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Abstract: This paper presents a comparative study of two consequent-pole switched-flux permanent
magnet (CP-SFPM) machines with different U-shaped PM arrangements. In order to address the
flux barrier effect in a sandwiched SFPM machine, two different alternate U-shaped PM designs are
introduced to improve the torque capability, forming two CP-SFPM machine topologies. In order to
reveal the influence of different magnet designs on the torque production, a simplified PM magneto-
motive force (MMF)-permeance model is employed to identify the effective working harmonics in the
two CP-SFPM machines. The torque contributions of the main working harmonics are subsequently
quantified by a hybrid finite-element (FE)/analytical method. Multi-objective genetic algorithm
(GA) optimization is then employed to optimize the design parameters of the proposed CP-SFPM
machines. In addition, the electromagnetic characteristics of the CP-SFPM machines with two U-
shaped PM arrangements are investigated and compared by the FE method. Finally, a 6/13-pole
CP-SFPM machine with an optimally selected U-shaped PM structure is manufactured and tested to
validate the FE analyses.

Keywords: alternate U-shaped permanent magnet (PM); consequent-pole PM (CPM); doubly salient;
interior PM (IPM); switched flux

1. Introduction

Due to their having high torque/power density and high efficiency, permanent mag-
net (PM) machines are widely commercialized in electric vehicle (EV) applications [1].
Compared with conventional surface PM (SPM) configuration, the interior PM (IPM)
structure exhibits the advantages of convenient PM retaining and better field-weakening
capability [2]. Therefore, various IPM topologies, including V-shaped [3], double-layer
V-shaped [4],5-shaped [5] and multi-layer PM [6] arrangements, have been successfully
proposed and extensively investigated in recent years. However, because of the ever-
increasing price and unstable supply, the rare-earth material cost of the PM machines is
a major concern for EV application [7]. Therefore, in order to address above-mentioned
issue, it is necessary to improve the PM utilization of electrical machine design.

In order to further improve the PM utilization ratio, various spoke-type PM topolo-
gies with the flux concentrated effect are extensively employed in dual-stator [8,9], outer
rotor [10] and ferrite magnet configurations [11–15]. Compared with single stator topology,
a dual-stator spoke-type machine exhibits higher a power factor and torque density [8].
Moreover, the modular outer rotor in-wheel machine with spoke-type PM arrangement
is proved to be able to provide higher air-gap flux density and better field-weakening
capability than its SPM counterpart [10]. To decrease the cost, low-cost ferrite magnets are
adopted in spoke-type configurations for electric vehicle applications [11–14]. It shows
that the cost competitiveness can be significantly improved by employing low-cost ferrite
magnets. However, due to low remanence flux density and intrinsic coercivity, ferrite
magnets generally suffer from a potentially irreversible demagnetization risk [11–14]. The
performance comparison of the optimal designed IPM machines with either NdFeB or
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ferrite magnets is reported in [15]. It demonstrates that the ferrite magnet machines exhibit
comparable efficiency and 40% cost reduction compared to the NdFeB PM cases.

However, due to the flux leakage and rotor rib issues of the conventional spoke-type
PM structures [16–18], an airspace barrier design [18] is proposed to simplify the rotor
manufacturing without sacrificing the torque capability. Moreover, for the spoke-type
vernier PM machines, it is difficult for low-order working harmonics to pass through PMs
to form closed loops, namely, the flux barrier effect [19]. This will reduce effective low-order
harmonics and the torque capability. Similarly to [18], the alternate flux barriers are utilized
in a consequent pole spoke-PM vernier machine [20,21], which exhibits approximately 57%
higher torque density than its conventional counterpart [22]. Moreover, compared with
conventional spoke-PM vernier machines, the alternate V- and U-shaped PM topologies
achieve 80% torque improvement together with a comparable power factor [23]. Recently,
the flux bridge design concept was extended to a switched-flux PM (SFPM) machine, which
provides additional magnetic paths for the main working harmonic fields [24–26]. As a
result, the torque capability can be significantly improved compared with conventional
SFPM machines.

In order to address the flux barrier effect in sandwiched SFPM machines [27–30], a
consequent-pole SFPM (CP-SFPM) machine with an alternate U-shaped PM design was de-
veloped [31–33], which provides an effective circulating path for low-order field harmonics.
As a result, the torque capability can be further improved compared with the conven-
tional cases [33]. In order to reveal and evaluate the influence of the magnet type on the
electromagnetic performance, two CP-SFPM machines with different alternate U-shaped
PM designs are comparatively analyzed in this paper, which also identifies their different
features and torque production mechanisms. The two machine topologies and analytical
models with different U-shaped PM structures are introduced in Section 2. Furthermore, a
hybrid finite element (FE)/analytical model is employed to quantify the torque contribu-
tions of multiple working harmonics. In Section 3, the multi-objective genetic algorithm
(GA) optimization is then utilized to optimize the design parameters of the two machines
in order to obtain a satisfactory torque quality. In Section 4, the electromagnetic character-
istics of the two proposed machines are investigated and compared by the FE method in
order to select the optimal PM design. In Section 5, the experimental measurement of a
6/13-stator/rotor-pole CP-SFPM machine with better overall performance is carried out to
validate the FE analyses. Finally, a comprehensive conclusion is drawn in Section 6.

2. Machine Topologies and Analysis Models
2.1. Machine Topologies

The configurations of two 6-stator-slot/13-rotor-pole CP-SFPM machines with differ-
ent U-shaped PM arrangements are illustrated in Figure 1. It shows that both the CP-SFPM
machines utilize alternate U-shaped PM configurations to provide an effective circulating
path for low-order field harmonics, which indicates that the torque capability can be further
improved. The two CP-SFPM machines are regarded as model-I and model-II, respectively;
the only difference of which is the position of the radially magnetized PMs, as illustrated
in Figure 1. In order to perform a fair comparison, the two machines share the same active
stack length, outer stator diameter, air-gap length and current density, etc. In addition,
it should be noted that the iron bridges are adopted in the two CP-SFPM machines to
strengthen the stator mechanical stability.



World Electr. Veh. J. 2021, 12, 22 3 of 16
World Electr. Veh. J. 2021, 12, x FOR PEER REVIEW 3 of 15 
 

Rotor

PM

Armature 

winding

Stator
Iron bridge

 

PM

Stator

Rotor
Armature 

winding

Iron bridge

 
(a) (b) 

Figure 1. Topologies of the 6-stator-slot/13-rotor-pole consequent-pole switched-flux permanent magnet (CP-SFPM) ma-

chines with different U-shaped permanent magnet (PM) arrangements. (a) Model-I. (b) Model-II. 
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Figure 2. Ideal PM magneto-motive-force (MMF) waveforms. (a) Model-I. (b) Model-II. 

Figure 1. Topologies of the 6-stator-slot/13-rotor-pole consequent-pole switched-flux permanent magnet (CP-SFPM)
machines with different U-shaped permanent magnet (PM) arrangements. (a) Model-I. (b) Model-II.

2.2. Analytical Modelling

For a double salient structure, the air-gap permeance can be obtained by considering
stator and rotor slotting effects, respectively. The air-gap permeance due to the stator
slotting can be expressed as [34]

Λs(θs) = Λs0 +
∞

∑
m=1

Λsm cos(mZsθs) (1)

where Zs is the number of stator slots, Λs0 and Λsm are the 0th and mth components of the
air-gap permeance due to the stator slotting, respectively. Similarly, when considering the
rotor salient, the air-gap permeance due to the rotor slotting can be expressed as

Λr(θs, t) = Λr0 + ∑
n=1

Λrn cos[nZr(θs − θ0 −Ωrt)] (2)

where Zr is the number of rotor teeth, Ωr is the angular velocity. θs is the rotor position
reference to stator. θ0 is angle of initial rotor position. Λr0 and Λrn are the 0th and nth
components of the air-gap permeance due to the rotor slotting, respectively. Thus, the
air-gap permeance function can be obtained as [34,35]

Λg(θs, t) = ΛsΛr
µ0/g = g

µ0
Λr0Λs0 +

g
µ0

Λr0 ∑
m=1

Λsm cos(mZsθs)+

g
µ0

Λs0 ∑
n=1

Λri cos[nZr(θs − θ0 −Ωrt)]+
g

2µ0
∑

m=1
∑

n=1
ΛrnΛsm cos[(mZs ± nZr)θs ∓ nZr(Ωrt + θ0)]

(3)

When θs = 0, i.e., for the axis of phase A windings, the ideal PM magneto-motive-force
(MMF) waveforms of the two machines are illustrated in Figure 2. θ1 is the half of the inner
stator teeth arc.



World Electr. Veh. J. 2021, 12, 22 4 of 16

World Electr. Veh. J. 2021, 12, x FOR PEER REVIEW 3 of 15 
 

Rotor

PM

Armature 

winding

Stator
Iron bridge

 

PM

Stator

Rotor
Armature 

winding

Iron bridge

 
(a) (b) 

Figure 1. Topologies of the 6-stator-slot/13-rotor-pole consequent-pole switched-flux permanent magnet (CP-SFPM) ma-

chines with different U-shaped permanent magnet (PM) arrangements. (a) Model-I. (b) Model-II. 

2.2. Analytical Modelling 

For a double salient structure, the air-gap permeance can be obtained by considering 

stator and rotor slotting effects, respectively. The air-gap permeance due to the stator slot-

ting can be expressed as [34] 

0

1

( ) cos( )s s s sm s s

m

mZ 




      (1) 

where Zs is the number of stator slots, Λs0 and Λsm are the 0th and mth components of the 

air-gap permeance due to the stator slotting, respectively. Similarly, when considering the 

rotor salient, the air-gap permeance due to the rotor slotting can be expressed as 

 0 0

1

( , ) cosr s r rn r s r

n

t nZ t  


          (2) 

where Zr is the number of rotor teeth, Ωr is the angular velocity. θs is the rotor position 

reference to stator. θ0 is angle of initial rotor position. Λr0 and Λrn are the 0th and nth com-

ponents of the air-gap permeance due to the rotor slotting, respectively. Thus, the air-gap 

permeance function can be obtained as [34,35] 

 

   

0 0 0

10 0 0

0 0

10

0

1 10

( , ) cos( )

cos

cos
2

s r

g s r s r sm s s

m

s ri r s r

n

rn sm s r s r r

m n

g g
t mZ

g

g
nZ t

g
mZ nZ nZ t

 
  

 


 






 

 
        

      

      







 (3) 

When θs = 0, i.e., for the axis of phase A windings, the ideal PM magneto-motive-force 

(MMF) waveforms of the two machines are illustrated in Figure 2. θ1 is the half of the 

inner stator teeth arc. 

π/Zs-π/Zs

θs

FPM
F

θ1-θ1

 

π/Zs-π/Zs

θs

-FPM

F

θ1
-θ1

 

(a) (b) 

Figure 2. Ideal PM magneto-motive-force (MMF) waveforms. (a) Model-I. (b) Model-II. Figure 2. Ideal PM magneto-motive-force (MMF) waveforms. (a) Model-I. (b) Model-II.

It can be seen that the two CP-SFPM machines can be regarded as consequent pole
PM configurations, the PM MMF of which can be expressed as [35]

FPM(θs) = ∑
i=0

Fi sin(iZsθs) (4)

where Fi is the ith PM MMF coefficient. In order to confirm the above-mentioned analyses,
the actual PM MMF distributions can be obtained by the FE method [36], as illustrated
in Figure 3. It can be seen that the PM MMF waveforms of the CP-SFPM machines are
asymmetrical, which indicates that the biased flux effect occurs [37], i.e., 0th harmonic.
In addition, compared with model-I, model-II exhibits higher 0th and iZsth (i = 1, 2, 3,
6) harmonic magnitudes, which is mainly due to its better flux concentrated effect. As a
result, relatively larger working harmonic amplitudes and higher torque capability can be
achieved in model-II.
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The air-gap flux density can be obtained by

Bg(θs, t) = FPM(θs)Λg(θs, t) (5)

Because the stationary air-gap flux density harmonic components are absent for torque
production, the air-gap flux density can be further rewritten as

Bg(θs, t) = ∑
j

Bgj(θs, t) (6)

The four components of the air-gap flux density can be, respectively, expressed as

Bg1(θs, t) =
g

µ0
Λs0F0

∞

∑
n=1

Λrn cos[nZr(θs − θ0 −Ωrt)] (7)

Bg2(θs, t) =
g

2µ0
F0

∞

∑
m=1

∞

∑
n=1

ΛrnΛsm cos[(mZs ± nZr)θs ∓ nZr(Ωrt + θ0)] (8)

Bg3(θs, t) =
g

2µ0
Λs0

∞

∑
n=1

∞

∑
i=0

ΛrnFi sin[(iZs ± nZr)θs − nZr(θ0 −Ωrt)] (9)
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Bg4(θs, t) =
g

4µ0

∞

∑
n=1

∞

∑
m=1

∞

∑
i=0

ΛrnΛsmFi sin[(mZs ± nZr ± iZs)θs ∓ nZr(Ωrt + θ0)] (10)

Furthermore, the flux linkage of phase A can be expressed as

ψA = rglstk

∫ 2π

0
Bg(θs, t)Na(θs)dθs (11)

where rg is the air-gap radius, lstk is the active stack length. Na(θs) is the winding function,
which can be expressed as

Na(θs) = ∑
j=1

2
jπ

Nskwj cos(jθs) (12)

where Ns is number of the series-connected winding turns per phase, kwj is the winding
factor of the jth air-gap flux density. Thus, the back electromotive force (EMF) of phase A
can be obtained by

eA(t) = −
dψA
dt

(13)

The electromagnetic torque can be expressed as

Te =
eAiA + eBiB + eCiC

Ωr
(14)

where eA, eB and eC are the back-EMFs of phases A, B and C, respectively. iA, iB, and iC
are the current of phases A, B and C, respectively. Because the fractional-slot concentrated
windings are adopted in CP-SFPM machines, the reluctance torque is very low and can be
neglected [36]. Thus, the average torque can be further rewritten as

Tavg = 3rglstk Ns IAZrΛr1×{
g

µ0
1

Zr
Λs0F0kw|Zr | +

g
2µ0

F0
∞
∑

m=1

Λsmkw|mZs±Zr |
mZs±Zr

+ g
2µ0

Λs0
∞
∑

i=1

Fikw|iZs±Zr |
iZs±Zr

+ g
4µ0

∞
∑

m=1

∞
∑

i=1

Λsm Fikw|mZs±Zr±iZs |
mZs±Zr±iZs

}
(15)

where IA is the peak value of the phase current. According to (15), it can be observed
that only rotor fundamental permeance, all PM MMF and stator permeance harmonic
components are responsible for the effective torque production, which is similar to the
other stator PM machines [38,39].

Considering the main working harmonics, the average torque can be further rewrit-
ten as

Tavg = ∑
j=1

Tavgj = 3rglstk Ns IA× Zr
|Zs−Zr |B|Zs−Zr |kw|Zs−Zr | +

Zr
|Zs+Zr |B|Zs+Zr |kw|Zs+Zr | +

Zr
|2Zs−Zr |B|2Zs−Zr |kw|2Zs−Zr |+

Zr
|2Zs+Zr |B|2Zs+Zr |kw|2Zs+Zr | +

Zr
|3Zs−Zr |B|3Zs−Zr |kw|3Zs−Zr | +

Zr
|3Zs+Zr |B|3Zs+Zr |kw|3Zs+Zr |


= 3rglstk Ns IA ∑

j=1

Zr
Pj

Bjkwj

= 3rglstk Ns IA ∑
j=1

GrjBjkwj

(16)

where Bj, kwj and Pj are the jth air-gap flux density magnitude, winding factor, and
pole pairs, respectively. Tavgj is the average torque generated by the jth air-gap flux density.
Grj is the gear ratio of the jth field harmonics, which is defined as the ratio of the Zr to
the Pj. According to (16), it can be observed that the torque capability can be significantly
improved by low-order harmonics due to its amplification effect of the Grj. In this case
(Zs = 6, Zr = 13), those working harmonics with orders of “|iZs − Zr| (1st)” refer to low-
order ones, e.g., 1 (i = 2) and 5 (i = 3). Thus, in order to enhance low-order field harmonics,
two alternate U-shaped PM configurations are proposed in this paper.
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2.3. Torque Quantification by a Hybrid FE/Analytical Approach

In order to reveal the torque production mechanism in a more intuitive way, a hy-
brid FE/analytical approach was developed in order to quantify the torque components
of the main-order working harmonics. The analytical procedure is shown in Figure 4.
Because the average torque components of the main-order working harmonics cannot
be quantified directly by FE method, the hybrid FE/analytical approach was adopted in
this paper. Moreover, compared with the analytical method, the hybrid FE/analytical
approach provides a more accurate prediction of the air-gap flux density distributions. As
a result, an exact torque quantification of the two CP-SFPM machines can be obtained by
employing the proposed hybrid approach. It can be seen that the torque contributions of
the various working harmonics can be quantified by unified torque equation when the
no-load air-gap flux density is obtained by employing a static magnetic field simulation,
which indicates that the computational time can be significantly reduced compared with
transient simulation. The torque proportion of the jth air-gap flux density can be defined as

λj =
Tavgj

Tavg
× 100% (17)
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Figure 4. The procedure of the proposed hybrid finite element (FE)/analytical approach.

The corresponding actual open-circuit air-gap flux density waveforms and their har-
monic spectra are shown in Figure 5. It shows that model-II has higher |2Zs − Zr| (1st)
order harmonic magnitude, but lower |Zs − Zr| (7th), |3Zs − Zr| (5th) and |Zs + Zr|
(19th) order harmonic amplitudes. The open-circuit flux density distributions of the two
machines are illustrated in Figure 6. It can be seen that both the CP-SFPM machines exhibit
high flux density in stator yoke, which indicates that larger low-order effective harmonics
and better torque capability can be achieved in the proposed designs. In addition, the
paths of |2Zs − Zr| (1st) harmonic are highlighted with blue lines in Figure 6, which
clearly suggests that model-II provides a more effective circulating path for low-order field
harmonic, as evidenced in Figure 5b, which is mainly attributed to better flux concentrated
effect and relative lower magnetic saturation in stator yoke for model-II case.
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In order to confirm the above-mentioned theoretical analyses, the torque contributions
of various working harmonics in the two CP-SFPM machines are quantified by (16), as
illustrated in Figure 7a. It can be found that the low-order harmonic, i.e., |2Zs − Zr| (1st)
order, contributes the highest average torque in the two machines, which confirms that
the U-shaped PM design provides a relatively lower reluctance for low-order harmonics,
and hence torque capability is improved. According to (17), the torque proportions of
various harmonics are shown in Figure 7b. Due to the higher magnitude of the |2Zs − Zr|
(1st) order air-gap flux density, as shown in Figure 5b, model-II exhibits higher torque
proportion of the |2Zs − Zr| (1st) order harmonic compared with model-I, as illustrated
in Figure 7b, which indicates that higher torque can be obtained in model-II. The detailed
torque contributions of the main working harmonics are tabulated in Table 1. Because
only the main working harmonics are taken into consideration, the total average torques
calculated by the foregoing equations are slightly lower than FE predictions, as shown
in Table 1.
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Table 1. Torque Contributions of the Main Working Harmonics of the Two Proposed CP-SFPM
Machines.

Pole Pairs
Model-I Model-II

Harmonics Magnitude (T)/Torque Contribution (Nm)/Torque Proportion (%)

|2Zs − Zr|, 1st 0.167/4.216/75.420 0.204/5.274/79.189
|3Zs − Zr|, 5th 0.102/0.515/9.213 0.087/0.450/6.757
|Zs − Zr|, 7th 0.102/0.368/6.583 0.124/0.457/6.862
|Zs + Zr|, 19th 0.117/0.155/2.773 0.124/0.168/2.523
|2Zs + Zr|, 25th 0.201/0.203/3.631 0.215/0.222/3.333
|3Zs + Zr|, 31th 0.114/0.141/2.522 0.110/0.091/1.367

Total torque Sum (%)/FE-predicted (Nm)
5.59/5.66 6.66/6.74

3. Design Optimization
3.1. Rotor Pole Selection

By taking 6-stator-slot structure as an example, the torque characteristics of the two
proposed CP-SFPM machines with different rotor pole numbers are given in Figure 8
in order to select a feasible rotor pole number. It should be noted that the model-II
structure exhibits higher torque capability than the model-I case in all selected rotor pole
numbers, as shown in Figure 8a, which is mainly due to the better flux concentrated effect
and hence larger effective air-gap field harmonics in model-II design. Taking average
torque and torque ripple into account, the 13-pole rotor structure was selected for the
following analysis.
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Figure 8. Torque quality of 6-stator-slot CP-SFPM machines with different rotor pole numbers. (a) Average torque versus
rotor pole number. (b) Torque ripple versus rotor pole number.

3.2. Multi-Objective Optimization

In order to perform a fair comparison, the multi-objective GA optimization method
embedded in the JMAG17.1 software package was employed to optimize the torque quality
of the two machines. The optimization objectives are to maximize the average torque and
minimize the torque ripple, of which the weight factors are set as 1 and 0.5, respectively. The
number of generations and population size are set as 100 and 20, respectively. Furthermore,
all the design parameters, as shown in Figure 9, are taken into consideration. The geometric
parameters are globally optimized with the restriction of the preceding optimized PM
dimensions, so as to maximize the torque capability at the flux-enhanced state. The scatter
diagrams regarding the average torque versus the torque ripple are given in Figure 10. In
order to balance high average torque and low torque ripple, the optimal Pareto front curves
of the two CP-SFPM machines with blue lines are illustrated in Figure 10. The detail design
parameters of the selected cases for the two CP-SFPM machines are tabulated in Table 2.
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Table 2. Main Design Parameters of the Two Proposed CP-SFPM Machines. 

Parameters Model-I Model-II 
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Rotor pole pairs number, Zr 13 
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PM grade N42SH 
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Table 2. Main Design Parameters of the Two Proposed CP-SFPM Machines.

Parameters Model-I Model-II

Stator slot number, Zs 6
Rotor pole pairs number, Zr 13

Stator outer diameter, rso, mm 102
Stator inner diameter, rsi, mm 56.8

Stator yoke PM thickness, hsy, mm 2
Stator inner teeth thickness, hit, mm 2.3
Stator outer teeth thickness, hot, mm 3.2

Stator PM thickness, hspm, mm 2.4
Iron bridge thickness, hib, mm 0.5
Active stack length, lstk, mm 50

Air-gap length, g, mm 0.5
Rotor outer diameter, rro, mm 55.8
Rotor teeth outer arc, θto, deg 9.2
Rotor teeth inner arc, θti, deg 16.9
Rotor teeth length, hrt, mm 5.9

Rotor inner diameter, rri, mm 24
PM grade N42SH

PM volume, mL 43.37 25.96
Steel grade 35CS250

Turns per phase 130
Rated current, A 8
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4. Electromagnetic Characteristics Investigation

In order to confirm the optimal U-shaped PM structure for the proposed CP-SFPM
machines, the basic electromagnetic characteristics are comparatively investigated in this
Section.

4.1. Open-Circuit Performance

The open-circuit back-EMFs are given in Figure 11. It can be seen that the model-II
configuration exhibits a 24.21% higher fundamental component than the model-I arrange-
ment, which is mainly attributed to the higher |2Zs − Zr| (1st) order harmonic in the
model-II configuration. The cogging torque waveforms are illustrated in Figure 12. It
can be seen that the peak cogging torque of the model-I configuration is higher than the
model-II arrangement, which is mainly attributed to the existence of more abundant air
gap flux field harmonics in the model-I case, as evidenced in Figure 5.
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Figure 12. Cogging torque waveforms.

4.2. On-Load Torque Characteristics

The torque characteristics of the two CP-SFPM machines are illustrated in Figure 13.
It can be seen that the maximum torques of the two machines are reached at approximately
10 and 15 electrical degrees, respectively. Due to its higher |2Zs − Zr| (1st) air-gap flux
density harmonic, the model-II arrangement exhibits 19.26% higher torque than the model-I
type configuration, as shown in Figure 13b. In addition, the model-II configuration exhibits
better overload capability regardless of the load current, as evidenced in Figure 13c. The
average torque/PM volume against the phase current curves is given in Figure 13d. It
can be observed that the model-II arrangement exhibits higher PM utilization for torque
generation, which indicates that the total cost of PM can be significantly reduced by
adopting the model-II configuration.
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4.3. Loss and Efficiency Characteristics

The iron loss versus speed curves of the two CP-SFPM machines at rated current
condition are given in Figure 14a. It can be seen that the iron losses of the two machines
increase with rotor speed. In addition, due to its higher air gap flux field harmonics, the
model-I configuration has larger iron loss than the model-II structure regardless of rotor
speed. The PM eddy-current losses against speed curves are given in Figure 14b. The
model-I design has higher PM eddy-current loss than the model-II case, which is mainly
due to the larger reluctance for armature-reaction flux and hence higher PM current density.
The corresponding main losses of the two studied CP-SFPM machines are illustrated in
Table 3. The efficiency maps of the two machines are illustrated in Figure 15. It can be
observed that the maximum efficiencies of the two CP-SFPM machines are 90.03% and
91.67%, respectively. Due to its relatively lower iron loss and PM eddy-current loss, the
model-II configuration exhibits a larger high efficiency region.
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Table 3. Main Losses of the Two Proposed CP-SFPM Machines.

Items
CP-SFPM Machines

Model-I Model-II

Iron loss, W
rotor 8.93 8.48
stator 14.87 13.69

PM eddy-current loss, W 5.63 1.01
Copper loss, W 43.46

Total loss, W 72.89 66.65
Maximum efficiency, (%) 90.03 91.67
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5. Experimental Validation

In order to validate the aforementioned FE analyses, a 6/13-stator/rotor pole model-
II was manufactured. The stator and rotor assemblies are illustrated in Figure 16a,b,
respectively. The open-circuit 3D flux density distributions of the CP-SFPM machine with
U-shaped PM arrangement are shown in Figure 17. The axial leakage flux in 3D FE model
can be clearly observed, which results in higher mismatches of 2D FE-predicted back-EMF
with the measurements, as illustrated in Figure 18. The measured, hybrid FE/analytical
and FE-predicted average torque against phase current curves are given in Figure 19. It
should be noted that the measured torque values are slightly lower than the FE-predicted
ones, which is mainly due to the end leakage and mechanical tolerance. Moreover, in order
to present a clear comparison, the average torques at different phase currents predicted by
the 2D/3D FE, hybrid FE/analytical and measured methods are given in Table 4. Because
the hybrid FE/analytical average torques are based on the 2D FE-predicted air-gap flux
density, these values are more closed to the 2D FE predictions. However, because the
main-order working harmonics are taken into consideration, the hybrid FE/analytical
average torques are slightly lower than 2D FE predictions, which confirms the effectiveness
of proposed hybrid approach. Moreover, the 3D FE-predicted average torques are closer
to the measured values, which is mainly due to the fact that the end leakage is taken
into consideration in 3D FE simulation. Furthermore, the measured and FE-predicted
torque/power–speed curves are shown in Figure 20. Similarly, a slightly smaller mismatch
between the 3D FE and measured values can be observed, as illustrated in Figure 20,
which is mainly due to the fact that the end effect is taken into consideration in 3D FE
prediction. Overall, the measured results of back-EMF and average torque agree well with
the FE-predicted results, which validates the FE analyses.
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Figure 17. Open-circuit flux density distributions of the model-II CP-SFPM machine. (a) 3D flux density distributions. (b) 

Air-gap flux density waveform in the axial direction at zero rotor position. 
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Table 4. Average torques of the CP-SFPM model-II at different phase currents.

Items
CP-SFPM Machines

Irms = 4 A Irms = 8 A Irms = 12 A

2D FE, (Nm) 4.09 6.75 7.94
3D FE, (Nm) 3.89 6.42 7.54

Hybrid FE/analytical, (Nm) 3.87 6.66 7.86
Measured, (Nm) 3.75 6.20 7.29
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6. Conclusions

This paper presents a comparative study of two CP-SFPM machines with different
U-shaped PM arrangements. There are some conclusions can be summarized such as:

1. The performance comparison of two CP-SFPM machines with different U-shaped
magnets was carried out, which provides a guidance design for this type of machine.

2. A hybrid FE/analytical model for elaborating the torque production mechanism of the
investigated machines, as well as comprehensive comparative analyses, are presented,
which can clearly identify the dominant air-gap field harmonics contributing to the
torque production, as well as reveal the underlying reason why model-II topology
can deliver the higher torque capability of the two U-shaped PM designs.

3. The electromagnetic characteristics of the two optimized CP-SFPM machines were
comparatively investigated. It can be found that model-II exhibits s higher torque
capability and PM utilization ratio, which are mainly attributed to higher low-order
working harmonics. Moreover, model-II has a wider high-efficiency region than the
model-I case, which is mainly due to its relatively lower iron loss and PM eddy-
current loss. Therefore, the CP-SFPM machine with model-II structure exhibits a more
potential practical EV application than the model-I case.

Finally, some experimental measurements on a 6/13-pole CP-SFPM machine prototype
with the model-II structure validate the theoretical and FE analyses.
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