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Abstract: In this paper, two types of dual permanent magnet (PM) machines, i.e., stator slot dual-
PM (SSDPM) machine and split-tooth dual-PM (STDPM) machine, are investigated and compared.
Both machines have consequent pole structure with Halbach array PMs. Their difference lies in the
position of stator PM. The SSDPM machine has Halbach array PMs in the stator slots, while the
STDPM machine has PMs between the split teeth. Torque characteristics, i.e., average torques and
torque ripples, of different slot/pole number combinations of the two machines are compared.
The 24 stator slots/20 rotor slots/4 armature pole pair (24S20R4Pa) SSDPM machine with distributed
windings and the 24 stator slots/10 rotor slots/4 armature pole pair (12S20R4Pa) STDPM machine
with concentrated windings are compared under both open-circuit and on-load conditions. The re-
sults show that the SSDPM machine is more competitive by delivering higher torque density and
higher power density.

Keywords: dual permanent magnet (PM); electric vehicle (EV); flux modulation; Halbach PM array

1. Introduction

Recently, flux modulation (FM) machines have been widely investigated due to their
high torque density [1–5]. They can be a strong competitor for interior permanent magnet
(IPM) machines.

Research shows that different FM machines, i.e., flux-switching permanent magnet
(PM) (FSPM) machines, flux reversal PM (FRPM) machines, doubly salient PM (DSPM)
machines, vernier PM (VPM) machines, magnetically geared machines, etc., share the same
operation principle, i.e., magnetic gearing effect or flux modulation effect [6–9]. The FM
machines can also be categorified by PM positions and stator/rotor numbers: stator PM FM
machines that have PMs in the stator [10–14], rotor PM FM machines that have PMs in the
rotor [15,16], dual-PM FM machines that have PMs in both the rotor and stator [5,17–22],
dual stator/single rotor FM machines that have two stators and one single rotor [4,23–28],
dual rotor/single stator FM machines that have two rotors and one stator [1–3,29], triple
rotor/dual stator FM machines that have three rotors and two stators [30], etc.

Stator PM FM machines include FSPM machines, FRPM machines, and DSPM ma-
chines [10–14]. FSPM machines have better flux-focusing effect than the other two types of
machines. Stator PM machines have easier heat management if a forced liquid cooling is
employed. This means that the electric loading can be further increased to improve the
torque density. Rotor PM FM machines mainly refer to VPM machines, which can produce
high torque at low speed, albeit with poor power factor [15,16].

To further enhance the torque density, dual stator/single rotor [4,23–28], dual ro-
tor/single stator [1–3,29], and multi stator/multi rotor [30] PM machines are proposed and
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developed, albeit with complex structures. Dual-PM machines can also help to increase
the torque density significantly due to torque contribution by both stator PM and rotor
PM [5,17–22].

In this paper, two types of dual-PM machines, i.e., stator slot dual-PM (SSDPM)
machine and split-tooth dual-PM (STDPM) machine, together with consequent pole ro-
tors, are investigated and compared. On one hand, they can deliver very high torque.
More importantly, since there is only one airgap, they have much simpler structures than
dual-stator/dual-rotor machines. The working principle, slot/pole number combination,
together with comparison of two dual-PM machines, will be discussed. Figure 1 shows the
SSDPM machine with 24 stator slots/20 rotor slots/4 armature pole pair (24S20R4Pa) and
split-tooth dual-PM (STDPM) machine with (12S20R4Pa).
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Figure 1. Machine topologies of dual permanent magnet (PM) machines. (a) 24S20R4Pa stator slot dual-PM (SSDPM)
machine; (b) 12S20R4Pa split-tooth dual-PM (STDPM) machine.

2. Machine Topologies and Working Principle
2.1. Machine Topology

In [5], the dual-PM machine employs radially magnetized PMs in both the rotor slots
and the stator slots. Article [20] improves the dual-PM machine by replacing the radially
magnetized stator PMs with Halbach PMs. In this paper, to further enhance the torque
density, dual Halbach PMs are employed in the SSDPM machine, as shown in Figure 1a.
Both the rotor PM and stator PM are Halbach PM arrays.

The STDPM machines also employ Halbach PM array in the rotor slots, but with
radially magnetized PMs between the split teeth [17].

2.2. Working Principle

For the dual-PM machines, the torque can be attributed to two parts: rotor PM and
stator PM. The 12S11R1Pa SSDPM machine and 12S23R1Pa STDPM machine are taken as
examples to explain the machine decomposition, as shown in Figures 2 and 3. The key
design dimensions are shown in Figure 4. The design details are given in Tables 1 and 2.
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Figure 2. Machine decomposition of 12S11R1Pa SSDPM machine.
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Figure 3. Machine decomposition of 12S23R1Pa STDPM machine.
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Figure 4. Key design dimensions of dual-PM machines. (a) SSDPM machine; (b) STDPM machine.

On one hand, when the stator PMs are set as air, they become vernier PM machines
and split-tooth vernier PM machines, and the slot/pole number combinations comply with
the Equation (1) [31] and Equation (2) [32], respectively.

Nr = Ns ± Pa, (1)

Nr = nNs ± Pa, (2)

in which Ns is the stator slot number, Nr is the rotor slot number, Pa is the armature pole
pair number, n is the split tooth number which is larger than 1.

On the other hand, when the rotor PMs are set as air, they become flux reversal PM
machines, and the slot/pole number combinations also comply with the above-mentioned
equations. Hence, the slot/pole number combinations of dual-PM machines comply with
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(1) and (2). To calculate the torque decomposition of dual-PM machines, linear material is
employed, and the relative permeability is set as 50, considering the overload capability.

Before discussing detailed results, it should be mentioned that the torque, power, iron
loss, power factor, back EMF, etc., are all normalized due to confidentiality. As shown in
Figure 5, for the 12S11R1Pa SSDPM machine, the rotor PM machine and the stator PM
machine produce 0.515 p.u. and 0.335 p.u. torque, respectively. The dual-PM machine
delivers 1.7% lower torque than the sum of the rotor PM machine and the stator PM
machine. This is mainly due to that the flux leakage increases when the rotor PM and stator
PM are working together. Similarly, for the 12S23R1Pa STDPM machine, the dual-PM
machine produces 1.5% lower torque than the sum of the corresponding rotor PM machine
and stator PM machine, as shown in Figure 6.

Table 1. Parameters of optimized SSDPM machines with different slot/pole number combinations.

Symbol 12S11R 12S13R 12S10R 12S8R 12S7R 18S17R 18S16R 18S15R 18S14R 18S13R 24S23R 24S22R 24S20R 24S19R 24S16R 24S14R
1Pa 1Pa 2Pa 4Pa 5Pa 1Pa 2Pa 3Pa 4Pa 5Pa 1Pa 2Pa 4Pa 5Pa 8Pa 10Pa

r3 (mm) 100
lstk (mm) 140

g (mm) 0.5
Br , µr 1.3 T, 1.05

tw (mm) 11.7 8.5 13.5 16 18.2 5.75 9.2 10.3 10.3 10.6 5.0 6.5 6.95 8.4 8.6 9.6
w2 (deg) 10.4 17.6 26.2 30.3 35.9 13.1 15.4 16.2 18.0 18.3 9.9 9.9 10.5 10.9 12.5 17.5
yk (mm) 25.1 22.3 14.5 9.3 9.4 25.8 13.2 9.9 6.3 6.7 24.6 15.4 9.6 8.1 5.5 5.9
r1 (mm) 60.9 64.3 67.8 70 65.7 62.1 69.8 73.8 69.0 72.6 64.8 71.5 73.0 74.2 75.9 68.1
h1 (mm) 5.3 5.2 4.7 4.2 4.9 5.3 4.3 5.3 4.7 4.4 5.1 4.9 4.1 4.5 5.1 4.2
h2 (mm) 7.4 7.3 7.1 6.7 7.3 7.2 7.0 6.8 7.4 7.3 7.3 7.1 7.1 6.2 7.2 7.4

Sslot (mm2) 208.0 232.3 349.9 436.8 470.6 120.0 231.4 202.8 370.6 303.5 70.4 112.7 192.5 177.8 187.7 260.9
w1hal 0.63 0.58 0.60 0.66 0.4 0.41 0.5 0.64 0.58 0.52 0.39 0.41 0.58 0.53 0.4 0.51
w2hal 0.64 0.62 0.75 0.72 0.78 0.59 0.71 0.65 0.66 0.64 0.60 0.58 0.64 0.7 0.74 0.69

Symbol 30S29R 30S28R 30S26R 30S25R 30S23R 30S22R 30S20R 36S35R 36S34R 36S33R 36S32R 36S31R 36S30R 36S29R 36S28R 36S26R
1Pa 2Pa 4Pa 5Pa 7Pa 8Pa 10Pa 1Pa 2Pa 3Pa 4Pa 5Pa 6Pa 7Pa 8Pa 10Pa

tw (mm) 5.2 5.2 7.3 6.9 7.3 7.9 8.1 4.0 4.0 5.0 5.1 6.7 5.2 6.8 6.2 7.3
w2 (deg) 8.6 8.9 9.5 10.8 10.7 11.4 12.6 7.5 7.3 7.7 7.7 7.7 7.6 7.7 9.0 9.1
yk (mm) 24.8 14.6 8.6 7.7 6.3 5.1 4.3 23.5 15.0 9.9 9.7 7.3 6.2 6.8 5.5 4.8
r1 (mm) 64.9 74.2 76.3 77.9 73.9 74.2 71.4 67.5 67.5 77.8 75.3 78.1 76.9 78.7 77.4 78.5
h1 (mm) 5.4 4.0 4.9 3.8 3.8 3.8 3.7 3.8 4.4 5.5 4.7 3.5 3.5 3.5 4.5 3.9
h2 (mm) 6.9 6.9 6.4 7.4 7.0 6.5 7.1 6.4 6.6 7.1 6.5 7.4 6.0 7.4 6.7 7.1

Sslot (mm2) 44.4 80.3 105.0 114.9 165.9 168.2 197.8 42.0 122.7 64.1 96.1 90.7 129.6 89.8 111.8 101.4
w1hal 0.50 0.42 0.56 0.43 0.41 0.39 0.79 0.31 0.34 0.49 0.33 0.54 0.41 0.58 0.44 0.63
w2hal 0.38 0.57 0.50 0.66 0.55 0.68 0.54 0.41 0.48 0.39 0.40 0.55 0.53 0.50 0.45 0.49

Table 2. Parameters of optimized 6-slot STDPM machines with a different split-tooth number and armature pole pair
number.

Symbol
2 Split-Tooth 3 Split-Tooth 4 Split-Tooth

6S11R1Pa 6S10R2Pa 6S8R4Pa 6S17R1Pa 6S16R2Pa 6S14R4Pa 6S23R1Pa 6S22R2Pa 6S20R4Pa

tw (mm) 34.5 34.9 34.1 17.7 37.8 15.5 26.9 34.0 28.8
w1 (deg) 19.7 19.1 17.3 12.3 12.0 11.4 9.2 7.8 8.9
yk (mm) 22.4 21.0 13.8 25.4 16.1 9.5 25.8 14.9 11.2
ht (mm) 7.9 7.0 7.3 7.2 7.1 6.1 6.2 8 5.7
so (deg) 19.7 19.1 17.3 12.3 12 11.4 9.2 7.8 8.9
r1 (mm) 61.5 56.7 61.8 59.9 62.6 75.3 60.4 64.8 73.8
h1 (mm) 4.2 4.0 4.8 4.4 4.5 4.7 4.4 4.8 4.8
h2 (mm) 7.7 8.0 7.1 7.5 7.1 7.9 6.6 7.8 7.9

Sslot (mm2) 330 586.9 585.1 401.2 578.7 637.4 333.5 575.9 521.8
w2 (deg) 22.3 26.3 33.3 16.3 16.3 19.0 12.9 11.8 13.0

w2hal 0.85 0.80 0.87 0.57 0.53 0.56 0.45 0.59 0.58
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Figure 5. Torque decomposition of 12S11R1Pa SSDPM machine when relative permeability is 50.
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3. Influence of Rotor Slot Number

As shown in (1) and (2), when the stator slot number and armature pole pair number
are fixed, the rotor slot number can be chosen as Ns + Pa and Ns − Pa for SSDPM machine,
and nNs + Pa and nNs − Pa for STDPM machine. To compare the effect of rotor slot number
selection, 12S1Pa SSDPM machines with 11R and 13R, 12S1Pa STDPM machine with 23R
and 25R are investigated, respectively, as shown in Figures 7 and 8.

For fair comparison, all the investigated machine topologies are globally optimized for
maximum torque under the same stator outer diameter, stack length, copper loss (120 ◦C)
(copper loss is set according to the thermal restriction). All the optimizations are based
on Genetic Algorithm (GA), and 30 individuals in each population with 35 generations
have been employed. Tables 1 and 3 list the key design dimensions. In addition, the end
winding length is calculated by the following equation:

lend = yπ2(r3 − yk − 0.5sh)/Ns, (3)

in which y is the slot pitch, r3 is the stator outer radius, yk is the stator yoke width, sh is
slot height.

Figures 9 and 10 show that when the rotor slot number is selected lower than the
stator slot number, higher torque can be produced. More importantly, higher power factor,
lower iron loss, and higher efficiency can also be achieved with lower rotor slot number, as
listed in Table 4, due to lower electrical frequency.
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Table 3. Parameters of optimized 12-slot STDPM machines with a different split-tooth number and armature pole pair
number.

Symbol
2 Split-Tooth 3 Split-Tooth 4 Split-Tooth

12S23R1Pa 12S25R1Pa 12S22R2Pa 12S20R4Pa 12S19R5Pa 12S35R1Pa 12S34R2Pa 12S32R4Pa 12S31R5Pa 12S47R1Pa 12S46R2Pa 12S44R4Pa 12S43R5Pa

tw (mm) 14.6 19.9 18.6 22.2 23.0 6.7 21.7 22.1 22.4 11.7 16.1 21.8 15.8
w1 (deg) 8.6 10.4 8.9 8.3 9.4 6.4 6.6 6.2 6.0 4.6 4.1 4.2 3.8
yk (mm) 24.3 22.6 16.1 12.4 12.0 24.7 17.4 10.2 11.1 24.4 18.9 12.2 8.6
ht (mm) 7.6 6.5 7.5 8.1 6.8 6.5 7.6 6.9 5.9 6.1 5.8 6.6 5.4
so (deg) 8.6 10.4 8.9 8.3 9.4 6.4 6.6 6.2 6.0 4.6 4.1 4.2 3.8
r1 (mm) 59.3 61.2 64.8 66.9 69.1 61.4 65.5 71.7 68.7 61.0 64.5 73.1 73.4
h1 (mm) 3.8 4.9 4.6 4.5 4.1 4.6 4.2 3.0 3.0 4.9 2.60 3.6 3.2
h2 (mm) 7.7 6.3 7.6 5.6 7.6 5.8 7.0 6.7 8.0 3.7 5.9 6.9 7.6

Sslot (mm2) 190 168.2 248.2 246.2 231.3 210.9 173 235.6 281.8 205.8 242.3 167.8 351.4
w2 (deg) 12.6 9.9 12.9 13.4 12.6 7.5 6.9 7.6 7.8 6.1 5.5 5.8 6.3

w2hal 0.47 0.58 0.52 0.47 0.54 0.41 0.57 0.69 0.58 0.49 0.49 0.47 0.42

Table 4. Comparison of electromagnetic performances with a different rotor slot number selection
under 600 rpm and the same copper loss.

Normalized
Torque (p.u.)

Normalized Power
Factor (p.u.)

Normalized
Iron Loss (p.u.) Efficiency

12S11R1Pa
0.625 0.547 0.36 83.0%SSDPM

12S13R1Pa
0.597 0.493 0.38 82.3%SSDPM

12S23R1Pa
0.550 0.293 0.89 80.3%STDPM

12S25R1Pa
0.477 0.267 0.95 77.8%STDPM

4. Influence of Different Slot/Pole Number Combinations

Apart from the influence of stator yoke width, stator/rotor PM width, rotor diameter,
stator/rotor PM height, for SSDPM machines with different slot/pole number combi-
nations, the torques are mainly affected by pole ratio (pole ratio is an important index
for flux modulation machines, and can be defined as Nr/Pa.) [33], flux leakage [33], end
winding length, and winding factor. All the machine topologies are globally optimized
for maximum torque under the aforementioned conditions, and the design details are all
listed in Tables 1–3.

Figure 11 shows the influence of stator slot number and armature pole pair number
on the average torques of SSDPM machines. The peak torques of 12S, 18S, 24S, 30S, and
36S appear when the armature pole pair numbers are 2, 3, 2, 2, and 4, respectively. On one
hand, these combinations have shorter end winding length compared with those having
1 armature pole pair number. On the other hand, they have higher pole ratio than those
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having larger armature pole pair number. The 12S7R5Pa SSDPM machine exhibits higher
torque than the 12S8R4Pa one due to higher winding factor.
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Figure 11. Torques versus armature pole pair number and stator slot number when rotor slot number
is selected as Ns − Pa.

It should be noted that the maximum torque values also increase with the increase
of stator slot number, as shown in Figure 12. Dual-PM machines with stator slot number
larger than 36 are not calculated because:

(a) The increase of electrical frequency significantly affects other indexes, e.g., increasing
the losses, decreasing the power factor, increasing the carrier frequency. All of these
will deteriorate the overall performances. Figure 12 shows that the torque/electrical
frequency decreases with the increase of stator slot number.

(b) The maximum torque increase rate decreases. When increasing the stator slot number
from 12 to 18, the maximum torque increases by 0.176 p.u. However, when the stator
slot number increases from 30 to 36, the maximum torque increases by 0.08 p.u. Hence,
it is not cost-effective to further increase the stator slot number.
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Figure 12. Maximum torque and torque/electrical frequency versus stator slot number at 600 rpm.

The torque ripples of SSDPM machines are shown in Figure 13. The 12S8R4Pa,
24S16R8Pa, and 30S20R10Pa exhibit significantly higher torque ripple than other combi-
nations. This is due to the fact that these combinations have the smallest least common
multiple (LCM) of the rotor slot number and the stator slot number.
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Figure 13. Torque ripples versus armature pole pair number and stator slot number when rotor slot
number is selected as Ns − Pa.

Torques and torque ripples of STDPM machines are shown in Figures 14 and 15,
respectively. Apart from the aforementioned influence factors, split-tooth number will
increase the pole ratio, and thus affect the torque characteristics.
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Figure 14. Torques versus stator slot number, armature pole pair number, and split-tooth number
when rotor slot number is selected as nNs − Pa.
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number when rotor slot number is selected as nNs − Pa.
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When the stator slot number is 6, increasing the split tooth number will increase the
torque. However, when the stator slot number is 12 and the armature pole number is 1,
increasing the split tooth number does not increase the torque, due to the increased flux
leakage, as shown in Figure 16.
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5. Comparison of Stator Slot Dual-PM Machine and Split Tooth Dual-PM Machine

In this section, the 24S20R4Pa SSDPM machine with distributed windings and the
12S20R4Pa STDPM machine with concentrated windings, as shown in Figure 17, are
compared. Employing split-tooth mainly helps to ease manufacturing and decrease end
winding length. These two combinations are chosen for comparison since they have the
same armature pole pair number, rotor tooth number, pole ratio, stator outer diameter, and
stack length. The design details of these two machines are listed in Tables 1 and 2.
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Figure 17. Topologies of two dual-PM machines. (a) 24S20R4Pa SSDPM machine; (b) 12S20R4Pa STDPM machine.

Figure 18 compares the torque waveforms of the two machines under the same copper
loss (120 ◦C). The SSDPM machine can deliver 48% higher torque with 63.2% lower torque
ripple compared with the STDPM machine.
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Figure 18. Comparison of torque waveforms of two dual-PM machines under the same copper loss
(120 ◦C).

In actual operation, both DC voltage and phase current are limited. Here, space vector
pulse width modulation (SVPWM) control strategy is employed. The turn number per slot
is adjusted as 10. The parallel branch is adjusted to 2 and 1, for the SSDPM and STDPM
machines, respectively.

Figure 19 shows the flux density distributions of the two compared dual-PM machines
at open circuit condition and load condition (Id = 0 and Iq = Imax). For the SSDPM and
STDPM machines, the maximum flux density appears in the tooth and the split teeth,
respectively, no matter what the condition is. In addition, slightly higher flux density can
be observed in the yoke of the SSDPM machine at load condition. Despite this, the SSDPM
exhibits better overload capability, which will be shown later. Hence, for both machines,
the iron core material is fully utilized.

Figure 20 compares the back EMFs of the two dual-PM machines. The SSDPM machine
exhibits 40.4% higher fundamental harmonic, albeit with much higher 5th harmonic. The
STDPM machine has obvious 2nd harmonic due to unbalanced PM magnetomotive force
(MMF).

Figure 21 shows the cogging torques of the two compared machines. The cogging
torque of the STDPM machine is 3.6 times larger than the SSDPM machine, which explains
the higher torque ripple in the STDPM machine. For the SSDPM and STDPM machines, the
fluctuation frequency in one electrical period is 6 and 3, respectively. The higher amplitude
and lower fluctuation frequency of the cogging torque of the STDPM machine are mainly
due to its smaller least common multiple (LCM) of the stator slots and the rotor poles.

Figure 22 shows that the SSDPM machine produces 46% higher torque than the
STDPM machine, together with 51.7% lower torque ripple. This is due to the fact that
the rotor PM and stator PM in the SSDPM machine produce 26% and 122% higher torque
than their counterparts, as shown in Figure 23. It can also be concluded that the stator PM
machine with Halbach array PMs in the stator slots can deliver much higher torque than
that with PMs between split teeth.

Figure 24 shows that the SSDPM machine has better overload capability than the
STDPM machine. The overload capability can be indicated by inductance. The former has
smaller inductance than the latter. This is due to the fact that the inductance is inversely
proportional to the length of the flux path and the SSDPM has a longer flux path, as shown
in Figure 19a,b. The torques/powers versus speed are calculated according to [33], and
shown in Figure 25. The two dual-PM machines have similar corner speed. The SSDPM
machine can produce 50.3% higher power than its counterpart.
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Figure 19. Flux density distributions of two dual-PM machines. (a) 24S20R4Pa SSDPM machine at open circuit condition;
(b) 12S20R4Pa STDPM machine at open circuit condition; (c) 24S20R4Pa SSDPM machine at load condition (Id = 0 and
Iq = Imax); (d) 12S20R4Pa STDPM machine at load condition (Id = 0 and Iq = Imax).
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Figure 20. Back EMFs of two dual-PM machines at 600 rpm. (a) Waveforms; (b) spectra.
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Figure 21. Cogging torques of two dual-PM machines.
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Figure 22. Torque waveforms of two dual-PM machines when I = Imax and turn number per phase is
adjusted to satisfy inverter requirements.
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Figure 23. Torque decomposition of two dual-PM machines using frozen permeability method.
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Figure 24. Torques versus current of two dual-PM machines.
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Figure 25. Torques/powers versus speed of two dual-PM machines.

Table 5 compares the electromagnetic performances of the dual-PM machines. The
SSDPM machine has higher torque, higher torque per PM volume, higher power factor,
and higher efficiency. Hence, the SSDPM machine is preferred.

Table 5. Comparison of electromagnetic performances of two dual-PM machines under 600 rpm and
the same copper loss.

24S20R4Pa SSDPM 12S20R4Pa STDPM

Normalized torque (p.u.) 0.725 0.497

Torque per PM volume (p.u./cm3) 1.34 1.28

Normalized power factor (p.u.) 0.93 0.69

D-axis inductance (µH) 56.9 61.1

Q-axis inductance (µH) 62.59 61.4

Normalized iron loss (p.u.) 0.33 0.24

Efficiency 93.5% 89.7%

6. Conclusions

Two types of dual-PM machines, i.e., SSDPM machine and STDPM machine, are
analyzed in terms of working principle, slot/pole number combinations, along with the
comparison of electromagnetic performances. The results show that:
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(a) Dual-PM machines can be decomposed into stator PM machines and rotor PM ma-
chines that share the same slot/pole number combinations.

(b) There exists one optimum armature pole pair number for maximum torque.
(c) The SSDPM machines exhibits better electromagnetic performances than the STDPM

machines.
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Abbreviations

µr Relative permeability of PM material
Br Remanence of PM material
g Airgap length
h1 Stator PM height
h2 Rotor PM height
ht Tooth tip height
lstk Stack length
r1 Rotor outer radius
r3 Stator outer radius
tw Stator tooth width
Sslot Slot area
w1 Stator PM width
w1hal Width of radially magnetized PM in stator Halbach PM array
w2 Rotor PM width
w2hal Width of radially magnetized PM in rotor Halbach PM array
yk Stator yoke width
Imax Amplitude of maximum current
Id D-axis current
Iq Q-axis current
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