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Abstract: According to the complex fault mechanism of direct current (DC) charging points for
electric vehicles (EVs) and the poor application effect of traditional fault diagnosis methods, a new
kind of fault diagnosis method for DC charging points for EVs based on deep belief network (DBN) is
proposed, which combines the advantages of DBN in feature extraction and processing nonlinear data.
This method utilizes the actual measurement data of the charging points to realize the unsupervised
feature extraction and parameter fine-tuning of the network, and builds the deep network model
to complete the accurate fault diagnosis of the charging points. The effectiveness of this method
is examined by comparing with the backpropagation neural network, radial basis function neural
network, support vector machine, and convolutional neural network in terms of accuracy and model
convergence time. The experimental results prove that the proposed method has a higher fault
diagnosis accuracy than the above fault diagnosis methods.

Keywords: charging points; electric vehicles; deep belief network; fault diagnosis; data-driven;
neural network

1. Introduction

With the vigorous promotion of EVs and the increasing popularity of charging infras-
tructure, the maintenance of DC charging points for EVs (abbreviated as “charging points”)
is facing more and more problems. Since most of the charging points are installed outdoor,
and they are subject to long-term environmental stresses such as rain and dew. The failure
of core parts of the charging points, such as charging modules and insulation detection
modules, would reduce the safety and reliability of the charging points. Then, the regu-
lar check of charging points and the fault investigation after the failure require a lot of
manpower and time, which makes the investment cost increasing. Therefore, an effective
fault diagnosis method is essential for the safe operation of charging points and to reduce
maintenance costs.

Traditional fault diagnosis methods are divided into two categories: qualitative anal-
ysis and quantitative analysis [1]. Among them, analytical model-based methods and
data-driven methods in quantitative analysis are widely used in equipment fault diagno-
sis [2–7]. The analytical model-based methods can often achieve higher fault diagnosis
accuracy, but it is hard to establish an accurate mathematical model due to the complex
internal structure of the charging points, and the established model is only applicable
to specific types of equipment. Therefore, the method based on the analytical model is
difficult to apply to the fault diagnosis of the charging points. During the operation of
the equipment, a large amount of operating data is accumulated, and the data-driven
method can realize fault diagnosis of the equipment by analyzing operating data, extract-
ing the fault data features, and mapping the relationship between fault data and fault types.
This method does not rely on the precise mathematical model and has strong universal
applicability. As a result, data-driven methods have rapidly developed in fault diagno-
sis. For example, backpropagation neural network (BPNN), a representative multilayer

World Electr. Veh. J. 2021, 12, 47. https://doi.org/10.3390/wevj12010047 https://www.mdpi.com/journal/wevj

https://www.mdpi.com/journal/wevj
https://www.mdpi.com
https://orcid.org/0000-0002-5037-601X
https://doi.org/10.3390/wevj12010047
https://doi.org/10.3390/wevj12010047
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/wevj12010047
https://www.mdpi.com/journal/wevj
https://www.mdpi.com/article/10.3390/wevj12010047?type=check_update&version=1


World Electr. Veh. J. 2021, 12, 47 2 of 11

feedforward network, has the most basic network structure: the input layer, the hidden
layer, and the output layer [8]. BPNNs are trained through optimizing the weights and
biases of neurons to achieve the mapping of complex input-output relationships and are
widely used in the field of fault diagnosis [9,10]. Radial basis function neural network
(RBFNN), a kind of forward networks with only one hidden layer, has the unique global
approximation capability, and is widely adopted in the fields of pattern recognition [11],
signal processing [12], and fault diagnosis [13,14]. Support vector machine (SVM), a super-
vised learning-based classification technique, can solve complex classification problems
by transforming input vectors to a high-dimensional feature space with specific kernel
functions [15]. Moreover, SVM has shown excellent performance for small sample cases,
which has attracted the attention of many researchers in the field of fault diagnosis [16,17].
Convolutional neural network (CNN) has strong nonlinear feature extraction capability
due to its multi-level structure with multi-layer convolutional transform as the core [18],
and it is successfully applied to the fault diagnosis in analog circuits [19], rotating machin-
ery [20], etc. However, the above data-driven methods are limited by their structure and
other causes, such as poor generalization ability, easy to fall into local optimal solution,
and “dimensional disaster” [21]. The above reasons make it difficult for the traditional
fault diagnosis method to achieve accurate fault diagnosis of the charging points.

DBN is a typical deep learning model based on data-driven, with outstanding abilities
of data feature extraction, processing high-dimensional and nonlinear data [22], and has
made great achievements in fault diagnosis in recent years. Chen, et al. [23] used the fused
feature vectors for DBN training to assess the health of rotating machines, and experimental
results showed the method was effective in identifying the running conditions of the
machines. Yu, et al. [24] adopted DBN to detect the health status of wind turbines, which
improved the accuracy and robustness of wind turbine fault identification. Li, et al. [25]
proposed a wind turbine fault diagnosis method based on DBN and tested it by a wind
turbine benchmark model, and ideal detection results were obtained. Zhu, et al. [26] put
forward a rolling bearing fault diagnosis method based on principal component analysis
(PCA) and DBN, which avoided complex signal processing of raw bearing data and
achieved higher fault diagnostic accuracy. It can be seen that DBN has great potential in
fault diagnosis.

In this paper, a novel DBN-based fault diagnosis method for charging points is pro-
posed, which uses the historical state data of multiple parts of charging points to build a
deep neural network. By building the DBN fault diagnosis model, the fault characteristics
implied in the charging points fault data are self-applicably mined, and the diagnosis and
identification of charging points fault types are realized. Finally, compared with the tradi-
tional fault diagnosis methods such as BPNN and SVM, DBN has higher fault diagnosis
accuracy.

The rest of this paper is organized as follows. Section 2 presents the principle of DBN,
where the restricted Boltzmann machine (RBM) model is involved, as well as the structure
and training process of DBN. In Section 3, the fault diagnosis method of charging points is
given and discussed. Section 4 states the implementation and verification process of the
method described in Section 3. Finally, the paper is concluded in Section 5.

2. Principle of DBN
2.1. RBM Model

The RBM is the basic element of DBN, which is essentially a Markov random field
model [27]. RBM consists of a visible layer v and a hidden layer h. The visible layer has n
units, representing the input data; the hidden layer has m units, representing the implicit
features of the input data. The visible and hidden layers of the RBM are fully connected by
the weight w in both directions, while the units in each layer are not connected. The state
of each unit in the layers takes the values vi, hj ∈ {0, 1}, and the structure of RBM is shown
in Figure 1.
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Figure 1. Structure of RBM.

RBM is a probability distribution model based on energy, and let v = (v1, v2, v3, . . . , vn)
T

be the visible layer, h = (h1, h2, h3, . . . , hm)
T be the hidden layer, then its energy function is

defined as
E(v, h|θ) = −aTv− bTh− vTWh (1)

where θ = {W,a,b} is the set of parameters of RBM; W ∈ Rn×m is the matrix of connection
weight for visible and hidden layers; a ∈ Rn, b ∈ Rm is the bias of visible layer and hidden
layer respectively.

The joint probability distribution of RBM is obtained based on Equation (1):

P(v,h|θ) = exp(−E(v,h|θ))
Z(θ)

(2)

where Z(θ) = ∑v,h exp(−E(v,h|θ)) is the partition function.
The edge distribution of visible layer units is given by

P(v|θ) = ∑h P(v, h|θ)
= 1

Z(θ)∑h exp(−E(v, h|θ)) (3)

Due to the structure of the RBM, the probability that the ith unit of the visible layer
and the jth unit of the hidden layer activated is calculated by the following:

P(vi = 1|h) = sigmoid(ai + ∑m
j=1 wijhj) (4)

P(hj = 1|v) = sigmoid(bj + ∑n
i=1 wijvi) (5)

The optimization of the parameter θ can be achieved by getting the maximum likeli-
hood function of Equation (3) and deriving the derivative of it:

∂ log P(v|θ)
∂wij

=
〈
vihj

〉
data −

〈
vihj

〉
model (6)

∂ log P(v|θ)
∂ai

= 〈vi〉data − 〈vi〉model (7)

∂ log P(v|θ)
∂bj

=
〈

hj
〉

data −
〈

hj
〉

model (8)

where 〈·〉data refers to the expectation over the training data; 〈·〉model refers to the expecta-
tion over the re-constructed data.

Since 〈·〉data and 〈·〉model are difficult to get, the CD-k algorithm is generally used to
train the RBM in practice. It is worth noting that when training the RBM, enough good
approximation about the data distribution is obtained using the CD-1 algorithm (with only
one step of Gibbs sampling) [28]. Therefore, based on Equations (4) and (5), the process of
performing a one-step Gibbs alternate sampling of the input data v0 is expressed as follows:

v(0) ∼ v0, h(0) ∼ P(h|v(0)), v(1) ∼ P(v|h(0)), h(1) ∼ P(h|v(1)) (9)
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So, the parameter θ = {W,a,b} can be updated as follows:

wij
k+1 ← ηwij

k + α(vi
(0)hj

(0) − vi
(1)hj

(1)) (10)

ai
k+1 ← ηai

k + α(vi
(0) − vi

(1)) (11)

bj
k+1 ← ηbj

k + α(hj
(0) − hj

(1)) (12)

where α ∈ (0, 1] is the learning rate, and η ∈ (0, 1] is the momentum.

2.2. Structure and Training Process of DBN

DBN is a deep neural network composed of multiple RBMs and a BPNN stack,
and BPNN is usually located at the top of the DBN as a supervised learning classifier.
The training process of DBN can be divided into two stages: pre-training and fine-tuning.
In the pre-training stage, the layer-by-layer greedy algorithm is used to train each RBM
in bottom-up order, so that the high-level features of the input data are extracted and the
connection weights of the network are updated. In the fine-tuning stage, the BPNN takes
the output feature vector of the top-level RBM as input data and continuously optimizes
the network parameters in top-down order, in which the label data is used for supervised
learning to reduce the loss error and improve the classification accuracy. The training
process of DBN consisting of three RBMs is shown in Figure 2.
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3. Design of Charging Points Fault Diagnosis

The charging of EVs needs the collaboration of high-power charging equipment and
charging points, and Figure 3 shows the relationship between them. The high-power
charging equipment is usually connected to multiple charging points to provide stable
and reliable voltage and current. Of course, there is also information exchange between
them for the respective operating status to ensure the normal charging process. Charging
points, as the connection link between high-power charging equipment and EVs, play an
important role in charging control and operation as well as billing during the charging
process of EVs. Consequently, the following fault diagnosis method for charging points
is designed.
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3.1. Fault Characteristics of Charging Points

8 kinds of fault states, as well as normal states of the charging points, are selected
as the object of fault diagnosis, and each state is given a different label to distinguish.
Table 1 shows the corresponding relationship between them, where d0 is the normal state,
and d1–d8 is the fault state.

Table 1. The fault type of charging points and the fault label.

Description Symbol Label

Normal state d0 0000
Communication failure between EVs and charging points d1 0001

Insulation testing faults d2 0010
Charging module output overvoltage d3 0011

Charging module over-temperature fault d4 0100
Charging module input phase loss d5 0101
Battery charging over-current fault d6 0110
DC bus output over-voltage fault d7 0111
DC bus output contactor failure d8 1000

The occurrence of a fault is related to the change of electrical quantities such as
input voltage and input current of charging points. For example, if the charging points
do not detect the relevant information of the EVs or the auxiliary power supply of the
charging points does not work normally, communication failure between the EVs and
charging points may happen. Hence the fault of the charging points can be identified
and diagnosed by detecting the change of relevant electrical quantities. The experimental
results show that if the 16 parameters, such as input voltage, input current, output voltage,
output current, EVs demand voltage, EVs demand current, charging DC bus voltage,
AC three-phase voltage Ua, Ub, Uc, battery temperature, battery setting temperature,
charging time, insulation detection module state, cooling fan switching state, and auxiliary
power module state, are selected as the basis of charging points fault diagnosis, the above-
mentioned types of faults can be effectively distinguished.

3.2. Design of Fault Diagnosis Flow

The process of fault diagnosis of charging points based on DBN includes two stages:
offline training of the DBN fault diagnosis model and online fault diagnosis. The specific
process is as follows:

1. Organize the historical status data of charging points and build a data set.
2. Divide the data set into the training set and test set according to a certain ratio,

and normalize them.
3. Construct the DBN model through two stages of pre-training and fine-tuning, and op-

timize the parameters of the DBN model.
4. Test the performance of the DBN fault diagnosis model using test data.
5. Apply the DBN model that meets the needs of the fault diagnosis of charging points.
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Figure 4 shows the realization process in detail.
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4. Implementation of Charging Points Fault Diagnosis
4.1. Data Acquisition and Processing

By analyzing the historical status data of charging points, the dataset is available,
which contains the normal status and 8 kinds of abnormal status of the charging points,
as described in Table 1. Among them, the normal state and each fault state involves
500 data samples, which constitutes a data set containing 4500 samples. The dataset is
divided into two parts, a training set containing 80% samples for each state and a test set
containing the remaining samples for each state.

To better reflect the data characteristics and improve the convergence speed of the
DBN model, it is necessary to normalize the input data. In this paper, we use the method of
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extreme difference normalization to initialize the data, and the transformation is described
as follows:

xout =
xin − xmin

xmax − xmin
(13)

where xmax and xmin are the maximum and minimum values of the sample; xout is the
result of normalization of the input data.

4.2. Experiment and Analysis

The DBN fault diagnosis model is built using Tensorflow, and the experimental soft-
ware environment is Python3.5.7, Tensorflow1.2.1, the computer hardware configuration
for Intel(R) Core (TM) i5-6300HQ CPU @2.30GHz, 8GB of RAM.

Some values of the DBN model are provided in Table 2. Moreover, it is necessary to
find out the proper number of hidden layers L and units n in the hidden layer. Therefore,
we will study the effects of the number of hidden layers and units in the hidden layer on
the fault diagnostic accuracy of the charging points with the value determined in Table 2.

Table 2. The parameters of DBN.

Description Symbol Value

Number of units in input layer - 16
Number of units in output layer - 4

Number of iterations of pre-training n1 50
Number of pre-training batch samples s1 50

Learning rate of pre-training a1 0.15
Momentum of pre-training µ 0.8

Number of iterations of fine-tuning n2 40
Number of fine-tuning batch samples s2 20

Learning rate of fine-tuning a2 0.6

The DBN network with L (L = 1, 2, 3, 4, 5) layers is built to test the influence of the
number of the hidden layer on the fault diagnostic accuracy. The number of units in each
hidden layer is set to 100, and ten trials are carried out with the same data set. The variation
of the fault diagnosis accuracy with the number of hidden layers is plotted in an error bar
graph, as shown in Figure 5a.
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It can be found from Figure 5a that when the accuracy reaches stability, the accuracy
and L in the range of L ≤ 3 tend to move together. The highest accuracy is found in L = 3,
after which the fault diagnosis accuracy starts to gradually decrease with the increase of L.
There are three possible reasons [29]:
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• Only the reconstruction errors of the top RBM can reach the preset needs, while the
reconstruction errors of the preceding L-1 RBMs are degraded in accuracy by accumu-
lation.

• An increase in the number of hidden layers L leads to excessive error accumulation in
the reverse gradient descent algorithm.

• An increase in the number of hidden layers L leads to an effect of increasing the
complexity of the running time and decreasing the efficiency.

Figure 5b shows that when the number of hidden layers of the DBN is 3 and the
number of hidden layer units is 50–250, the accuracy is above 95%. Meanwhile, with the
growth of the number of hidden layer units, the accuracy is increasing. When n is less than
150, the accuracy rises faster. However, the increase in accuracy is less than 0.5% when n is
more than 150. Considering the over-fitting problem of the DBM, this paper chooses the
network structure with 150 units in the hidden layer.

Reconstruction error (Recon-error) is an important index to evaluate the data feature
extraction ability, and the smaller the Recon-error is, the better the data feature mining
ability is. Figure 6a shows the Recon-error of the bottom RBM, and Figure 6b shows the
Recon-error of the top RBM. Put the Recon-error curves of the three RBMs in one graph,
as shown in Figure 6c. The Recon-error of each RBM shows a decreasing trend with the
number of iterations as shown in Figure 6, which indicates the data feature extraction
ability of each RBM is increasing. The Recon-error of the top RBM reduces to the minimum
value of 0.0123 when the number of iterations is 50, now indicating that DBN has strong
data feature extraction ability.
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Figure 7 visualizes the loss and accuracy of the DBN model in the fine-tuning stage
with the number of iterations. The curve shows that the loss error decreases rapidly from 0
to the 10th iteration and gradually tends to a stable value after 20 iterations. Finally, the loss
error is 0.03 in 40 iterations when the accuracy of fault diagnosis reaches the maximum
value of 98.2% and tends to be stable.
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Combining with the above analysis, the structure of DBN is set as 16-150-150-150-4,
i.e., the number of hidden layers is 3, and the number of units in the hidden layer is 150.
Finally, the detailed recognition results of DBN for the training sample set are shown in
Figure 8, where the columns denote the true labels of the data and the rows refer to the
predicted ones. From the simulation results, it can be concluded that the DBN with the
above structure has better performance in fault diagnosis of charging points.
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4.3. Comparison of Methods

To further verify the effectiveness of DBN for fault diagnosis of charging points, it is
compared with BPNN, RBFNN, SVM, and CNN in terms of both accuracy and convergence
time using the same training and test sets. Each experiment is repeated 10 times to ensure
the accuracy of the experimental results, and the average value is taken as the evaluation
index. In the experiment, the structure of BPNN is set as 17-9-4, the learning rate is set
to 0.05, and the maximum number of iterations is set to 1000. The number of units in
each layer of the RBFNN is set to 16-65-4, the learning rate is set to 0.3, and the maximum
number of iterations is set to 5000. Gaussian radial basis function is chosen as the kernel
function of the SVM, and the penalty factor is set to 1.5. For CNN, depending on the
dimensionality of the charging points running data, a one-dimensional convolutional
kernel is used. The comparison results are listed in Table 3.

Table 3. Comparison of results.

Methods Training
Accuracy (%)

Testing
Accuracy (%)

Average
Accuracy (%)

Convergence
Time (s)

BPNN 93.6 92.5 93.05 59.12
RBFNN 95.8 94.7 95.25 24.13

SVM 94.5 93.3 93.90 35.36
CNN 96.3 96.1 96.24 245.74
DBM 98.2 98.1 98.15 206.37

According to Table 3, it can be found that the training and testing accuracy of DBN are
approximately the same and higher than those of other methods. Conversely, the testing
accuracy of the traditional methods has a significant decrease compared with the training
accuracy. The results show that the DBN model can better complete the in-depth feature
mining of the charging points operating data, so it has greater performance in mapping the
relationship between the fault data and the fault type. Moreover, it has better generalization
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ability. Although CNN also shows good generalization ability, its accuracy is lower than
DBN, which indicates that DBN is more adapted to the fault diagnosis of charging points.

From Table 3, we can also find that the CNN model has the longest convergence time
and the RBFNN model has the shortest convergence time. There are the following reasons
to explain:

• CNN has a more complex structure and training process than other models, and there-
fore has a significantly longer convergence time.

• RBFNN is a local approximation network, thus the convergence speed is faster.

Although DBN has a long convergence time, similar to CNN, it is acceptable for the
fault diagnosis of charging points to obtain higher fault diagnosis accuracy by sacrificing
training time.

5. Conclusions

In this paper, a new fault diagnosis method for charging points based on DBN is
proposed. As a diagnosis method based on deep learning, the method makes full use of the
historical state data of the charging points to obtain the optimal structural parameters of
DBN, which improves the fault diagnosis accuracy of charging points without the need to
build an accurate mathematical model. To verify the effectiveness of the proposed method,
it is compared with the backpropagation neural network, radial basis function neural
network, support vector machine, and convolutional neural network. The experimental
results show that the proposed method overcomes the defects of traditional fault diagnosis
methods such as the weak generalization ability and poor feature extraction ability to a
certain extent, and gets better performance in the fault diagnosis accuracy of charging
points. From the above conclusions, it can be confirmed that the proposed method is correct
and valid, and provides a solution for fault diagnosis of charging points.
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