motors. In addition, current algorithms greatly overestimate motor efficiency at low
torque, resulting in sub-optimal speed profiles. We presented an eco-driving algorithm
that allows simultaneous optimization for multiple motors and gears. Furthermore, the ef-
ficiency at low torque is realistically represented. The test in a free-flow scenario and a
car-following scenario show the savings potential of several motors and gears in an electric
vehicle, including eco-driving. Depending on the scenario, optimal speed profiles differ for
various powertrain topologies. In addition, the influence of jerk on energy consumption
was shown. The comparison to Dynamic Programming shows valid behavior for the
presented algorithm.
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Figure A1. Original motor efficiency maps.
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