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Abstract: The prediction of lane change intention of vehicles is an important part of the decision
planning and control systems of intelligent vehicles. In the dynamic and complex traffic environment,
the behaviors of traffic participants interact and influence each other. In lane change prediction, it
is necessary to study the predicted vehicle and surrounding vehicles as an interactive correlation
system. Otherwise, great errors are made in the motion prediction. Based on this, the motion state
of the predicted vehicle, the position relationship between the predicted vehicle and lane, as well
as the motion state of vehicles around the predicted vehicle are considered systematically in this
paper, and the prediction of lane change intention of vehicles is studied. The influence of the three
above-mentioned factors on the prediction of lane change intention is analyzed in this paper. On
the basis of screening the prediction features of lane change intention, the lane change intention of
vehicles is predicted by a feed-forward neural network. The data collected by the virtual driving
experiment platform are divided into a training set, a verification set, and a test set. The neural
network parameters of vehicles’ lane change intentions are identified by a training set, and the effect
of prediction is tested by a verification set and a test set. The results show that the accuracy of the
prediction model is high. The model is compared with the model of common features at the present
stage and the model based on a Support Vector Machine, and the results show that the accuracy of
the prediction model proposed in this paper was improved by 6.4% and 2.8%, respectively, compared
with the two models. Finally, the virtual driving experiment platform was used to predict the lane
change intention of the front vehicle and the vehicle in the left adjacent lane. The results show that,
based on the same model and input features, the lane change intention of the front vehicle and the
vehicle in the left adjacent lane can be predicted by the model at 2.8 s and 3.4 s before the lane change,
and the model is a certain generality for the prediction of lane change intention of adjacent vehicles.

Keywords: intelligent vehicles; prediction of lane change intention; network environment; neural
network; motion state of surrounding vehicles

1. Introduction

At present, the primary cause of death in China is road traffic casualties [1]. With the
development of intelligent vehicles, the prediction of lane change intention is an important
part of the decision planning and control systems of intelligent vehicles. In the dynamic
and complex traffic environment, if the lane change intention of surrounding vehicles can
be accurately predicted by the ego vehicle, then the optimal decision of the ego vehicle can
be made according to the future traffic conditions, and the occurrence of traffic accidents
will be avoided.

The prediction of lane change intention of other vehicles has been studied by many
scholars at home and abroad. The lateral distance between the predicted vehicle and the
center of the original lane, lateral speed, and longitudinal speed of the predicted vehicle
are taken as the input of the model, and a probabilistic method is proposed to predict the
remaining time of the adjacent vehicle that is about to change lanes on the freeway [2].
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The lane information, speed, and steering angle of the predicted vehicle are taken as the
input of the model, and a prediction method of lane change intention of other vehicles
based on the Support Vector Machine (SVM) and the Bayesian filter is proposed [3]. A
Hidden Markov Model (HMM) method for the prediction of lane change intention of
intelligent vehicles is proposed, based on the speed of the predicted vehicle and the offset
between the predicted vehicle and the lane [4]. The relative lateral position of the ego
vehicle and the predicted vehicle, the distance between the predicted vehicle and the center
of the lane, and their first and second derivatives are taken as the features. The prediction
model of other vehicles’ lane changes, based on the Dual Long and the Short-Term Memory
Network, is established [5]. The parameters of motion state, lane departure data, and the
yaw angle of the predicted vehicle are taken as features, and two prediction models of lane
change intention of other vehicles, based on the SVM and the artificial neural network, are
established [6]. The results show that the method is superior to the existing methods, in
terms of the time and accuracy of the prediction. The image information of the predicted
vehicle is captured by the camera of the ego vehicle, and a Convolution Neural Network-
based model for predicting the lane change intention of other vehicles is designed [7]. The
motion characteristics of the vehicle in front of the predicted vehicle and the vehicles in the
adjacent lane are taken as the prediction features of the model, and the prediction model of
lane change intention of other vehicles, based on a combination of the neural network and
the Gaussian process, is established [8]. However, the situation where the vehicle in front
of the predicted vehicle is blocked by other vehicles is ignored. The parameters, such as the
relative speed of the predicted vehicle and the vehicle in front of it, are taken as the input
characteristics of the model, and the prediction model of lane change intention of other
vehicles, based on the extended Bayes model, is established [9]. However, the location of
the ego vehicle is ignored, and the problems in reference [8] will also appear when the lane
change intention of other vehicles is predicted by the ego vehicle.

To sum up, the prediction models of lane change intention of vehicles at the present
stage are mostly based on the motion state of the predicted vehicle and the location
relationship between the predicted vehicle and the lane, and the influence of the motion
state of vehicles around the predicted vehicle on the lane change intention of other vehicles
is less considered. In particular, the motion state of the front vehicle, which has an important
impact on the decision-making of the predicted vehicle, is ignored because it is difficult
to obtain the information of the motion state. However, with the development of the
technology of vehicular networks, networked vehicles can obtain information on the
motion state of surrounding vehicles through the network in real time. Therefore, it
is necessary to make comprehensive and systematic use of the obtained information of
vehicles to predict the behavior of future movement or the state of vehicles more accurately.

Based on this, the influence of the motion state of the predicted vehicle, the position
relationship between the predicted vehicle and the lane, and the motion state of vehicles
around the predicted vehicle on the prediction of lane change intention are considered
systematically in order to improve the accuracy of the prediction of lane change intention
in this paper. The prediction features of lane change intention were screened and the
prediction model of vehicles’ lane change intentions was established by a feed-forward
neural network. The model established in this paper was respectively compared with the
model of common features at the present stage and the model based on SVM. Finally, the
model was verified by the virtual driving experiment platform.

2. Feature Screening of Lane Change Intention of Other Vehicles

There are three kinds of operation options: a lane change to the left, a lane change
going straight, and a lane change to the right, when the vehicle is moving on the road
normally. Because the operations of a lane change to the left and a lane change to the right
are essentially the same, they are also very similar in consideration of the relationship
of the relative motion of the predicted vehicle and the vehicle in front of it, as well as
the vehicle in the adjacent lane. Therefore, the predictions of lane changes to the left and
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straight-going intentions of other vehicles are studied in this paper. The traffic scenario is
shown in Figure 1, and the related variables of vehicles during lane changes are shown in
Table 1.
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Table 1. Related variables of vehicles during lane change.

Symbol Definition

vehicleego Ego vehicle
Y Distance between predicted vehicle and the center of the original lane
vy Lateral speed of the predicted vehicle
vci (i = 1, 2, . . . , 5) Speed of vehiclei (i = 1, 2, . . . , 5)
vcin (i = 1, 2, . . . , 5;
n = 1, 2, . . . , 5)

Relative speed of vehiclei and vehiclen
(i = 1, 2, . . . , 5, n = 1, 2, . . . , 5)

aci (i = 1, 2, . . . , 5) Acceleration of vehiclei(i = 1, 2, . . . , 5.)
Din (i = 1, 2, . . . , 5;
n = 1, 2, . . . , 5)

Distance between vehiclei and vehiclen
(i = 1, 2, . . . , 5, n = 1, 2, . . . , 5)

TTCin (i = 1, 2, . . . , 5;
n = 1, 2, . . . , 5)

Time to collision of vehiclei and vehiclen
(i = 1, 2, . . . , 5; n = 1, 2, . . . , 5)

As shown in Figure 1, vehicle1 is the predicted vehicle, and the lane where vehicle1
goes straight is the original lane. If vehicle1 intends to change lanes to the left, the left lane
of vehicle1 is the target lane. Vehicle6, vehicleego, vehicle1, and vehicle2 are in the right lane;
vehicle3, vehicle4, and vehicle5 are in the left lane. The prediction of lane change intention
of vehicleego is taken as an example in this paper, and the input features of the prediction
of lane change intention of other vehicles are explained and screened.

Many characteristics of the vehicle itself will change during the process of going
straight to a lane change, such as the yaw rate of the vehicle, the distance from the center
of the lane, the lateral and longitudinal speed, acceleration, and so forth. It is necessary
to screen out the features that can be used to predict the lane change intention of other
vehicles. The yaw rate and lateral acceleration of vehicles are strongly influenced by road
shape, so they cannot be used to predict the lane change intention of vehicle1 [10]. The
change of the distance between vehicle and lane center is the most typical feature of vehicle
lane change. The time when the lateral speed is greater than 0.2 m/s is taken as the starting
time of the lane change [11], and the vehicle speed is one of the highest priority variables
in the process of a lane change [12]. To sum up, the distance between vehicle1 and the
center of the original lane (Y), lateral speed (vy), and vehicle speed (vc1) are the common
features in studies on the prediction of lane change intentions of vehicle1 at the present
stage [2–6]. However, vehicles generally decelerate in the exit phase of a lane change, while
59% of vehicles will accelerate in the entry phase of a lane change [13], which indicates that
acceleration can be used as a predictive feature. Before a lane change, the turn signal should
be turned on. The opening rate of the turn signal at the beginning of a lane change is 57%,
and that which is in the 1 s before a lane change is 25% [14]. Therefore, the prediction of
lane change intention of other vehicles cannot only rely on the status of the turn signal [15],
and it cannot be used as a predictive feature. In this paper, based on the common features
of lane change intention of vehicle1 at the present stage, acceleration (ac1) of vehicle1 is also
taken as one of the prediction features.
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The decision-making of vehicle1 mainly depends on the motion states of vehicle2,
vehicle3, and vehicle4, and in order to predict the lane change intention of vehicle1 more
accurately, the motion states of vehicle2, vehicle3, and vehicle4 should be considered.
However, at present, researchers seldom consider this problem, especially the motion state
of vehicle2, which has an important impact on vehicle1’s decision-making. Because the
information of the motion state of vehicle2 is difficult to obtain, its influence on the decision
of vehicle1 is ignored. Therefore, the information of the motion state of the surrounding
vehicles is obtained by networked vehicles in real time through the network. The distance
and relative speed among vehicle1, vehicle3, and vehicle4 are common features for the
prediction of lane change intention of other vehicles at the present stage [8,9]. However,
there are other parameters that affect the lane change intention of vehicle1: distance and
collision time among vehicle1 and vehicle2, and vehicle3 and vehicle4 [16,17], while the
speed and acceleration of vehicle2, vehicle3, and vehicle4 are greatly related to distance
and collision time. Therefore, D12, D13, D14, TTC12, TTC13, TTC14, vc2, vc3, vc4, ac2, ac3, and
ac4 are regarded as prediction features in this paper.

To sum up, there are 7 common features at the present stage: D13, D14, vc13, vc14, Y,
vy, and vc1, and 16 prediction features in this paper: Y, vy, vc1, ac1, D12, D13, D14, TTC12,
TTC13, TTC14, vc2, vc3, vc4, ac2, ac3, and ac4. The output is the probability of the intention to
go straight or change lanes to the left.

3. Establishment of the Prediction Model of Lane Change Intention

An artificial neural network (ANN) is a mathematical model simulating a biological
network for information processing. It has strong self-learning, adaptive ability, general-
ization ability, and fault tolerance, so it has been widely used in intelligent prediction and
intelligent driving in recent years. The structure of the feed-forward neural network is
simple and can approach any continuous function and square-integrable function with any
precision. Therefore, a feed-forward neural network was selected as the prediction model
of lane change intention of other vehicles in this paper.

The establishment of a neural network model needs a lot of data. Thus, in this step, the
virtual driving experimental platform was built, and then the relevant data were collected
and processed. Finally, the neural model was trained by processed data.

3.1. The Virtual Driving Experimental Platform

The virtual driving experimental platform is an important tool to study “humans–
vehicles–roads environments”. Due to its advantages of repeatability, safety, controllability,
and environmental protection, it has been developed rapidly in recent years [18]. The
virtual driving experimental platform consists of MATLAB 2016b, Prescan8.4, and Logitech
G29. The virtual driving experimental platform is shown in Figure 2, which is used by
drivers to simulate driving.
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3.2. Data Collection and Processing

After the input features of the prediction of lane change intention of other vehicles
were confirmed, the data was collected by the virtual driving experimental platform.
Because only the prediction of the intention of going straight or change lanes to the left
of vehicles was studied, the vehicle was driven straight and to the left in scenes of virtual
driving. There are results showing that the lane change time is when the lateral speed
of the vehicle was greater than 0.2 m/s [11]. According to this, two kinds of trajectories
were randomly selected from the data, including 159 trajectories of going straight and
144 trajectories of lane changes to the left. The moving average filtering method [19] was
used to filter and smooth the data. The processing of vehicle-related data is shown in
Figure 3. In order to prevent the error of model training, the data with a time to collision
(TTC) greater than 500 were replaced with 500.
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3.3. Establishment of the Prediction Model of Lane Change Intention

There were three layers in the feed-forward neural network for prediction, namely the
input layer, the hidden layer, and the output layer. The sigmoid function was used as a
transfer function of the hidden layer, and the sigmoid function equation is defined by the
following equation:

f (x) =
1

1 + e−x (0 < f (x) < 1) (1)

The Softmax function was used as the transfer function of the output layer. The
Softmax function, also known as the normalized exponential function, is widely used in
multi-classification problems, which presents the results of multi-classification in the form
of probability. The outputs of the Softmax function are correlated and the sum of their
probabilities is always 1.

The neural network was trained by the Scaled Conjugate Gradient (SCG) method. This
algorithm is an improved algorithm proposed by Moller, based on the Conjugate Gradient
(CG), which mainly changes its linear search method when calculating the search step size.
The step size was calculated accurately, and the positive definiteness of the Hessian matrix
was considered [20–22].

The step size of the CG was calculated as follows:

αk = −
gT

k pk

PT
k Hk pk

(2)

where αk is the search step size, pk is the search direction of the k + 1-th iteration, gk is the

gradient direction of pk, Hk = ∂2Ek
∂w2

k
, and Ek is the total error performance function of the

network output of the k-th iteration.
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sk = Hk pk, uk = −gT
k pk, δk = pT

k sk, so αk =
uk
δk

.
In the SCG algorithm, the following equation was used:

sk =
E′′ (wk + δk pk)− E′(wk)

δk
+ λk pk (3)

where λk is the introduced scale factor, which was adjusted to ensure the positive defi-
niteness of the Hessian matrix. E′′ (wk + δk pk) is the second derivative of the total error
performance function of the network output when the linear search of the optimal distance
of the k-th iteration is wk + δk pk. E′(wk) is the first derivative of the total error performance
function of the network output when the linear search of the optimal distance of the k-th
iteration is wk.

We recorded the adjusted λk as λk, sk as sk, and δk as δk. If δk ≤ 0 in an iteration, the
Hessian matrix is not a positive definite. In this case, λk can be increased to make δk > 0,
and the specific increase was determined by the following calculation:

sk = sk +
(
λk − λk

)
pk (4)

δk = pT
k sk

= pT
k
(
sk +

(
λk − λk

)
pk
)

= δk +
(
λk − λk

)
|pk|2 > 0

(5)

Then,

λk > λk −
δk

|pk|2
(6)

Equation (6) implies that if λk is raised with more than − δk
|pk |2

, then δk > 0. The

question is “how much should λk be raised to get an optimal solution?”
The following was a reasonable choice:

λk = 2

(
λk −

δk

|pk|2

)
(7)

This led to the following:

δk = δk +
(
λk − λk

)
|pk|2 = −δk + λk|pk|2 > 0 (8)

The step size was given by

αk =
uk
δk

=
uk

PT
k sk + λk|pk|2

(9)

The search step size can be adjusted by adjusting the scale factor λk and the positive
definiteness of the Hessian matrix can be ensured.

3.4. Training of Prediction Model of Lane Change Intention

A total of 720 sets of data were selected from the trajectories of lane changes to the
left, including at 0 s, 0.5 s, 1 s, 1.5 s, and 2 s before the lane change. There were 795 sets of
data selected from the trajectories of going straight, and altogether, there were 1515 sets of
data. The data were divided into a training set, a verification set, and a test set, and the
three data sets accounted for 70%, 15%, and 15% of the total data set, respectively. The
training set was used to train the model. The function of the verification set was to test
the generalization ability of the neural network. When the generalization ability stopped
improving, the training of the neural network stopped. Finally, the test set was used to
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test the performance of the neural network. The number of neurons was determined by
empirical Equation (10) [23].

n = 2n1 + 1 (10)

where n is the number of neurons in the hidden layer and n1 is the number of nodes in the
input layer. In this paper, n1 is 17, so n is 35.

All the data at 0 s, 0.5 s, 1 s, 1.5 s, and 2 s before the lane change were used as inputs
to train the model. In order to ensure the reliability of the training results, the model was
trained ten times, and then the average accuracy was taken. The accuracy of the model is
shown in Table 2.

Table 2. The accuracy of the model.

Number of Training Sessions Accuracy (%)

1 97.4
2 97.4
3 96.2
4 97.2
5 96.4
6 96.4
7 96.6
8 97.8
9 97.0

10 97.3
Average accuracy 97.0

It can be seen from Table 2 that the highest accuracy of the prediction model was
97.4%, the lowest accuracy rate was 96.2%, and the average accuracy was 97%, indicating
that the effect of the prediction model is good.

In order to verify the accuracy of the model at different times before the lane change,
the intentions of other vehicles at 0 s, 0.5 s, 1 s, 1.5 s, and 2 s before the lane change were
predicted based on the trained neural network model. The inputs of the model were
the sample data of five moments and the accuracies of the corresponding results of the
prediction model are shown in Table 3.

Table 3. Accuracy of the prediction of other vehicles at five moments before a lane change.

Prediction Moments Accuracy (%)

At 0 s before lane change 100
At 0.5 s before lane change 97.2
At 1 s before lane change 95.8

At 1.5 s before lane change 94.4
At 2 s before lane change 94.4

It can be seen from Table 3 that the accuracies of the prediction model at 0 s, 0.5 s, 1 s,
1.5 s, and 2 s before a lane change of other vehicles were 100%, 97.2%, 95.8%, 94.4%, and
94.4%, respectively, which indicates that the accuracy of the prediction model decreased
with the increase of time before a lane change. Even if the accuracy of prediction was the
lowest at 2 s before the lane change, the accuracy could still reach 94.4%, and the lane
change intentions of other vehicles could be accurately predicted.

When some vehicles are missing, the missing vehicles have no influence on the lane
change intention of the predicted vehicle. Therefore, the missing vehicle was set as a virtual
vehicle that did not affect the lane change intention of the predicted vehicle, and its input
characteristics were set as follows: In order to ensure the absolute safety of the predicted
vehicle and the virtual vehicle, the predicted collision time was set to 500 s. The speed and
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acceleration were set to be the same as the predicted vehicle, and the distance (Dis) was
calculated according to the maximum safe braking distance.

Dis =
v2

max
2a

=
(120/3.6)2

5.9
= 188.3 m (11)

where vmax is the maximum speed of the vehicle; 120 km/h was used in this paper. a is
the maximum deceleration of the vehicle; 5.9 m/s−2 was used in this paper. Therefore, the
distance was 188.3 m.

In this way, the lack of some vehicles was represented as a virtual vehicle that did not
affect the intention of the predicted vehicle to change lanes, and will not affect the accuracy
of the model built in this paper.

3.5. Comparison with the Model of Common Features at the Present Stage

At the present stage, the common features are as follows: D13, D14, vc13, vc14, Y, vy,
and vc1. The above data were calculated and extracted from the collected data to train the
model. According to Equation (6), n1 is 7, so n is 15. Similarly, the data was divided into a
training set, a verification set, and a test set, and the three data sets accounted for 70%, 15%,
and 15% of the total data set, respectively. All the data at 0 s, 0.5 s, 1 s, 1.5 s, and 2 s before
a lane change were used as inputs to train the model. In order to ensure the reliability of
the training results, the model was trained ten times, and then the average accuracy was
taken. The accuracy of the model is shown in Table 4.

Table 4. The accuracy of the model.

Number of Training Sessions Accuracy (%)

1 89.8
2 89.3
3 92.5
4 88.5
5 92.3
6 92.5
7 88.7
8 92.4
9 89.4

10 90.9
Average accuracy 90.6

It can be seen from Table 4 that the highest accuracy of the prediction model was
92.5%, the lowest accuracy was 88.5%, and the average accuracy was 90.6%. The average
accuracy of the model established in this paper was 97.0%, which is 6.4% higher than
that of the model of common features at the present stage, indicating that the effect of the
prediction model established in this paper is better.

In order to verify the accuracy of the model at different times before a lane change,
the intentions of other vehicles at 0 s, 0.5 s, 1 s, 1.5 s, and 2 s before a lane change were
predicted based on the trained neural network model. The inputs of the model were the
sample data of five moments and the accuracies of the corresponding results of prediction
are shown in Table 5.

Table 5. Accuracy of the prediction of other vehicles at five moments before a lane change.

Prediction Moments Accuracy

At 0 s before lane change 100%
At 0.5 s before lane change 89.6%
At 1 s before lane change 88.8%

At 1.5 s before lane change 87.8%
At 2 s before lane change 87.1%
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It can be seen from Table 5 that the accuracy of the prediction model was 100% at 0 s
before the lane change of other vehicles. The Y and vy change obviously at 0 s before a lane
change, so the starting time of a lane change can be accurately detected. The accuracies
of prediction at 0.5 s, 1 s, 1.5 s, and 2 s before a lane change were 89.6%, 88.8%, 87.8%,
and 87.1%, respectively, which were 7.6%, 7.0%, 6.6%, and 7.3% lower than the model
established in this paper, fully proving that the effect of the prediction model established
in this paper is better than that of this model.

The reason why the model established in this paper is better than the model of
common features at the present stage is that the prediction models of lane change intention
of vehicles at the present stage are mostly based on the motion state of the predicted vehicle
and the location relationship between the predicted vehicle and the lane, and the influence
of the motion state of vehicles around the predicted vehicle on the lane change intention
of other vehicles is less considered. Based on this, the influence of the motion state of the
predicted vehicle, the position relationship between the predicted vehicle and the lane,
and the motion state of vehicles around the predicted vehicle on the prediction of lane
change intention were considered systematically in this paper. The prediction features of
lane change intention were screened and the prediction model of vehicles’ lane change
intentions was established.

3.6. Comparison with the Model Based on SVM

The SVM was trained with the data containing information of vehicle2, vehicle3, and
vehicle4. About 70% of the data of the lane changes to the left and going straight were
respectively used as a training set, and 30% of the data of the lane changes to the left and
going straight were respectively used as a test set. The training results of the model based
on the SVM are shown in Figure 4. As can be seen from Figure 4, the true positive rate of
going straight and lane changes to the left is 94.2%, so the correct rate is 94.2%. However,
the accuracy of the prediction model established in this paper was 97.0%, which is 2.8%
higher than that of the SVM, which shows that the model established in this paper is more
advantageous than the model based on the SVM.
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Figure 4. The training results of the model based on the SVM.

The reason why the model built in this paper is better than the support vector machine
model is that the neural network model has strong learning ability, strong robustness to
noise, and fault tolerance, so the prediction effect is more advantageous than the prediction
effect of the SVM.

The difference of accuracy of prediction among the model established in this paper,
the model of common features at the present stage, and the model based on the SVM can
be observed more intuitively, so the histogram of the accuracy of the prediction of the three
models was established and is shown in Figure 5. The accuracies of the prediction model
established in this paper were 100%, 97.2%, 95.8%, 94.4%, and 94.4%, respectively, at 0 s,



World Electr. Veh. J. 2021, 12, 27 10 of 15

0.5 s, 1 s, 1.5 s, and 2 s before a lane change of other vehicles. The accuracies of prediction
of the common feature models at 0 s, 0.5 s, 1 s, 1.5 s, and 2 s before a lane change of other
vehicles were 100%, 89.6%, 88.8%, 87.8%, and 87.1%, respectively. The accuracies of the
prediction model based on the SVM were 94.2% for all data at 0 s, 0.5 s, 1 s, 1.5 s, and 2 s
before other vehicles changed lanes.
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4. Verification of Simulation Experiment
4.1. Prediction of Lane Change Intention of Vehicle1

The lane change intention of vehicle1 was predicted by the virtual driving experimen-
tal platform, and the traffic scene is shown in Figure 1. The statuses of the input features
are shown in Figure 6. The result of the prediction of the lane change intention of vehicle1
is shown in Figure 7, and the probability of going straight and changing lanes to the left are
represented by P1 and P2, respectively. As the result of the prediction of intention is the
probability, the intention with the maximum probability is the intention of other vehicles
predicted by the model.
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Figure 7. The prediction result of lane change intention of vehicle1.

The speed and acceleration of the vehicles are shown in Figure 6a,b. It can be seen
that vehicle1 moved at a constant speed of 13 m/s and vehicle2 moved at a constant speed
of 18 m/s before 0.4 s. It began to decelerate at 0.4 s and then moved at a constant speed
of 14 m/s after 2.8 s. Vehicle3 accelerated from 13 m/s to 14 m/s and vehicle4 moved at a
constant speed of 19 m/s. The distance and the TTC between vehicle1 and related vehicles
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are shown in Figure 6c,d. It can be seen that D12 increased from 71 m to 75 m, and D13
increased from 50 m to 52 m. D14 increased from 40 m to 61 m. Affected by the distance
between vehicle1 and related vehicles and the speed of related vehicles, TTC12 remained
unchanged for 20 s before 0.4 s, and increased rapidly after 0.4 s. At 2.2 s, it reached the
peak value of 120 s, and finally decreased to 78 s. TTC13 decreased from 170 s to 50 s, and
TTC14 increased slowly from 10 s to 13 s.

The distance between vehicle1 and the center of the original lane and the lateral speed
of vehicle1 are shown in Figure 6e,f. It can be seen that there were no changes before 3.8 s
to the distance between vehicle1 and the center of the original lane and the lateral speed,
but they obviously changed after 3.8 s, which indicates that vehicle1 changed lanes at 3.8 s.
The result of the prediction of the lane change intention of vehicle1 is shown in Figure 7.
It can be seen that the prediction result was going straight before 1 s, and the probability
of a lane change to the left after 1 s was greater than that of going straight. Therefore, the
predicted result was a lane change to the left at 1 s, while the real time of the lane change
was 3.8 s. It shows that the lane change intention of vehicle1 at 2.8 s before the lane change
could be predicted by the model in this simulation.

4.2. Prediction of Lane Change Intention of Vehicle4

In order to verify the generality of this model for predicting the lane change intention
of adjacent vehicles, the lane change intention of vehicle4 in the left adjacent lane was
predicted by using the model. The traffic scenario is shown in Figure 8, with vehicle4 and
vehicle5 in the left adjacent lane of the ego vehicle, and vehicle6 and vehicle7 in the leftmost
lane. The statuses of the input features are shown in Figure 9. The result of the prediction
of the lane change intention of vehicle4 is shown in Figure 10, and the probabilities of going
straight and changing lanes to the left are represented by P1 and P2, respectively.
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The speed and acceleration of the vehicles are shown in Figure 9a,b. It can be seen
that the speed of vehicle4 started at 17.5 m/s and decelerated to 14 m/s at 4.6 s. Finally,
it accelerated to 15.5 m/s. The speed of vehicle5 started at 15.5 m/s and decelerated to
13 m/s at 3.9 s. Vehicle5 moved to the end at 13 m/s. Vehicle6 and vehicle7 drove at a
constant speed of 14 m/s and 17 m/s, respectively. The relative distance and TTC between
vehicle1 and related vehicles are shown in Figure 9c,d. It can be seen that D45 started at
75 m and finally decreased to 61 m. D46 started at 52 m, and finally increased to 61 m. D47
started at 48 m and finally increased to 62 m. Affected by the distance between vehicle1
and related vehicles and the speed of related vehicles, TTC45 remained unchanged for
40 s before 4 s and increased rapidly after 4 s. It reached the peak value at 4.8 s, and then
decreased to 25 s after 60 s. TTC46 started at 15 s and increased to 440 s at 4.3 s. It decreased
to 350 s at 4.8 s and increased to 195 s at 5.4 s. Finally, it decreased to 55 s. TTC47 starts at
125 s and increased to 400 s at 1.6 s. It decreased to 350 s at 4.8 s.

The distance between vehicle4 and the center of the original lane and the lateral speed
of vehicle4 are shown in Figure 9e,f. It can be seen that there were no changes before 5 s to
the distance between vehicle4 and the center of the original lane and the lateral speed, but
they obviously changed after 5 s, which indicates that vehicle4 changed lanes at 5 s. The
result of the prediction of the lane change intention of vehicle1 is shown in Figure 10. It
can be seen that the prediction result was going straight before 1.6 s, and the probability of
a lane change to the left after 1.6 s was greater than that of going straight. Therefore, the
predicted result was a lane change to the left at 1.6 s, while the real time of the lane change
was 5 s. It shows that the model could predict the lane change intention of vehicle4 at 3.4 s
before lane change in this simulation.

5. Conclusions

In order to improve the accuracy of the prediction of lane change intention of vehicles,
the motion state of the predicted vehicle, the position relationship between the predicted
vehicle and the lane, and the motion state of vehicles around the predicted vehicle were
considered systematically in this paper. Then, the prediction of lane change intention
of vehicles was studied. Through our research for this paper, the following beneficial
conclusions were obtained:

(1) There were 16 prediction features selected from three aspects, and the prediction
model was established by a feed-forward neural network. Its validity was verified,
and the results show that the accuracy of the prediction model established in this
paper was 97.0% for all data at 0 s, 0.5 s, 1 s, 1.5 s, and 2 s before other vehicles
changed lanes, and the accuracies of the prediction rates at the above five moments
were 100%, 97.2%, 95.8%, 94.4%, and 94.4%, respectively. It shows that the model
could accurately predict the lane change intention of other vehicles at 2 s before a
lane change.

(2) Using the same data, compared with the model of common features at the present
stage and the model based on the SVM, the results show that the accuracy of the
prediction model of common features at the present stage was 90.6% for all data at
0 s, 0.5 s, 1 s, 1.5 s, and 2 s before other vehicles changed lanes, and the accuracies
of prediction at the above five moments were 100%,89.6%, 88.8%, 87.8%, and 87.1%,
respectively. The accuracy of the prediction model based on SVM was 94.2% for all
the data at the above five moments, which is lower than that of the model established
in this paper, and which shows that the effect of the prediction model established in
this paper is better than that of the other two models.

(3) The lane change intention of vehicle1 and vehicle4 was predicted by using the virtual
driving experimental platform. The results show that the lane change intention could
be predicted at 2.8 s and 3.4 s before vehicle1 and vehicle4 changed lanes, respectively.
It shows that the lane change intention of other vehicles could be predicted accurately
by the model established in this paper, and it is the certain generality for the prediction
of lane change intention of adjacent vehicles.
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