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Abstract: The paper describes a fully automated process to generate a shell-based finite element
model of a large hybrid truck chassis to perform mass optimization considering multiple load cases
and multiple constraints. A truck chassis consists of different parts that could be optimized using
shape and size optimization. The cross members are represented by beams, and other components
of the truck (batteries, engine, fuel tanks, etc.) are represented by appropriate point masses and are
attached to the rail using multiple point constraints to create a mathematical model. Medium-fidelity
finite element models are developed for front and rear suspensions and they are attached to the
chassis using multiple point constraints, hence creating the finite element model of the complete
truck. In the optimization problem, a set of five load conditions, each of which corresponds to a road
event, is considered, and constraints are imposed on maximum allowable von Mises stress and the
first vertical bending frequency. The structure is optimized by implementing the particle swarm
optimization algorithm using parallel processing. A mass reduction of about 13.25% with respect to
the baseline model is achieved.

Keywords: hybrid truck chassis; finite-element modeling; structural optimization; lightweight
structure; stress computation

1. Introduction

Since their inception, the design of automobiles has changed considerably. The Depart-
ment of Energy is currently investing millions of dollars in research and development of
the generation of energy-efficient automobiles (https://www.energy.gov/articles/energy-
department-announces-137-million-investment-commercial-and-passenger-vehicle). The en-
ergy efficiency of vehicles can be achieved by improving engine performance, hybridization,
improving the aerodynamics, and making structural components lightweight.

Lightweight components not only make the vehicles more energy-efficient, but they
also result in improvement in road performance and handling. In the past, the dimensions
of automobile components were determined mostly by hand calculations by applying the
principles of strength of materials. However, the last few decades have seen an exponential
rise in computational power, which makes detailed structural analysis of complex structures
possible using various numerical techniques. The finite element method is one of such
numerical methods, which gained widespread popularity for structural analysis ever since
the publication of the seminal paper by Turner et al. [1] and a series of papers published by
Argyris and Kelsey [2], which subsequently appeared in the form of a book. The development
of user-friendly computer-aided design (CAD) and finite element analysis (FEA) software
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certainly made it possible to generate and analyse detailed three-dimensional (3D) modeling
and perform analysis of complex structures. To automate the design process, finite element
methods are usually integrated with numerical optimization algorithms. It is particularly
important that the design satisfies all geometric and manufactural constraints. For extremely
complex structures like those of large commercial vehicles, the modeling and analysis can
still, despite enormous advances in both hardware and software, be quite expensive. In most
industries, optimum structural dimensions and configurations are determined by engineering
experience and trial-and-error. It requires a lot of human resources and ingenuity to generate
and analyze numerous models before a design is finalized.

Multiple research groups worldwide are working on the design and manufacturing of
lightweight vehicles, which can dramatically reduce the design cost. A great deal of research
is going on developing new algorithms and techniques related to multidisciplinary and
multiobjective optimization of automobile parts. Some of the popular areas of research are
size/shape optimization [3], topology optimization, lattice-based optimization, etc. [4]. In size
optimization, usually, the cross-sectional dimensions of structural components are considered
as design variables. In shape optimization, the geometry of a component is defined by a set of
parameters that can be varied. Topology optimization is one of the most modern methods
of optimization where the density of elements of the FEA model is considered as a design
variable while adding total volumetric fraction as a constraint. Various studies on automobile
frame optimization (including shape/topology optimization considering multiple constraints)
can be found in the work of Zuo et al. [5–11]. Miao et al. [12] developed a multidisciplinary
design optimization framework for fatigue life prediction of automobiles.

Cavajzzuti et al. [13] used topology, topometry, and size optimization to design
automotive chassis while satisfying the structural performance constraints as per Ferrari
standards. The design, when compared to the commercial Ferrari F458 chassis, showed
significant weight reduction. Wang et al. [14] studied the topology optimization approach
for longitudinal beam shape frames with variable cross-sections to derive a reliable chassis
design. They achieved the optimized frame, which was robust and had a low natural
frequency. Kurdi et al. [15] compared diverse heavy-vehicle frames with different mass and
torsional stiffness. The authors found an effective design with low weight and maximum
torsional stiffness. Kang et al. [16] presented the optimal design of a heavy-vehicle by
applying the analytical target cascading (ATC) methodology. They solved design problems
for heavy-duty trucks and buses in the presence of a suspension system. Rajasekar et al. [17]
applied the genetic algorithm to optimize the chassis with various rectangular cross-
sections. Jin and Wang [18] performed the strength analysis of a simplified suspension
model. The authors simplified the suspension with an equivalent beam to calculate the
frame’s strength under diverse load conditions.

Techniques like topology optimization are computationally expensive. It is reasonable
to optimize small components using topology optimization. However, it is not practical for
multidisciplinary design optimization of a complex structure like vehicle chassis involving
multibody interaction. In problems involving complex load paths, topology optimization
often results in designs infeasible to be manufactured by conventional manufacturing
approaches. Even though developing a surrogate model is one way to tackle a problem
involved in a highly complex structure, it requires the availability of optimal experimental
designs (OED). Performing experiments or simulations can be an enormously expensive
task. For complex structures, a more reasonable approach is to develop a simplified
equivalent model that can represent the physics reasonably accurately.

The primary purpose of this work is to develop a computational framework for
optimizing the structure of truck chassis using a mathematical model that is relatively
accurate in representing the actual structure considering the stress, modal frequency, and
manufactural constraints. The medium-fidelity model is verified with the detailed finite
element model of the truck chassis considering stiffness and modal frequencies as metrics.
As the disfeatured medium-fidelity model is likely to contain stress singularities (at sharp
edges and points of beam attachments), the maximum von Mises constraint cannot be
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considered a constraint. To circumvent this issue, we proposed a term called ‘Violation’ as
the fraction of the total area over which von Mises stress is greater than the permissible
value and constraint is imposed on its maximum value. As the vertical bending mode
frequency has a significant effect on the performance and the passenger-comfort of the
vehicle, a constraint is imposed on its minimum value. The framework incorporates the
modal assurance criterion (MAC) to identify the first vertical bending model and the
corresponding modal frequency to compute the constraint on vertical bending frequency.
The framework, as developed, employs a general approach to performing structural
optimization of a complex structure under stress and modal frequency for a specific mode
shape. Although it was only done for the first bending mode, the approach based on modal
assurance criteria could also be employed for other modes, e.g., a torsional mode.

Furthermore, an unconventional structure of the side rail of the truck chassis is explored
using the optimization framework. It is a C-section but with a central drop and a rectangular
top and a bottom plate attached. The shape of the profile is defined by a set of continuous
design variables. The thickness of the top and bottom plate, the web, and flanges of the
channel change along the length, and they are defined by another set of discrete variables.
The geometry and mesh are generated using commercial FEA software, MSC. PATRAN
(Version: 2014, MSC Software Corporation, Newport Beach, CA, USA) [19]. By the orthog-
onal method, a set of load conditions, each corresponding to a road event, is derived, and
linear static analysis is run using MSC. NASTRAN [20]. Reaction forces from the road are
applied at the wheel locations of the suspensions. The rail-shaped chassis with suspension
is an unconstrained structure. To achieve a static equilibrium, the ‘inertia relief’ method is
used. The aim of this work is to minimize the structural mass of the rails of a very large
commercial truck chassis while satisfying multiple constraints and considering multiple load
cases. The constraints include maximum allowable von Mises stress, minimum stiffness, and
first vertical bending frequency. The metaheuristic optimization algorithm, particle swarm
optimization (PSO) algorithm, is used for optimizing the design variables.

Overall, in this work, detailed geometry parameterization and integration of cross-members
with the side-frame and verification of the medium-fidelity with the high fidelity model are de-
scribed. The method for calculating the vertical bending stiffness and the influence of geometry
on vertical bending frequency and stiffness and verification of the medium-fidelity assembly
with high fidelity results are established. The integration of the suspensions and point masses
to create a complete assembly with the method of detecting the vertical bending mode in an
automated way is studied during the optimization process. The load cases for static analysis
are established, and, finally, the optimization methodology is established.

2. Modeling the Side Rails

In the parametric model of the rail, the cross-section is an important design compo-
nent. Fifteen continuous design variables define the web height and flange thicknesses in
different regions. Figure 1 shows the top view and side view of the rail, and the dimensions
that are labeled in red are considered to be variables. The variables Rab1, Rab2, Rbc1 and
Rbc2 denote fillet radii. The terms FWW and RWW denote the “Front Wheel Width” and
“Rear Wheel Width”, respectively, and they are considered constant. All the dimensions
cannot be varied independently as they are linked by the following set of equations:

Lab = Hb−Ha
tan(Aab)

Lbc = Hb−Hc
tan(Abc)

Lb = TRL− La− Lab− Lbc− Lc

(1)
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Figure 1. (a) Top view and side view of rail; (b) cross section of side rail (consisting of C-section with
top and bottom plates).

The rail can be divided into several transverse sections, each characterized by an inde-
pendent set of top and bottom plate dimensions and thicknesses. Sections are numbered in
order (from front to the back), and Figure 1b shows the xth rail cross section; x being the
section number. Figure 1b (i) shows the dimensions of the top plate, defined by variables
Fwxo, Fwxt1 and Fwxt2. Figure 1b (ii) shows the variables specifying flange and rail thick-
nesses (MRx1, MRx11, MRx3, MRx21, MRx2). The range of the variables specifying the
dimension needs to be consistent with manufacturing limitations and geometric constraints
to ensure the rail does not overlap with the geometry of other components of the truck.
The thickness design variables should be assigned only values of thicknesses of available
grades of sheet metal in the manufacturing industry.

In this work, optimization was performed using a limited number of design variables.
Variable La is considered to be the sum of Lob1 and Lob2, i.e.,

La = Lob1 + Lob2 (2)

Further, the fillet radii were kept constant and equal to 1000 mm. The rails were
divided into three sections (denoted as Sections 1–3) as shown in Figure 2. Each section
was characterized by different thicknesses and dimensions of the top and bottom plates.
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The dimensions of the top plate were specified by Fwxt1, Fwxt2 and Fwxot (see Figure 1b)
where ‘x’ denotes Section # and ‘t’ indicate ‘top’. Similarly, dimensions of the bottom plate
were specified by Fwxtb1, Fwxb2, and Fwxob where ‘b’ indicates ‘bottom.’ The ratio of Fwxt1
to Fwxt2 was kept constant for each of the sections and denoted by R1 = Fwxt1/Fwxt2.
Similarly, R2 was defined as R2 = Fwxb1/Fwxb2.

Figure 2. Rails divided into three sections with different thicknesses (shown using different colors).

Since there are three sections, 15 additional design variables were required to specify the
thickness values. The thickness values are real numbers with appropriate ranges. The model
is meshed with linear quadratic shell elements with a maximum edge length of 10 mm.

3. Cross Members’ Integration and Complete Assembly

The two side rails were linked with a total of seven cross members. The cross mem-
bers are represented in Figure 3a using beams with cross sections. They were attached
to the side rail using multiple point constraints to create the medium-fidelity finite ele-
ment model of the chassis, as shown in Figure 3b. Similar to the baseline design, the rails
and the front three cross members were modeled using steel (Young’s modulus = 200 GPa,
Poisson ratio = 0.3, Density = 7900 kg/m3) and the rest of the cross member using alu-
minum (Young’s modulus = 73 GPa, Poisson ratio = 0.3, density = 2700 kg/m3).

Figure 3. (a) Cross members and relative positions in the structure; (b) medium-fidelity finite element
model of the baseline design.

4. Stiffness and Modal Frequency Calculation

The modal frequencies and vertical bending stiffness were used as metrics to verify
the medium-fidelity finite element model. Figure 4a shows the approach for calculating
the vertical bending stiffness of the frame. The boundary conditions were applied at the
wheel locations, as shown in the figure. A load F of 1000 N was applied in the middle
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of the chassis, and the maximum vertical deflection was computed using static analysis.
The vertical bending stiffness was calculated as (δv being the vertical displacement):

kv =
F
δv

(3)

Figure 4. (a) Vertical bending deflection under applied load in the middle. (b) Finite Element Model with vertically
downward force.

For the vertical bending stiffness calculation, the four mounting points were modeled
as nodes connected to the upper and the lower flanges using multiple point constraints
(MPC). The force F was applied in the vertically downward direction at a central node
attached to the flange of the left and the right rail using MPCs, as shown in Figure 4b.

In order to gain an insight into the influence of the design variables on the first vertical
bending frequency (fv) and vertical bending stiffness (kv), these values were obtained
for a set of randomly generated designs and compared with the values corresponding
to the baseline of truck chassis. Figure 5a,b show the plots of vertical stiffness vs. the
mass of the randomly generated and the first vertical bending frequency vs. the mass
for the same random designs, respectively. The design marked as ‘Model of interest’, as
shown in Figure 5c, had a higher stiffness compared to the baseline truck chassis yet had a
significantly lower mass.

Figure 5. Conts.
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Figure 5. (a) Vertical bending stiffness vs. mass for random designs, (b) first vertical bending frequency vs. mass for random
designs, and (c) the side rails of the model of interest (lower mass compared to baseline but with high vertical bending stiffness).

5. Model Verification

The stiffness and mass distribution of the medium-fidelity model of the baseline design
(consisting of a no-drop section in the web) was verified by comparing the first torsional
deformation frequency, first lateral bending frequency, first vertical bending frequency, and
the vertical bending stiffness with those of a high-fidelity model of the baseline design of
truck chassis shown in Figure 6. The high-fidelity model consisted of detailed models of the
cross members (meshed with linear quadrilateral plate elements) and mountings (meshed
with linear three-dimensional tetrahedral solid elements). It also accounted for the detailed
geometric features of commercially used rails and the connecting brackets. It comprised
a total of 269,562 nodes and 671,707 elements. Table 1 summarizes the frequencies and
vertical bending values of the medium-fidelity model of the baseline design for various
mesh sizes and the same corresponding to the high-fidelity model. The metrics of the
medium-fidelity model and the high-fidelity model shows good agreement.

Table 1. Comparison of high-fidelity and medium-fidelity modal frequencies.

Case
First Torsional
Deformation

Frequency (Hz)

First Lateral
Bending

Frequency (Hz)

First Vertical
Bending

Frequency (Hz)

Vertical Bending
Stiffness (N/mm)

Violation
Value

High-Fidelity Model 3.45 12.57 24.26 4027 N/A

Shell Element
(Element Size 12.5 mm) 3.29 10.64 25.34 4168 0.010944

Shell Element
(Element Size 15 mm) 3.27 10.58 25.16 4182 0.01012

Shell Element
(Element Size 17.5 mm) 3.21 10.57 25.31 4154 0.00991

Shell Element
(Element Size 20 mm) 3.21 10.54 25.121 4125 0.009498
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Figure 6. High-fidelity model of the baseline design.

Furthermore, it was found that, with an increase in the element size, the model
reported a lower value of both vertical bending stiffness and modal frequencies. This can
be accounted for because a smaller number of MPCs were created with a decrease in the
number of nodes, which caused a drop in the structural stiffness. Figure 7 shows the first
torsional, first lateral bending, and first vertical bending mode of the structure.

Figure 7. First torsional bending, first lateral bending, and first vertical bending modal shapes.

6. Suspension Integration

In the current work, parameterization and optimization were conducted only on the
chassis. In order to transfer the loads from the road to the frame, a simplified model of the
front and the rear suspensions, as shown in Figure 8a,b, respectively, was created by Metalsa.
The front suspension was similar to Hendrickson AIRTEK NXT front air suspension (https:
//www.hendrickson-intl.com/Truck/On-Highway/AIRTEK-NXT). The rear suspension
was similar to the Hendrickson HTB LT (https://www.hendrickson-intl.com/Truck/On-
Highway/HTB-LT), but for a 4× 2 vehicle layout. CAD was provided to define the kinematic
hard point of the suspension, the brackets, the spring hanger geometry, and interfaces to the
frame. Suspension radial and cylindrical bushing stiffness, as well as the air spring vertical

https://www.hendrickson-intl.com/Truck/On-Highway/AIRTEK-NXT
https://www.hendrickson-intl.com/Truck/On-Highway/AIRTEK-NXT
https://www.hendrickson-intl.com/Truck/On-Highway/HTB-LT
https://www.hendrickson-intl.com/Truck/On-Highway/HTB-LT


World Electr. Veh. J. 2021, 12, 3 9 of 20

stiffness, were obtained from Original Equipment Manufacturer (OEM) datasheets. The front
suspension leaf spring stiffness was adjusted to match the bulk vertical stiffness measured on
the physical vehicle. Several ‘ride heights’ (distance from the suspension bump stop to the
frame rail) and ‘wheel loads’ (force at the wheel in vertical direction were measured under
different payload levels to develop an experimental target stiffness.

Figure 8. Finite element model showing the (a) front and (b) rear suspensions.

In a typical truck chassis, the side-rails and cross members are connected by bolted
joints. Detailed analysis of bolted joints is computationally demanding as it involves
contact mechanics with several mating surfaces. That is why, in this work, a simplified
equivalent represented the bolted joints. The joint was modeled using a rigid bar element
(for the bolt) and multiple point constraints (MPCs). MPCs are essentially a set of rigid bars
that connect a node to multiple nodes of a surface mesh. A rigid bar element was created
across the center location of the boltholes on the two connected plates. MPCs were created
between the nodes at the periphery of the bolthole and the center node (ending nodes) of
the bar element. In these connections, all the degrees of freedom of the boundary nodes
were constrained to be dependent on the center node. Figure 9 shows a typical bolthole in
the model with MPCs.

Figure 9. Simplification of bolted joints.
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Furthermore, in the current approach, a geometric constraint was added such that the
top of air-springs in the suspensions touched the bottom flange of the side rails. Finally,
MSC.NASTRAN input files for applied forces based on the load cases were imported and
applied at the required nodes, and static analysis was carried out to calculate the stresses
and displacements.

Figure 10 shows the complete shell element-based representation of the truck chassis
as created by the integration of the side frames, front suspension, rear suspension, and
point masses representing the center of gravity of the engine, including the air-tank and
other features which were not considered for optimization in this problem.

Figure 10. Creation of complete model (including suspensions and point masses).

7. Static Analysis

In this research, multiple load conditions were considered for static analysis. The following
extreme five road events were considered to assume the behavior of proving ground tests:

(i) Both front wheels in bump event;
(ii) Both rear wheels in bump event;
(iii) Both front tires in pothole event;
(iv) Both rear tires in pothole event;
(v) Maximum breaking condition.

The loads on four wheels regarding those five road events were created under the
assumption of orthogonal load cases. Details on the construction of these load cases can be
found in the paper by Ostergaard et al. [21]

It was assumed that all load conditions would be somewhere in between the above-
mentioned cases. For each of the load cases, linear static analysis was conducted using the
inertia-relief method [22]. Inertia-relief is a popular method of analysis for unconstrained
moving structures. Nelson et al. [23] used the inertia relief analysis to estimate the impact of
loads on the space structure. Morton et al. [24] applied this method to calculate the distribution
of flight load on an unconstrained helicopter rotor. Vallejo et al. [25] simulated a finite element
model using inertia relief to predict the fatigue behavior of a heavy truck chassis. Pagaldipti
et al. [26] studied the influence of inertia relief on optimal designs. Saito et al. [27] carried out
full automobile optimization procedures with the inertia relief analysis. Zhang et al. [28] used
the inertia relief option to perform stress analysis on a mine dump truck frame and proposed
essential elements for the optimization of a commercial vehicle. Table 2 shows the g-forces on
wheels corresponding to the assumed road conditions (RC). The X-axis is in the direction of
the forward motion of the vehicle while the Z-axis is normal to the road.
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Table 2. Load cases using the method of superposition (numbers indicate g-force magnitudes).

Wheel -> Front Left Front Right Back Left Back Right

Direction -> X Y Z X Y Z X Y Z X Y Z

Front Both Bump 0 0 1.75 0 0 1.75 0 0 1 0 0 1

Rear Both Bump 0 0 1 0 0 1 0 0 1.75 0 0 1.75

Front Both Pot Hole 0.75 0 1.75 0.75 0 1.75 0 0 1 0 0 1

Rear Both Pot Hole 0 0 1 0 0 1 0.75 0 1.75 0.75 0 1.75

G-Stop Forward 0.4 0 1 0.4 0 1 0.4 0 1 0.4 0 1

The constraints included maximum allowable von Mises stress and minimum first
vertical bending frequency. The defeatured finite element model shown in Figure 10
contains several sharp edges and places where beams are attached to surfaces. These are
the result of simplification, and such features do not exist in the real structures. However,
a simple static analysis of these medium-fidelity models often shows stress singularities
around these areas. The stress value here was significantly higher than elsewhere [29–31].
For stress-based optimization, usually, these regions need to be excluded. To do so, we
defined a parameter entitled ‘Violation’ as

Violation =
Shell Area where σvMises > σallowed

Total Sur f ace Area
(4)

Instead of imposing a constraint on the maximum von Mises stress in the system,
the constraint was imposed on maximum ‘Violation.’ For the model with no stress singu-
larities, the value of ‘Violation’ for the optimized design should be 0.

8. Mode Detection

In the optimization problem, the vertical bending natural frequency of the truck frame
was added as a constraint, and it needs to be greater than 20 Hz. The first step is obviously
to run the free vibration analysis, and it was performed using MSC.NASTRAN.

To find the frequency of the vertical bending mode from a set of all free vibration
modes of the truck chassis design, modal assurance criteria (MAC) were implemented [32].
If there are two normalized eigenvectors: {ΦA} and {ΦB}, the MAC is defined as

MAC =

∣∣∣{ΦA}T{ΦB}
∣∣∣2

({ΦA}T{ΦA})({ΦB}T{ΦB})
(5)

The value of MAC is bounded between the values 0 and 1. The value 0 indicates that
the two eigenvectors are completely orthogonal to each other. However, value 1 indicates
that the two modes are fully matched. In this work, a reference eigenvector exhibiting
vertical-bending deformation was taken, and for each of the vibration modes of a given
design, the MAC was calculated. The mode with the highest value of MAC was considered
as the vertical bending mode.

MAC can be calculated only when {ΦA} and {ΦB} are of the same dimension, i.e., the
eigenvectors of the given design need to be of the same dimension as that of the reference
eigenvector. This is almost impossible since the finite element models of different designs
contain different numbers of elements. To resolve this issue, the displacement field of
the eigenvector of the given design was interpolated on the finite element grid of the
reference design to produce a new eigenvector which will be of the same dimension as of
the reference eigenvector.

Figure 11 and Table 3 show an example implementation of the implemented procedure.
It can be seen in Table 3 that the modal frequency of 31.94 Hz was the vertical bending
natural frequency.
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Figure 11. (a) Reference eigenvector (vertical bending mode) and (b) matching eigenvector from a
set of test eigenvectors.

Table 3. Modal assurance criteria (MAC) values of test eigenvectors with respect to reference
eigenvectors (see Figure 4b).

Natural Frequencies (Hz) Normalized MAC Value

3.969 8.80 × 10−8

10.57 1.22 × 10−6

22.23 1.10 × 10−4

25.43 2.23 × 10−1

26.14 5.00 × 10−3

27.31 5.68 × 10−5

30.08 8.23 × 10−5

31.94 1.00

33.63 7.50 × 10−3

9. Optimization Framework

The aim was to minimize the structural mass of the rails while satisfying multiple
constraints. Considering maximum ‘Violation’ to be 1%, the minimum value of first vertical
bending frequency to be 20 Hz, and minimum vertical bending stiffness equal to that of
the baseline truck model, the optimization problem can be mathematically written as:

min(Obj)

where,
Obj = W + 106(∑ max(0, gi))

g1 = max(Violation)
0.01 − 1

g2 = fv
20 − 1

(6)

where W is the structural mass of the rail, and fv is the vertical bending frequency.
In this optimization problem, we dealt with structural weight in the range of 102–103 kg.

Hence, if the constraints are not satisfied, the objective function assigns a value ~106 kg
and thus becomes an undesirable design.
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The optimization was performed using a modified version of the Particle Swarm
Optimization (PSO) algorithm, which is a heuristic optimization process and does not
include the calculation of gradient. An explanation of this algorithm is given in the article
by Kennedy et al. [33]. In every iteration, random particles (points in the design space) were
distributed and evaluated. The particle’s direction and position during the optimization
process were updated (after the kth iteration) using Equations (7) and (8), respectively.

vi
k+1 = wvi

k + c1r1

(
pi − xi

k
)

∆t
+ c2r2

(
pg

k − xi
k

)
∆t

(7)

xi
k+1 = xi

k + vi
k+1∆t (8)

where xi
k are the design variables and are called the positions of the particles, vi

k is the
velocity of the particle, which is used to update the position; r1 and r2 are the uniform
random numbers between 0 and 1; c1 and c2 are known as thrust parameters; w is the
inertia weighting parameter of velocity; pi and pg

k are the best particle position (throughout
iterative history) and the best swarm position, respectively. In Equation (7) the second term
is known as “individual correction” because (pi − xi

k) is essentially the difference between
the particle’s current position and the best position in history. Thus, if the term increases,
the particle is attracted more towards the best position. The third term in Equation (7) is
called “social correction” as

(
pg

k − xi
k

)
is the difference between the particle’s position and

the best position in the entire swarm, and hence it attracts the particle to the global best.
The inertia weight parameter, w, decides the influence of the particle’s velocity compared
to the personal and social influences, and it decides the optimization convergence rate.
The parameter ∆t is called the time step and is often taken as 1. The values of the parameters
as considered in this work are listed in Table 4.

Table 4. Particle swarm optimization (PSO) parameters used in the present study.

PSO Parameter Value

w 0.78

c1 2

c2 2

∆t 1

Convergence is said to have been achieved when the difference in the objective value
for the particles in the swarm falls within a specified limit, or the maximum allowable
number of iterations is reached. It is always recommended that, for PSO, if the convergence
rate is too high, there is a higher chance that the search will end in a local optimum.
Thus, it is always recommended not to use a too high value for w. The framework for the
implementation of the algorithm is given in Figure 12.

A significant advantage of the PSO algorithm is that the computation of objective
functions for each of the particles is independent. Hence, the algorithm can be parallelized
easily (using the message passing interface, MPI). Further, the analyzed models can be
stored in a database, which can be used by the industry for other studies requiring a large
number of models of different specifications. For such studies, the manual development of
models can be very cumbersome.

However, the classical PSO algorithm needed some modification in order to be imple-
mented in our problem. Firstly, the computation of the objective function involving mesh
generation and finite element analysis is computationally expensive, hence there was a chance
of memory saturation, especially while running in a cluster shared by multiple users.
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Figure 12. PSO algorithm applied to the weight minimization problem.

Secondly, while Virginia Tech has a limited number of licenses for commercial software
MSC.PATRAN and MSC.NASTRAN, which are used in this research, there was a possible
unavailability of the required number of licenses while running the optimization process
using parallel processing. The optimization process was saved from stopping during
unavailability of licenses and memory saturation by implementing the license cycle-check
method and memory self-adjustment method [34,35] developed at Virginia Tech.

Moreover, for a certain set of design variables, MSC.PATRAN can fail to create the
complete geometry, leading to analysis failure. When this happens, the objective function
cannot be computed, and hence the algorithm fails to proceed. To prevent the optimization
from stopping, a large value (105) was assigned to the objective function corresponding to
it. This causes the optimizer to consider the design to be infeasible and thus the particle is
discarded from the search space.

In order to perform optimization using the PSO algorithm, the model and mesh gener-
ation for different design variables, structural analysis, and evaluation of the constraints
need to be automated. In this work, this automation was carried out using a python script.
Once the constraints and hence objective function were evaluated for each of the particles,
they were used as input to the PSO algorithm, which found the set of particles for the next
iteration. The automated determination of the objective for the PSO algorithm is shown in
Figure 13. The ranges for the shape design variables were set according to manufacturing
limitations and those of the size design variables (representing thickness) according to the
grades of sheet metal available.

Each “particle” corresponded to the generation of the finite-element model according to
a set of design variables and running multiple types of structural analysis (modal analysis and
vertical bending stiffness analysis) on the chassis and finally static analysis on the assembly
for the five given load cases to calculate the maximum value of the ‘Violation’ factor.

For each of the load conditions, linear static analysis was performed using MSC.NASTRAN
and the ‘Violation’ was calculated, as shown in Figure 14. Optimization could be performed
considering the maximum value of ‘Violation’ or assigning different weights to ‘Violation’
corresponding to each load condition.
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Figure 13. Python script for analysis and optimization.

Figure 14. Process of calculating ‘Violation’ for multiple load cases.

The objective function was finally calculated. The objective function was set up such
that it was equal to the structural mass only if all the constraints were satisfied. Otherwise,
it took a very large value. The optimizer automatically considered the design as infeasible
and tended to move away from it.

10. Optimization Results and Discussion

The optimization was run on a cluster having 48 cores with a clock speed of 2.2 GHz
and a total RAM of 132 GB. Fifteen design variables defining the shape and 15 design
variables defining the thicknesses were considered in the optimization. Sixty-six particles
per iteration were checked, and the objective function was updated using the PSO algorithm.
The optimization was run for a total of 15 iterations. It was found that the objective
function remained unchanged after the first five iterations. Figure 15 shows the iteration
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history. The best feasible design reported by the optimizer had a structural mass (without
suspensions and point masses) of 275 kg, which is 13.25% less than the mass of the baseline
design. The values of the vertical bending frequency and maximum ‘Violation’ factor
corresponding to the best design were 20.5 Hz and 0.0086, respectively. While it was
not possible to prove if a global minimum had been reached for such type of large-scale
multivariable optimization problem, the fact that these values are close to the constraints
and gives the confidence that the solution is close to the global minimum.

Figure 15. Iteration history for particle swarm optimization.

Figure 16a,b shows the vertical bending frequency vs. mass and violation vs. mass,
respectively, for all the designs analyzed during the optimization. In these charts, the baseline
design is indicated by the red dot, while the optimized design is indicated by a green dot.

Figure 17 shows the optimized design and thickness distribution for the side rails.
The von Mises stress plots for this design in several events (event #1–5) are shown in
Figure 18. As the design was guided by minimum gage thickness, it consisted of many
low-stress zones. On the other hand, a high value of stress was found around regions
where point masses and suspension leaf-springs were attached. As mentioned before, such
stress ‘hotspots’ were expected in the medium-fidelity model due to the simplification
of joints using MPCs and beam assembly. The method of optimization using the stress
‘Violation’ parameter (where a violation of stress constraint was allowed over a limited
region) helped to arrive at a reasonable solution using a medium-fidelity representation
of complex structures, like the truck chassis, which was analyzed in this research. Table 5
shows the influence of optimization on the first bending frequency, structural rigidity, and
static strength.

Figure 16. Conts.
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Figure 16. (a) Vertical bending frequency vs. structural mass for all designs analyzed and (b) violation
vs. structural mass for all designs analyzed during optimization.

Figure 17. (a) Optimized design (mass of chassis without suspensions and point masses = 275 kg)
(b) thickness distribution of the side rails.
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Figure 18. Von Mises stress distribution of optimized design for (a) Event #1, (b) Event #2, (c) Event #3, (d) Event #4 and
(e) Event #5.

Table 5. Comparison between baseline and optimized model.

Properties Baseline Model Optimized Model

Mass (Kg) 317 275

First Bending Frequency (Hz) 25.12 20.5

Bending Rigidity (N/mm) 4125 268

Violation Parameter (Stress) 0.0094 0.0086

11. Conclusions

The article describes the parameterization of the side-rails for truck chassis by a large
number of design variables and optimization considering several constraints, including
maximum stress and minimum frequency of first vertical bending mode. A python script
was developed, which automatically generated the geometry and mesh of the side-rails,
integrated the suspensions, and points masses to create the simplified finite element model
of the truck chassis. Normal mode analysis and static analysis for multiple load cases were
performed on the entire model to evaluate the constraints in the optimization problem.
The particle swarm optimization (PSO) algorithm was used to optimize the design variables
to minimize mass while satisfying constraints. A mass reduction of 13.25% with respect to
the baseline model is achieved. However, it was possible to go even further by applying
topology optimization techniques to the configuration shown in Figure 17. The material
can be removed from the side rails and the side rail mountings. Such a process will be
challenging as manufacturing constraints need to be taken into account. This is something
to be considered in future research.
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