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Abstract: This article deals with an intelligent adaptive neural network (ANN) controller for a direct
torque controlled (DTC) electric vehicle (EV) propulsion system. With the realization of artificial
intelligence (AI) conferred adaptive controllers, the torque control of an electric car (eCAR) propulsion
motor can be achieved by estimating the stator reference flux voltage used to synthesize the space
vector pulse width modulation (SVPWM) for a DTC scheme. The proposed ANN tool optimizes
the parameters of a proportional integral (PI) controller with real-time data and offers splendid
dynamic stability. The response of an ANN controller is examined over standard drive cycles to
validate the performance of an eCAR in terms of drive range and energy efficiency using MATLAB
simulation software.

Keywords: adaptive neural network; direct torque control; drive cycle; electric vehicle; battery;
propulsion system; road load; SVPWM

1. Introduction

The automotive market has been dealt a lethal blow in recent years but will soon reach
its former prominence. The demand for electric vehicles (EVs) is increasing with concern
for environmental safety. For EVs, the selection and pre-sizing of a propulsion motor drive,
an optimal control strategy and optimal energy management are the most essential aspects
particularly for battery driven vehicles. The advantages of EVs include greater energy
efficiency, zero emissions and flexible charging at consumer outlets. The disadvantages are
the long charging times, low energy density and drive range where range is the distance
travelled on a full charge. Therefore, intensifying the energy efficiency and thus increasing
the range of an EV is an imperative research track that earns attention [1,2].

An electric vehicle propulsion system consists of a battery, a power electronic converter,
a motor and a drivetrain. Induction motors are chosen as propulsion motors due to their
higher efficiency and low maintenance. The performance of torque control practices is
deliberated and analyzed for a front wheel drive (FWD) EV, which is also termed as an
eCAR. The architecture of a FWD eCAR propulsion system that includes a powertrain and
a drivetrain with vehicle dynamics is shown in Figure 1.

In [3], a review on several direct torque controlled (DTC) schemes associated with
fuzzy logic (FL), neural networks (NNs), sliding mode controls (SMCs) and genetic al-
gorithms (GAs) was presented to improve the performance of an induction motor (IM)
drive. A comparison was made amid these control schemes in terms of algorithm intricacy,
parameter sensitivity, ripple reduction, switching loss and speed tracking. The authors
concluded that it was very difficult to choose a proper control scheme as it relied on the
application, accuracy, hardware readiness, reliability and cost of the system. In [4], a sen-
sorless DTC scheme with an online adaptive neural network (ANN) speed estimator based
on a constant V/F control technique for a three phase IM drive was proposed. This scheme

World Electr. Veh. J. 2021, 12, 44. https://doi.org/10.3390/wevj12010044 https://www.mdpi.com/journal/wevj

https://www.mdpi.com/journal/wevj
https://www.mdpi.com
https://orcid.org/0000-0002-8981-7919
https://doi.org/10.3390/wevj12010044
https://doi.org/10.3390/wevj12010044
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/wevj12010044
https://www.mdpi.com/journal/wevj
https://www.mdpi.com/article/10.3390/wevj12010044?type=check_update&version=1


World Electr. Veh. J. 2021, 12, 44 2 of 17

offered a stable operation, fast dynamic response and accurate steady state response but
during transient states the speed estimator was not effective due to the parameter varia-
tions. In [5], a DTC scheme with a torque controller for an IM drive was instigated and the
pros and cons of the ANN approach over a traditional controller was considered. It was
shown that the ANN approach had a reduction of the settling time at starting and in speed
reversal. In [6], an ANN based torque controller was employed for a conventional DTC
(C-DTC) and a space vector modulated DTC (SVM-DTC) IM drive to effectively track speed
and torque under the altering load. The ANN based SVM-DTC approach proved to have
superior performance. In [7], an ANN based DTC scheme was introduced for a fuel cell
based battery sourced EV. This scheme utilized the stator flux as the control variable and
the flux level was adjusted in accordance with the torque demand of the EV to achieve
a high drive performance. Here the authors deliberated the performance of an IM drive
as an EV propulsion without considering the actual vehicle dynamics (road load), drive
range and fuel economy. In this paper, an intelligent ANN algorithm integrated with a
space vector pulse width modulation (SVPWM) based DTC scheme was implemented
for a 90 kW three phase induction motor as an eCAR propulsion system with road load.
The ANN algorithm was used to tune the torque error so as to reduce the ripple amplitude.
The developed propulsion system was tested over United States Environmental Protection
Agency (EPA) standard drive cycles and performance parameters such as drive range and
energy efficiency of the eCAR were computed. Furthermore, in Section 2, a mathematical
modelling of an eCAR powertrain component with a physical description is discussed.
Section 3 elaborates the direct torque control scheme based on SVPWM for an eCAR propul-
sion system. In Section 4, The integration of an ANN torque controller is explained for
improving the DTC scheme. Section 5 presents a simulation analysis for the developed
DTC scheme under different drive cycles and Section 6 summarizes the conclusions of the
work done.
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Figure 1. The architecture of a front wheel drive (FWD) electric car (eCAR).

2. Components of an eCAR Powertrain

An eCAR propulsion system or powertrain includes various components such as a
stack of lithium-ion batteries, a three phase induction motor, a SVPWM pulse generation
circuit, a three phase two-level voltage source inverter and a simple gear and drivetrain.

2.1. Battery Model

The battery model of an eCAR propulsion system includes an internal resistance to
compute energy consumption and the state of charge (SOC) of a battery. Figure 2 represents
the structure of a simple battery cell where Rint represents the internal resistance, Voc is the
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open circuit voltage of the battery, I is the current, E is the energy source and Vterm is the
terminal voltage of the battery.
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Figure 2. Simple internal resistance model of a battery.

During acceleration, the discharge current is implied as positive whereas in regen-
erative braking the charging current is implied as negative. The value of Voc is 690 Volts
and Rint is 0.1 Ohms. Equations (1a) and (1b) denote the power and power loss of the
battery, respectively.

Pideal = IVoc. (1a)

Ploss = I2Rint. (1b)

Equations (2a) and 2(b) represent the actual power at the outlet of the lithium-ion
battery module.

Pactual = Pideal − Ploss. (2a)

Pactual = IVoc − I2Rint. (2b)

Using Equation (1b), the expression for the battery current is resolved and is given in
Equation (3).

I =
Voc ±

√
V2

oc − 4RintPideal

2Rint
. (3)

Equation (4) represents the expression for the lithium-ion battery terminal voltage:

Vterm = Voc − IRint. (4)

Equation (5) represents the expression for the lithium-ion battery SOC.

SOCnew = SOCold + 100
(

∆E
E

)
. (5)

2.2. Motor Model

The direct and quadrature axis (d-q) model of a three phase squirrel cage induction
motor in a synchronously rotating reference frame is epitomized by Figure 3a–b.

The corresponding direct and quadrature axis voltage and flux vectors are given in
Equations (6)–(9), respectively. The expression for torque developed by the induction motor
in terms of current and flux vectors is given in Equation (10).

Vdr = RrIdr +
d
dt
ψdr − (ωe −ωr)ψqr. (6)

Vqr = RrIqr +
d
dt
ψqr + (ωe −ωr)ψdr. (7)

ψdr = LlrIdr + Lm(ids + idr). (8)

ψqr = LlrIqr + Lm
(
iqs + iqr

)
. (9)
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Te =
3
2
∗ P

2
∗ Lm
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(
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Figure 3. Three phase induction motor (a) d-axis model and (b) q-axis model.

The efficiency of the three phase induction motor is computed as the ratio of the
product of the torque and angular speed to the sum of the power and power loss. It is
derived by Equations (11a) and (11b), respectively. The parameters of the motor model are
depicted in Table 1.

η+mot =
Tmotωmot

Tmotωmot + Ploss
. (11a)

η−mot =
Tmotωmot + Ploss

Tmotωmot
. (11b)

Table 1. Motor Parameters.

3φ, AC Induction Motor

Motor Power, Pm 90 kW
Nominal Voltage, Vn 380 V, RMS

Current Rating, In 200 A
Variable Frequency, fs 0–400 Hz

Constant Power 90 kW @ 12,000 rpm
Constant Torque 120 N-m @ 7200 rpm
Motor Inertia, J 1.5 kg-m2

Stator Resistance, Rs 0.021 Ohms
Rotor Resistance, Rr 0.016 Ohms
Stator Reactance, Lls 0.0164 Henry
Rotor Reactance, Llr 0.0167 Henry

Mutual Inductance, Lm 0.016 Henry
Number of Poles, P 4

Nominal Stator Flux, ψs 0.98 Wb
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2.3. Glider Model

The glider model of an eCAR is developed in terms of vehicle speed and tractive
force. It includes inertia due to the weight of the vehicle, the aerodynamic force, the rolling
resistance friction and the hill gradient force. In Figure 4 the effect of the allied forces on an
eCAR is represented.
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The maximum amount of effort required mostly due to the inertia weight or mass of
an eCAR is given in Equation (12):

Fi = miax (12)

where mi is the inertial mass that also accounts for the rotating inertia. Accordingly, mi,
is faintly more than the actual (~4%). The force due to aerodynamic drag is computed by
Equation (13):

Faero =
1
2
ρCdAfV

2 (13)

where ρ is air density, Cd is the air drag coefficient, Af is the frontal area and V repre-
sents velocity.

The rolling friction resistance met at the wheels is given below in Equation (14).

Frr = Crrmg (14)

where Crr is the rolling coefficient, m defines the mass and g represents the gravita-
tional force.

The gradient force due to uphill or downhill travel is computed in terms of a slope
angle alpha using Equation (15):

Fgr = mgsin ∝ (15)

where ∝ is angle of the slope.
The rolling resistance and the aerodynamic drag are combinedly characterized as road

load and are given in Equation (16) below:

Frl = Frr + Faero. (16)

Another way to determine the road load by means of a quadratic equation relating to
eCAR speed is shown in Equation (17) below.

Frl = A1 + B1V + C1V2 . (17)
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The distinctive values A1, B1, C1 are specific for each eCAR configuration and analo-
gous to the standards originating in the Environmental Protection Agency (EPA). All of
these forces sum up to the total tractive effort represented by Equation (18):

FTR = Fi + Frl (18)

where FTR is the tractive force. The expression for acceleration is obtained from Equations (12)
and (18) as in Equation (19). The vehicle parameters are depicted in Table 2.

ax =
dv
dt

=
FTR − (Frl)

mi
. (19)

Table 2. Vehicle Parameters.

Vehicle Dynamics

Mass of the vehicle, m 1200 Kg
Frontal area of the vehicle, Af 0.2 sq. mt

Wheel radius, Rw 0.2794 m
Coefficient of rolling resistance, Crr 0.0015

Air density, ρ 1.225 Kg/m3

Air drag coefficient, Cd 0.3
Gravitational constant, g 9.81 Kg/m2

Transmission gear ratio, G 6.842
Slope or gradient angle, α 5◦

Constant A 74.28
Constant B 2.139
Constant C 0.3922

2.4. Driver Model

In an eCAR the driver model is a proportional integral (PI) controller. For the given
drive cycle the difference in the reference speed and the actual speed is given as the input
and the output of the controller decides the accelerator pedal position (APP) as a percentage
of the reference torque. Figure 5 depicts the basic driver model.
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In the driver model, the choice of the PI control parameter tuning method plays a vital
role and the values of the proportional constant, kp, is 300 and the integral constant, ki,
is 500.

3. Direct Torque Controlled eCAR

A direct torque control method is the most precise control strategy for the torque
control of a three phase induction motor. However, at low speeds and low switching
frequency high ripples in the flux and torque originate that leads to acoustic noise and
degrades the control performance. Several DTC schemes have been presented to overcome
this difficulty by focusing specifically on the torque and flux variables. The scientists Isao
Takahashi and Manfred Depenbrock introduced DTC in 1984 to compete with traditional
controls. It had a good dynamic performance and was the most robust with respect to the
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motor parameter variations. The principle involved is based on a direct determination of
the control pulses applied to the switches of the voltage source inverter. At present, a lot of
research is being carried out on modern DTC schemes [8–10].

The artificial intelligence (AI) based DTC scheme has gained prominence in recent
years and is making a remarkable impact on modern research areas. Fuzzy logic, adaptive
neural networks, adaptive neuro fuzzy inference systems, particle swarm optimizations and
genetic algorithms are the major families that constitute AI. In [11], the authors introduced
AI methods to enhance the dynamic behavior of the DTC scheme under different operating
conditions with a reduction in ripples of the torque and flux and an increase in efficiency
and energy savings. The use of the voltage source inverter (VSI) develops a three phase
voltage with controllable amplitude and frequency. A classic two-level VSI supplying an
input voltage to a three phase induction motor is shown in Figure 6. An optimal advanced
discontinuous PWM (ADPWM) algorithm has been proposed to train the actual value of
gamma (γ) according to a set policy for a DTC controlled IM drive. The SVPWM technique
provides a solution to a few hardships with traditional PWM schemes. The proposed
ADPWM algorithm lowered the ripple in the steady state line current, acoustic noise and
switching losses compared with traditional schemes [12].
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Figure 6. Three phase voltage source inverter.

The combination of three switching states gives out eight possible voltage vectors.
At any interval, the inverter has to operate one of these voltage vectors. Among the eight
voltage vectors, two are zero voltage vectors (V0 and V7) and the remaining six (V1 to
V6) are active voltage vectors. In the space vector plane, all of the voltage vectors can
be represented as shown in Figure 7. In the SVPWM algorithm, the boundary for the
modulation index is 0.866. In this strategy, the total time interval of the zero voltage
vector is equally distributed between V0 and V7. In addition, the zero voltage vector
time is distributed symmetrically at the start and end of the sub cycle in a symmetrical
manner. Furthermore, to lessen the switching actions of the VSI, it is required that switching
should take place in one phase in one transition from one state to another. Consequently,
the SVPWM uses 0127–7210 in first sector, 0327–7230 in the second sector and so on [13].
The block diagram of the proposed intelligent adaptive neural network based DTC scheme
for an eCAR propulsion system is shown in Figure 8.
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At first, the three phase induction motor is modelled in a synchronously rotating
reference frame and the developed adaptive motor model calculates the approximate
torque, flux and speed from the direct and quadrature axis voltages and current magnitudes.
The speed of the reference drive cycle, converted into the angular speed (rad/sec) ωr*,
is compared with the actual angular speed, ωr, calculated with the help of an adaptive
motor model block. The obtained speed error is given as an input to the speed controller or
driver model, which produces reference torque magnitude, Te*. The reference torque is
compared with the actual torque, Te, generated by the adaptive motor model and processed
through the torque controller that produces the reference slip speedωsl*.

The addition and integration of the reference slip speed with the actual angular speed
generated by the adaptive motor model produces reference theta θe*. The direct and
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quadrature axis reference voltages are calculated by the reference voltage vector calculator
(RVVC) using Equation (20).

Fref =
2πf1
Vref

√
3
π

∫ π
3

0
F2

seqd ∝ (20)

where Fseq
2 is the root mean square (RMS) value of stator flux ripple of a particular sequence

and Vref is reference voltage vector at an angle α. Considering these two vectors as inputs,
the magnitude and position of the reference voltage vector are calculated according to the
set value of γ. The SVPWM block generates gating pulses to the inverter based on the
space vector approach. The inverter voltage amplitude and frequency are varied in such a
way as to achieve the desired speed [14,15].

4. ANN Controller

The application of artificial intelligence into the electric vehicle propulsion motor
control enhances the performance in terms of higher efficiency, a low ripple in torque
and flux, a higher drive range and a low battery discharge rate. Various optimization
methods have been adopted in the literature where the Ziegler–Nichols tuning method
is a classical method and artificial intelligence based adaptive methods such as fuzzy
logic, ANNs, adaptive neural fuzzy inference systems (ANFISs), global optimization
(genetic algorithm, GA) and particle swam optimization (PSO) also exist. In this paper an
adaptive neural network based tuning method is considered for torque controller parameter
optimization alone.

An adaptive neural network algorithm is the most suitable for an eCAR control due
to its simple structural design, ability to approximate complex nonlinear functions and
effortlessness of training the algorithm and robustness to parameter variations. ANNs with
DTC schemes have been introduced by many researchers for the parameter determination
of the motor control system, state estimation, the design of speed and torque controllers,
motor speed estimation and also for vector selection strategies. A variety of neural networks
is available such as the feed forward multilayer neural network and recursive neural
network [16]. The basic block diagram of an ANN is shown in Figure 9.
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In this paper an adaptive neural network based torque controller is developed for
the inner current loop; that is, the conventional torque controller is replaced with the
proposed ANN tuned torque controller as shown in Figure 8 in order to minimize the
torque ripple and to improve the efficiency of the propulsion motor that in turn improves
the performance of an eCAR.
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The structure of a developed ANN controller is 2, 40, 1, which means that the network
has two neurons in the input layer, 40 neurons in the hidden layer and one neuron in
the output layer. The steady state error output of an ANN is given as an input to the
PI controller in order to obtain the reference slip speed ωsl and is shown in Figure 10.
The MATLAB Simulink model of a developed ANN structure with two inputs, a hidden
layer and one output is shown in Figure 11.
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The inputs to the network are sampled from the torque error ‘Terr’ and the change in
torque error ‘∆_Terr’ data. The parameters of the ANN are tabulated in Table 3. The net-
work output is used to tune the torque controller with the input layer and the hidden
layer as a hyperbolic tangent sigmoid transfer function and the output layer as a pure
line transfer function where weights and bias values are updated corresponding to the
Levenberg–Marquardt optimization algorithm [17,18]. The ANN algorithm is elaborated
in the following steps:

Step 1: Firstly, torque error and the change in torque error are given as inputs to the
network. The input vector matrix is given by [X] 2 × 1 with two inputs.
Step 2: Subsequently, the targets are chosen in order to attain the desired variables of the
network. The target vector matrix is given by [t] 1 × 1 with one output.
Step 3: The weights and biases are then initialized and are updated corresponding to
Levenberg–Marquardt optimization algorithm. The output vector matrix is given by [y]
where [w]◦ and [b]◦ are the weights and biases row matrices, respectively.
Step 4: The ANN is trained by using the data provided in Step 1 and Step 2, respectively,
and by fixing the goal parameter to a minimum. The error data in the form of an error
vector matrix (E) is generated to confirm that the desired convergence of the specified goal
parameters or epochs during training has been met then training stops.

E =
∑n

i=1(ti − yi)
2

I
(21)

where E is the error data matrix obtained using a mean squared error as the objective
function, n is the total number of outputs and I is the number of iterations.
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Step 5: After the training the network, the optimized value of the steady state error as the
output is yielded.
Step 6: The optimized steady state error output is applied as the input to the PI controller
in order to produce the slip speed.

Table 3. ANN Parameters.

Variables Values

Number of neurons 40
Hidden layer transfer function Tansig

Output layer transfer Purlin
Activation function Net sum

Gradient 1.1045 × 10−6

Regression 0.9897
Training sets 100
Testing sets 50

Training method Levenberg–Marquardt back-propagation
Optimization function Mean square error (MSE)

Learning method Gradient descent weight and bias

The input data, output data, target data and error data obtained by the plant process
to train the ANN is shown in Table 4.

Table 4. Sample Data for an ANN.

S. No Input 1 Input 2 Output Error Target

1 0 0 282.9359 −282.936 0
2 0.288448 9951.406 280.8798 −272.321 8.558594
3 −0.13429 9506.473 290.7358 −275.806 14.9301
4 −0.09254 9109.208 289.5684 −270.595 18.97366
5 −0.09145 8760.206 289.3706 −267.585 21.78575
6 0.676865 8492.981 270.4763 −247.518 22.95849
7 −0.19752 8213.084 291.5531 −266.385 25.16803
8 −0.82494 7985.73 305.1781 −278.464 26.7146
9 −0.57358 7827.065 299.7575 −272.655 27.10218

10 1.383714 7761.038 251.6016 −226.022 25.57983

The complete vehicle model is simulated for step input and the responses are cal-
culated for neural network input, output, target and error data, respectively. Primarily
the bias is taken as 1 and the values are added along with the weights and the updated
weights that in turn minimize the torque error. The optimum solution occurs at 14th epoch
with a value of 1.0155 × 10−7 which is accurate and is termed to be zero. The network
is developed by typing “nntool” into the MATLAB command window. The Simulink
model is generated using the command “genism(network)” and is shown in Figure 12
Subsystems of the neural network are shown in Figures 13–15, respectively [19]. Table 5
depicts conventional and the ANN controller parameters.
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Table 5. Torque Controller Parameters.

Torque Controller Constants Kp Ki

Conventional Controller 0.2870 0.0167
ANN Controller 0.2137 0.01

5. Simulation Analysis of an eCAR

The MATLAB Simulink model of a direct torque controlled eCAR propulsion system
was developed using the “Powertrain toolbox” R2019b version and is shown in Figure 16.
The Simulink model of a lithium-ion battery, a three phase induction motor, a glider model,
gear transmission and voltage source inverter are modelled using their mathematical
relations as discussed in Section 2. The developed model is simulated under European
Cycle (ECE-R15), High Way Fuel Economy Test (HWFET) and New York City Cycle (NYCC)
drive cycles to validate the performance of the proposed ANN tuned torque controller and
the improvement in the performance of an eCAR is observed. The obtained simulation
results for the proposed ANN tuned torque controller are compared with the conventional
PI controller and are shown in the following waveforms.
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From Figure 17a–c, at intervals of 55 s, 90 s and 185 s, it is seen that for the desired
speed there are spikes in the torque waveform due to the conventional torque controller
that draws more power and these ripples are suppressed using an ANN tuned torque
PI (ANN-PI) controller under an ECE (R15) cycle. The corresponding distance travelled,
fuel consumption and %SOC are also shown in Figure 17d–f. Similarly, in Figure 18a–c,
at intervals of 140 s and 645 s the torque ripple is suppressed using an ANN-PI controller
under a HWFET cycle. The corresponding distance travelled, fuel consumption and %SOC
are shown in Figure 18d–f. In Figure 19a–c, at intervals of 98 s, 240 s and 508 s torque
ripple is suppressed using an ANN-PI controller under an NYCC cycle. The corresponding
distance travelled, fuel consumption and %SOC are shown in Figure 19d–f. A spike in
the torque magnitude increases the power demanded by the propulsion motor as it needs
more tractive force. The motor output power and power loss for standard drive cycles is
calculated using Equation (11a) and are tabulated in Table 6 below.
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Table 6. Motor Performance Analysis Under a One Cycle Simulation Test.

Parameters

Drive Cycle ECE (R15) HWFET NYCC
PI ANN-PI PI ANN-PI PI ANN-PI

Avg torque ripple (Nm) 28 4 12 2 10 2
Avg flux ripple (wb) 0.3 0.15 0.2 0.14 0.18 0.12

Avg fuel consumption (J) 120 102 3250 3133 250 176
Avg output power (kW) 50 48 120 90 145 115



World Electr. Veh. J. 2021, 12, 44 16 of 17

From the above data, it is evident that with the use of an ANN controller, the torque
ripple and the power required by the motor is reduced, thereby increasing the motor
efficiency, fuel efficiency and drive range. Thus, the proposed ANN controller offers a good
dynamic performance under city driving environments.

6. Conclusions

In this paper, an application of an intelligent adaptive neural network tuned torque
controller for a direct torque controlled eCAR propulsion system was presented. The glider
model (which is a summation of inertial force, aerodynamic drag, rolling resistance force
and gradient force) and the driver model were modelled using mathematical equations.
A DTC scheme with a reference flux voltage vector control strategy for a three phase voltage
source inverter fed an eCAR propulsion motor using a two-level SVPWM algorithm
that was developed to control the torque and flux in order to meet the vehicle power
requirements. An ANN tuned torque PI controller was designed to mitigate the torque
ripple and improve the eCAR performance in terms of drive range, fuel economy and
energy efficiency. The proposed two input, one output ANN network was trained using
the Levenberg–Marquardt back propagation algorithm. A MATLAB Simulink model of
an ANN based DTC controlled eCAR propulsion system consisting of a 30 kwh, 100 Ah,
40 V lithium-ion battery and a 90 kw induction motor fed by a two-level SVPWM based
inverter with a vehicle mass of 1645 kg was designed and analyzed. The model was tested
to validate the performance of the proposed ANN tuned torque controller under ECE (R15),
HWFET and NYCC drive cycles. It was proven that the proposed intelligent controller had
a good dynamic stability under most driving environments.
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