
Review

A Review of Battery State of Health Estimation
Methods: Hybrid Electric Vehicle Challenges

Nassim Noura 1,*, Loïc Boulon 1 and Samir Jemeï 2,3

1 Hydrogen Research Institute, Université du Québec à Trois-Rivières, Trois-Rivières, QC G8Z 4M3, Canada;
Loic.boulon@uqtr.ca

2 FEMTO-ST, CNRS, Université Bourgogne Franche-Comté, rue Ernest Thierry Mieg, F-90010 Belfort, France;
samir.jemei@univ-fcomte.fr

3 FCLAB, Université Bourgogne Franche-Comté, rue Ernest Thierry Mieg, F-90010 Belfort, France
* Correspondence: Nassim.noura@uqtr.ca; Tel.: +1-(438)-223-4240

Received: 22 September 2020; Accepted: 14 October 2020; Published: 16 October 2020
����������
�������

Abstract: To cope with the new transportation challenges and to ensure the safety and durability of
electric vehicles and hybrid electric vehicles, high performance and reliable battery health management
systems are required. The Battery State of Health (SOH) provides critical information about its
performances, its lifetime and allows a better energy management in hybrid systems. Several research
studies have provided different methods that estimate the battery SOH. Yet, not all these methods
meet the requirement of automotive real-time applications. The real time estimation of battery SOH
is important regarding battery fault diagnosis. Moreover, being able to estimate the SOH in real time
ensure an accurate State of Charge and State of Power estimation for the battery, which are critical
states in hybrid applications. This study provides a review of the main battery SOH estimation
methods, enlightening their main advantages and pointing out their limitations in terms of real
time automotive compatibility and especially hybrid electric applications. Experimental validation
of an online and on-board suited SOH estimation method using model-based adaptive filtering is
conducted to demonstrate its real-time feasibility and accuracy.
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1. Introduction

With climate change, resource depletion, greenhouse gases, it is obvious that the environmental
situation of the planet has reached a critical stage. In order to cope with some of the crises that the
planet is facing, a tremendous change in the transportation field is necessary. As a matter of fact,
hybridization and electrification of vehicles’ powertrains have witnessed a huge growth in recent years.
A key component of this electrified powertrain is the battery. Therefore, battery technologies have seen
a consequent development, especially with Lithium Ion Batteries (LIB) [1]. Since their emergence in
the early 1990′s, the LIB cell represents the most promising and fastest growing battery technology in
both low and high-power applications. A high specific energy (150–280 Wh·g−1) [2] combined with a
high specific power (200–300 W·kg−1) makes this technology the most attractive one for electrified
powertrains. BCC Research reports that the LIB market is expected to reach USD 47.4 billion in 2023
with 15.8% annual growth [3].

The growing market of Electric Vehicles (EV) and Hybrid Electric Vehicles (HEV) leads to a huge
demand on high performing LIB but most of all long-lasting ones. Batteries are complex electrochemical
components with nonlinear behaviors [4]. Their performances depend heavily on internal and external
conditions (aging, temperature, etc.). In order to keep track of these performances and battery states,
an LIB pack is always equipped with a Battery Health Management system, part of the Battery
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Management System (BMS). The BMS is the main battery control system. Its role is to provide safe use
of the battery and estimate, as accurately as possible, the main states of the battery system such as
its State of Health (SOH) State of Power (SOP) and State of Charge (SOC) [5,6]. The SOC provides
information about the current amount of energy stored in the battery. The SOP indicates the battery
capability of providing the required power [7,8]. Meanwhile, the SOH is a figure of merit that indicates
the battery level of degradation [9,10]. Due to the nonlinear complex behavior of the battery, estimating
battery SOC, SOP and SOH can be very challenging, yet necessary. The battery SOH is attracting
more and more attention. Estimating the battery SOH in real time is very important for automotive
applications. It allows battery fault diagnosis and help prevent hazardous accidents. It provides
accurate knowledge on the battery performance that can help manage the energy distribution in HEV
and improve their consumption and lifetime [11]. Most of all the real time SOH estimation allows an
accurate estimation of the battery SOC and SOP. Additionally, it can be useful in terms of maintenance
and replacement schedules.

Different approaches are used for battery state estimations. Regarding battery SOH estimation,
there are three main indicators that define this state, the battery internal resistance, the battery
impedance and its capacity. The battery capacity reflects the amount of energy the battery can store,
while the internal resistance and impedance are indicators of its power capability. When it comes
to hybrid applications, the battery’s power is of great interest, compared to EV where the battery
energy is more crucial. Their health condition is therefore seen through power indicators such as the
internal resistance and the impedance. These parameters change over the battery lifetime due to aging
mechanisms. The battery SOH can be calculated using the ratio between the actual indicator value
(capacity, impedance or resistance) and its initial one. At its End of Life (EoL), considering vehicular
applications, the battery capacity can fade up to 20% while the internal resistance increases up to
160% of its initial value [5] Therefore, tracking their changes is necessary to estimate the battery SOH.
This tracking is, as mentioned previously, a very challenging task since the changes in both battery
resistance and battery capacity find their origins in many different causes but also in the interactions
between them. Several studies tracked back these origins in terms of internal battery degradation [12].
The main causes appear to be the Solid Electrolyte Interface (SEI) formation [13,14] with lithium metal
plating and loss of lithium in the active carbon area of the battery [4,15]. Moreover, changes in these
SOH indicators can be caused by external conditions such as temperature changes and SOC level. Yet,
these variations are often temporary and most of the time reversible; they don’t reflect adequately the
continuous degradation of the battery health.

Considerable efforts are invested in battery SOH estimation to keep track of their performances and
their remaining useful lifetime. Different methods are deployed to accurately identify the previously
cited SOH indicators and reach an accurate battery SOH estimation. These methods can be listed
in three main categories, shown in Figure 1: Experimental methods, Model-based methods and,
last but not least, Machine Learning methods. Machine learning methods stand as a combination
of experimental methods and model-based ones; as a matter of fact, they make use of example data
recorded from reel vehicles’ BMS as input data for training the machine learning model and extracting
the battery degradation level. Several review studies have listed these methods pointing out their
advantages and their drawbacks [16–19].

Regarding automotive applications, operating conditions change in real time (temperature
for instance), making the real time feasibility of these identification processes very challenging.
The model-based methods and the machine learning-based ones can meet the requirements of online
and onboard applications. The experimental-based methods require a considerable amount of time and
a high cost to be conducted which makes them less suited for real time applications [16,20]. Since the
list of existing methods in terms of SOH estimation provided in the literature is very wide, a qualitative
review that focuses on the key automotive challenges is necessary. The main purpose of this review is
to highlight the strengths and weaknesses of the latest and main battery SOH estimation techniques in
terms of real time applications. An experimental validation of the presented, real time compatible,
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SOH estimation methods is conducted. This experimental validation takes into consideration a real
driving cycle with a dynamic current profile. The results of this experimental validation are used to
highlight the compatibility of these methods with automotive applications.

Therefore, this paper is organized as follows, the next section presents a review of the main
experimental-based SOH estimation methods. Model-based SOH estimation methods are presented in
Section 3. In Section 4, machine learning estimation methods are reviewed; they stand as a combination
of experimental and model-based methods. Experimental testing and validation results are provided
and analyzed in Section 5. Finally, a conclusion is made in Section 6.
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Figure 1. State of Health (SOH) estimation methods.

2. Review of Battery State of Health (SOH) Estimation Experimental Methods

Experimental methods are, most of the time, conducted in laboratories since they require specific
equipment and are often time consuming. They are based on collecting data and measurements that
can be used to understand and evaluate the battery aging behavior. The main experimental methods
to estimate the battery SOH are presented in this section.

2.1. Battery’s Internal Resistance Measurement

The battery’s internal resistance is considered an important SOH indicator that defines the voltage
drop when a current is applied to the battery. This parameter is heavily impacted by aging and
degradation. Its value increases when the battery SOH decreases. Therefore, it is often used as a
strong indicator to estimate the battery SOH. The literature shows how several authors investigated
techniques to measure this internal resistance. The most commonly used method is called current
pulse [21–23]. It is based on the Ohm’s Law. It measures the voltage drop of the battery for a given
current, and then calculates the battery’s internal resistance, as follows [24]:

Rb(SOC, T) =
OCV(SOC, T) −Vbat(SOC, T)

Ipulse
(1)

where Rb stands for the battery internal resistance, OCV its Open Circuit Voltage, Vbat its voltage
and Ipulse the current applied. This method is widely used in laboratories to define the battery
internal resistance behavior in different working conditions with a very satisfying accuracy. However,
this method is more suitable for stationery and laboratory applications, due to its time-consuming
process (approximately one hour of battery relaxation to reach the equilibrium before measuring
the OCV).
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In [25], the battery internal resistance is measured using the energy loss caused by Joule’s Law,
which is directly linked to this resistance by the following equation:

dQ joule

dt
= I2

bat.Rb (2)

where Qjoule represents the heat generated by the battery. This method is often applied by use of a
calorimeter to measure the heat loss during the battery operation. This method is mostly applied in
laboratories conditions due to its high cost and consequent space requirement (use of an additional
calorimeter). The third common method to measure the battery internal resistance is the Electrochemical
Impedance Spectroscopy (EIS) as shown in [26] which allows the of calculation resistance from the
measured impedance. This method will be presented in detail in the next chapter. Measuring the
internal resistance of a battery experimentally is very accurate yet conducting these measurements on
board can be challenging.

2.2. Battery’s Internal Impedance Measurement

The internal impedance of a battery represents the combination of its internal resistance and
reactance. It has been established and proven that the internal impedance of a battery tends to increase
with age. Therefore, it is considered a battery SOH indicator. The most frequent method to measure
impedance is the EIS [27–29]. It is a non-destructive method that measures the impedance of an
electric system by applying a sinusoidal AC current and measuring the response output voltage.
The impedance is measured as a function of the frequency. The main advantages of this technique are in
its ability to help identify accurately the ageing phenomenon that occurs in the battery. As a matter of
fact, in [30], the author, through EIS, investigates two main phenomenon of battery ageing. The first one
appears to be the charge transfer at the positive electrode. Meanwhile, the second one is caused by the
lithium ion transport across the SEI layer. Another ageing phenomenon is identified in [4], where the
author makes use of EIS to point out the effect of cycling and storage under field operating conditions
on the LIB’s impedance. In [31], the author introduces an innovative concept for EIS. The process is
conducted in real time using a control platform and an efficient power converter, which increase its
cost. It has been made clear, in the literature, that this EIS technique is very convincing in measuring
the battery impedance but also identifying its ageing mechanisms. Yet, the main drawbacks of this
measurement technique are in the fact that it requires a long time to be performed and a particularly
stable environment.

2.3. Battery Energy Level

The capacity is a characteristic that indicates the total amount of energy that can be stored in
a battery. This characteristic is known to decrease with battery aging. Therefore, experimentally
measuring this capacity fading through time is one of the most accurate ways to estimate the battery
SOH. In [32], the author conducted several charging/discharging cycles of a lithium ion battery until
its EoL. The main idea behind this study is to identify the battery charging capacity depending on
its voltage for different degradation levels (Cycle Numbers). In [33], the author estimated the battery
capacity level through experimental testing taking into consideration different temperature conditions.
The battery was tested for 800 cycles under 25 ◦C and 40 ◦C. Offline data experimentally measured
were then used to setup an online SOH estimation method. However, these experimental methods can
only be conducted offline under laboratory conditions where a battery is tested until its EoL.

2.4. Other Methods

Other methods can be found in the literature that allow battery SOH estimation using experimental
testing. For example, the battery SOH can be investigated by analyzing the evolution of its incremental
capacity (IC) and differential voltage (DV) curves [34]. In fact, these parameters change with battery
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aging; therefore, they can be used to estimate the battery SOH through experimental testing as shown
in [35]. These Incremental Capacity Analysis (ICA) and Differential Voltage Analysis (DVA) methods
are time consuming since their curves are obtained under low current (C/20 for instance). In [36],
data based on calendar aging were gathered over 11 months to make this estimation feasible and
they only cover some specific operating conditions. The cycle number counting method as its name
indicates consists of counting the number of cycles that the battery has experienced and comparing
it with the number provided by the manufacturer to estimate the battery SOH. This cycle counting
method takes into account an important parameter, the Depth of Discharge (DOD). The number of
cycles that defines the battery’s Remaining Useful Life (RUL) depends then on its SOH and on the DOD
considered. Ultrasonic inspection is another method that detects the inner changes inside the battery
due to its aging, by use of a wave generating test bench [37]. SOH estimation can be accomplished
using destructive methods [16] exclusively conducted in laboratory conditions. They investigate the
changes of structure inside the battery using techniques such as X ray diffraction [38]. The reviewed
experimental methods are listed in Table 1 with their advantages and disadvantages.

Table 1. Experimental-based methods.

Methods Key Advantages Disadvantages

Internal resistance
measurements [21–26]

â Direct and simple method
â Accurate

â Not suited for online estimation
â Time consuming

Internal impedance
measurements [27–31]

â Accurate
â Provide knowledge about the

battery degradation causes

â Relies on information about the
battery chemistry

Energy level [32,33]
â Accurate
â Fast

â Not feasible when the battery is
operating (requires the battery to
be fully charged)

3. Review of Model-Based SOH Estimation METHODS

The SOH, as mentioned previously, is a figure of merit that indicates the level of degradation
of the battery. Its calculation, however, cannot be conducted through direct measurements. It needs
to be estimated using SOH indicators that are the battery capacity, its resistance or its impedance
(some research lists the battery impedance and internal resistance as the same indicator, yet since
the methods used to estimate them are different this work has listed them separately). Due to their
real time feasibility, a huge interest, in automotive research, has been given lately to model-based
methods for estimating these indicators and evaluating the battery SOH. These methods use models
that describe the battery behavior considering SOH indicators. In order to estimate the battery states
and their performances, these indicators are identified. Several methods are provided in the literature
that allow the identification of these indicators. The main model-based methods for SOH estimations
are reviewed in this section.

3.1. Kalman-Based FILTERS

A common model-based method to estimate the battery SOH is adaptive filtering. Several adaptive
algorithms have been used in the literature to identify in real time the parameters of different battery
Equivalent circuit models (ECM), which includes the battery internal resistance, in order to track the
battery SOC and SOH. Kalman filter-based methods (Kalman Filter (KF), Extended Kalman Filter (EKF),
Unscented Kalman Filter (UKF), Dual EKF, etc.) have been widely used to estimate battery states and
parameters [39–42]. In a series of three papers [43–45], the author investigates the SOC and parameter
estimation of a lithium ion polymer battery pack using Kalman Filtering. The benefits of using EKF over
the classical KF stand in the linearization process to deal with nonlinear models as explained in [43], the first
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paper of this series. In [46], the author presents a battery state and parameter estimation based on a UKF
algorithm. Through the estimation of the battery’s internal resistance, the SOH is accurately predicted.

3.2. Least Square-Based FILTERS

Other widely used algorithms in adaptive filtering are the Least Square-based ones [47–51]. A lot of
attention has been given recently to these algorithms and especially to the Recursive Least Square (RLS)
due to its simple implementation and accuracy. This algorithm gives an accurate estimation of battery
parameters that are directly linked to battery states such as the Open Circuit Voltage (OCV) for battery
SOC, and internal resistance for battery SOH. This identification process and state estimation have been
investigated in [52] where the importance of the battery model is clearly pointed out. The author in [48]
indicates the high performances of an improved RLS-based algorithm, the Multi Adaptive Forgetting
Factors RLS (MAFFRLS). In the MAFFRLS algorithm, the forgetting factor is optimized through Particle
Swarm Optimization (PSO) algorithm to reach a higher accuracy parameter estimation.

3.3. Observers

Observers have also been used as an adaptive identification method for SOH estimation [53,54].
In [54], the author uses a sliding mode observer to estimate both SOC and SOH for a lithium ion battery.
The accuracy of this method is clearly presented alongside its robustness against modeling error and
temperature variations

3.4. Simplified Electrochemical Models

Electrochemical Models (EM) are complex models that tend to represent the battery behavior
accurately [55]. They are often based on nonlinear differential equations. Yet those models can be
simplified and combined with adaptive filtering instead of ECM for SOH estimation. The identification
of electrochemical parameters allows the SOH estimation. In [56], the author simplifies a battery
EM before identifying two battery SOH indicators, the internal resistance and the diffusion time,
using online recursive parameter identification. In [57], the author introduces a high level battery
EM that predicts the remaining capacity of a battery SOC. This EM takes into account the effects of
the temperature and the cycle aging. This technique can be used to estimate the battery maximum
capacity level to reach the battery SOH. The main drawbacks of these EMs are in the complexity of
the equations that they require. Satisfying accuracy in predicting the battery behavior can be reached
using less complex models such as ECMs.

3.5. Other Methods

The battery SOH can also be estimated using other model-based methods than the ones presented
before. One of the most frequent is the use of optimization algorithms to identify model parameters
that are SOH indicators. In [58], the author investigates the correlation between the battery diffusion
capacitance and its SOH through experimental measurements. Then, an optimization algorithm,
a Genetic Algorithm (GA), is used to estimate the diffusion capacitance of a battery ECM. The main
drawback of these optimization algorithms is their high computational time compared to other
model-based estimation methods such as adaptive filtering.

These presented model-based methods benefit from an easy implementation and a fast processing.
They require simple structures and are relatively accurate and robust in terms of parameter identification.
Their main limitation exists in the fact that they heavily rely on the used battery model and its accuracy
and level of complexity. Compared to adaptive filters and observers, electrochemical models provide
more physical meaning about the battery ageing process and allow the estimation of both the battery
capacity and internal resistance. However, the structure of these models is relatively more complicated
than the ECMs used for adaptive filtering and observer. Moreover, their computational time and cost are
higher. The reviewed model-based methods are listed in Table 2 with their advantages and disadvantages.
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Table 2. Model-based estimation methods.

Methods Key Advantages Disadvantages

Kalman Filter-based (KF)
methods [39–46]

â Accurate
â Error bounds
â Commonly used in

the literature

â Only the improved versions
(Extended KF Unscented KF) of this
filter are valid for nonlinear system

â The improved versions are
relatively complex, and their
computational effort is high

â Require a high
performances controller

Least square-based
methods [47–52]

â Precise
â Robust
â Simple structure

â Relies in terms of accuracy on the
selected model

â Require a high
performances controller

Observers [53,54]
â Accurate
â Robust

â Require a high
performances controller

â Higher computational cost than
adaptive filters

Simplified Electrochemical
models [55–57]

â Accurate
â Describe the degradation

phenomena that occurs
inside the battery

â Requires high
performances controller

â Complex structure with several
parameters (linear and
nonlinear ones).

â High computational effort

4. Review of Machine Learning Methods: A Combination of Models and Experimental Data

These methods represent a combination between experimental and model-based ones. In fact,
they use training data, measurements and models in the learning process to estimate the battery SOH.

Several machine learning algorithms can be found in the literature to perform the battery SOH
prognostics [32,59–63]. In [64], the author uses Support Vector Regression (SVR) to estimate the battery
Remaining Useful Life (RUL) and takes it into consideration in the energy management strategy of a
Fuel cell Hybrid Electric Vehicle (FC-HEV). This prognostic is carried out on-board the vehicle using
example data measured in the laboratory but also real time measurements. This SVR algorithm is used
in [65] to estimate the battery SOH using training data acquired offline through EIS. Another interesting
machine learning method that is widely used in the literature is the fuzzy logic-based one. In [66],
the author combines EIS and fuzzy logic data analysis to estimate the SOH of a Lead Acid battery.
The Gaussian process algorithm is also often used in machine learning approaches; Khalegi et al. [67]
make use of this algorithm and show its accuracy to trace the SOH of an LIB using training data from
WLTC profiles. Neural Networks are one of the most popular algorithms used to process training
data and measured data in machine learning. In [68], the author proposes an SOH estimation method
based on a Back Propagation Neural Network (BPNN) based on the battery internal parameters and
battery’s interval capacity. The SOH estimation provided by this method has an error margin of
(−1.5%, 1.5%). In [69], the author provides a SOH estimation method combining EIS measurements
and Neural Networks. An improved Neural Network algorithm used in machine learning process
is presented in [62] where the author compares an innovative extreme learning machine algorithm
based on a single layer feed forward Neural Network to a traditional BPNN. This innovative algorithm
produces better results in terms of operation speed and estimation accuracy than the traditional
BPNN, however it requires an important amount of training data at different operating conditions.
Another example of a Neural Network algorithm is given in [70] where the author introduces a variant
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long-short-term memory Neural Network (LSTM-NN). This algorithm is tested experimentally and
provides accurate results in terms of SOH estimation (RMS 0.0216) and RuL prediction (CE 0.0831).
A Particle filter-based algorithm is used in [71] to setup a machine learning process for battery SOH
estimation. The performances of the machine learning algorithms depend, for vehicular applications,
on their computational, cost their accuracy and, most of all, on the amount of data they require for the
training process. NN algorithms, for instance, require less data than Fuzzy logic ones, however they
face more difficulties with nonlinear and complex systems [5]. The reviewed machine learning based
methods are listed in Table 3 with their advantages and disadvantages.

Table 3. Machine-Learning estimation methods.

Methods Key Advantages Disadvantages

Support Vector Regression
Algorithm [64,65]

â Accurate
â Nonparametric
â Robust

â Depend heavily on the quality,
the diversity and the quantity of
the training data used

â Require a high
performance controller

Fuzzy Logic [66]

â Accurate
â Robust
â Applicable for

nonlinear systems

â Depend heavily on the quality,
the diversity and the quantity of
the training data used

â Require a high
performance controller

Neural Networks [62,68–70]

â Accurate
â Requires less amount of

data than Fuzzy Logic

â Depend heavily on the quality,
the diversity and the quantity of
the training data used

â Require a
high-performance controller

The SOH estimation approach based on machine learning presents very interesting results with
quite high accuracy. Yet, unless a significant amount of data from real electric vehicles and hybrid
electric vehicles under different operating conditions and for different battery types are available,
this estimation technique is hard to conduct. In order to make it feasible and realistic, a common
database between several manufacturers needs to be shared with data from hundreds of thousands
of vehicles.

5. Battery SOH Estimation Using Model-Based RLS Algorithm

Based on the qualitative comparison of SOH estimation methods, shown in Table 4,
experimental-based methods appear to be difficult for real time BMS applications. On another hand,
model-based and machine learning approaches benefit from a real-time onboard implementation
that is required in automotive applications. Both these categories provide simple structures, accurate
estimation and an easy implementation. However, machine learning-based methods depend on real
electric vehicle and hybrid electric vehicle data which are not easily accessible yet. Moreover, they
can become unreliable when confronting new operating conditions which have not been included
in their training process [9,17]. Therefore, model-based SOH methods seem to be more practical.
Among the discussed model-based methods, adaptive filtering provides interesting results in terms of
accuracy, simplicity and computational feasibility; it meets the requirements of real-time applications.
They use ECMs that allow a direct identification of the battery internal resistance [72]. This parameter
is, as mentioned before, an SOH indicator. Compared to the battery capacity this SOH indicator can be
reached directly using ECMs. Moreover, this indicator is of great interest in estimating the battery
Power capability (SOP) [73] depending on its SOH, especially for hybrid applications, such as FC-HEV,
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where the battery is the main power source and therefore its energy capacity is less relevant than its
power. A variety of adaptive filters, such as the Kalman filter (KF), and recursive least square (RLS),
have been utilized in this domain. When it comes to adaptive filtering based on a Kalman algorithm, it
is more appropriate to use relatively complex versions, such as EKF or UKF rather than the classical
KF in state estimation owing to the battery nonlinear behavior [39]. As mentioned in Section 3.1,
the classical KF finds it difficult to face the nonlinear systems, therefore improved versions (EKF, UKF)
have been developed and used for this purpose. On the other hand, an RLS algorithm combined
with ECM has been the center of attention in many studies mainly due to its simplicity and satisfying
accuracy. This algorithm provides a direct estimation of battery parameters, with high accuracy and
low complexity. This estimation, on one hand, allows the SOH estimation through the battery internal
resistance. On another hand, it improves the EMS in hybrid applications by updating all the model
parameters. Consequently, among model-based estimation methods, the RLS algorithm is a good
candidate to illustrate the real-time feasibility of this onboard SOH estimation. This adaptive filter is
selected, based on its performances compared to the other methods, to present an example of battery
SOH estimation for real time automotive applications.

Table 4. Qualitative comparison of the SOH estimation methods.

Category Key Advantages Drawbacks and Limitations

Experimental-based methods
â High accuracy
â Low computational effort

â Require specific equipment
to be conducted

â Most of the time the
measurements are time consuming

Model-Based methods

â Require a
simple structure.

â Provide a relatively
accurate and
robust estimation.

â Provide fast processing
and
easy implementation.

â Require experimental pre-validation
in the development phase of
the process.

â Rely heavily on the model used in
terms of accuracy and
computational time.

Machine Learning methods

â Provide a high
accuracy estimation.

â Provide an easy
implementation process.

â Rely heavily on the quality of the
training data used and the operating
conditions and battery types
considered for these data.

â Rely on the model used in terms of
accuracy and computational time.

To validate the performance and compatibility of this SOH identification method in real time
vehicular applications, a series of tests are conducted in this section. First, using a battery simulated
model, the battery internal resistance is identified online, and its value is compared to the model’s
one. Then an experimental test bench is setup to validate this identification process. The real battery
resistance is measured using a highly accurate experimental method and used as a reference to validate
the accuracy of the online identification process. A dynamic current profile is employed to highlight
the compatibility of this SOH estimation method with real vehicular applications.

5.1. Simulation of Battery Internal Resistance Identification Using RLS Algorithm

In order to conduct the simulation study properly, an accurate battery model [74] used to reproduce
the battery behavior is considered. The mathematical equations of the model are described as follows:
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â Discharge model:

Ebatt = E0 −K.
Q

Q− it
.i∗ −K.

Q
Q− it

+ A.exp(−B.it) (3)

â Charge model:

Ebatt = E0 −K.
Q

0, 1.Q + it
.i∗ −K.

Q
Q− it

+ A.exp(−B.it) (4)

where Ebatt: Non-linear Voltage (V); E0: Constant Voltage (V); K: Polarization Resistance (Ω); i*:
Low frequency current (A); i: Battery current (A); it: Extracted capacity (Ah); Q: Maximum battery
capacity (Ah); A: Exponential Voltage (V); B: Exponential Capacity (Ah−1).

This dynamic model is simulated using the Matlab/Simulink software. The simulated model takes
into account several battery parameters. The characteristics of this battery simulated model are given
in Table 5. The identification process is described in in Figure 2.

Table 5. LiFePo4 simulated characteristics.

Parameters Value

Nominal voltage 12.8 (V)
Nominal capacity 20 (Ah)
Internal resistance 6.4 (mΩ)
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Battery modeling is a key element in the online identification process. The more accurate the
battery model used the more accurate the parameter identification will be. As a matter of fact,
the identification process using an adaptive filter with a second order battery ECM will provide more
accurate results in parameter estimation than the same adaptive filter used with a simple battery
model (Zero Order ECM). Yet, complex models may lead to higher computational time. Battery ECMs
are commonly used in model-based estimation methods. They are developed from internal battery
parameters such as the resistance and the Open Circuit Voltage. The accuracy and complexity of these
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ECMs are directly linked to their order. The first order battery ECM is dominant in the literature,
its good compromise between accuracy and simplicity has been strongly proven [75].

The RLS algorithm is used with this first order ECM to identify in real time the battery parameters
and specifically the internal resistance. This internal resistance is used as a health indicator to track
the battery SOH in real time. This health indicator is chosen over the battery capacity due to the fact
that it appears directly in the battery ECM parameters. This indicator is relevant when it comes to
the power capability of the battery which is an important aspect to consider in EMS for HEV [11,76].
When it comes to identifying the battery capacity, more complex models are required (EM). The internal
resistance of the battery is though a parameter that changes, as mentioned previously, permanently
with aging but also in a reversible way with operating conditions. In order to be a relevant indicator of
the battery SOH, the estimation of this parameter needs to be conducted under particular conditions.
The value of this resistance tends to increase for SOC levels under 60% and with extreme temperatures
(hot and cold ones). Therefore, in order to make sure that this estimated resistance adequately reflects
the SOH level of the battery, these factors need to be controlled. The resistance estimation is required
to be conducted at a temperature around 25 ◦C and for a SOC level higher than 70% (Which is often
the case in hybrid applications). This way, the resistance value will only be influenced by the level of
battery degradation and indicates adequately its SOH level.

The structure of this algorithm is the following:

Vest(k) = Ŵ(k) ∗U(k) (5)

E(k) = Vmeas(k) −Vest(k) (6)

∆Ŵ(k) = G(k) ∗ E(k) (7)

G(k) =
P(k− 1) ∗U(k)

λ+ UT(k) ∗ P(k− 1) ∗U(k)
(8)

P(k) =
1
λ
∗

[
P(k− 1) −G(k) ∗UT(k) ∗ P(k− 1)

]
(9)

Ŵ(k) = Ŵ(k− 1) + ∆Ŵ(k) (10)

where Vest(k) is the estimated function, Ŵ(k) is a vector of estimated parameters, U(k) is a vector of
known functions, G(k) is the Kalman gain, P(k) is the inverse correlation matrix of the input vector.

In the first order ECM, Figure 3, an RC network that represents the diffusion phenomenon is
considered. Considering the battery behavior and the first order ECM, the battery internal resistance
for this ECM is equal to Rb = R0 + R1.
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The identification process takes place as follows:

R1C
.

Vb −R0R1C
.

Ib + (R1 + R0)Ib + Voc = Vest = UT.W (11)

where Ib is the battery measured current, Vest the battery estimated voltage and W the estimated
parameters that are in this case R1 + R0 that represent the battery internal resistance (Rb) and Voc the
battery open circuit voltage.
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The internal resistance is identified in real time with the RLS filter for the three ECM using current
and voltage measurement. The SOH is defined, as cited previously, as the ratio between the indicator
current value and its initial one; in this case the indicator is the battery internal resistance identified by
the RLS filter as shown in Equation (11).

SOH(%) =
REOL −Rb

REOL −Rinit
∗ 100% (12)

where REOL represents the battery end of life (EOL) internal resistance. This REOL is chosen as 160% of
the initial battery internal resistance Rinit, considering the fact that the battery end of life is indicated in
several power applications by a decrease of 60% in its maximum power [77] Rb is the battery internal
resistance estimated in real time.

First, the battery is discharged under a pulse current profile as shown in Figure 4. The RLS-based
parameter identification is conducted in real time. The battery internal resistance estimation is also
presented in Figure 4. Based on these simulations, it is clear that the parameter identification process is
functional. The battery internal resistance is estimated accurately. The short convergence time of this
identification (~20 s) its accuracy and its low computational cost, as shown in the simulation results,
meet the requirements of real time applications. By considering these results, it can be concluded that
the Model-Based SOH estimation method using the RLS adaptive filter is functional and adequate for
a real time application. This method estimates the battery internal resistance with a high accuracy and
with a low convergence time (less than 40 s).
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The battery simulated is considered new with an SOH equal to one. To shed light on the validity of
this identification process, an aged battery is used in the simulation presented in Figure 5. The internal
resistance is identified accurately with a value of 0.0085 Ω. This resistance leads, using the Equation (3),
to an SOH estimation of 0.45 (45%). The battery degradation level is estimated here using the SOH
indicator identified in real time.
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In order to cope with the requirements of real transportation applications, the identification process
is simulated under a dynamic current profile. This current profile corresponds to a real driving cycle
provided in [78] and shown in Figure 6. The simulated battery model is discharged under the dynamic
profile current corresponding to this driving cycle and the internal resistance is estimated using the
three battery ECM. The results of this estimation are presented in Figure 6. Once again, the simulation
results show that the Model-based SOH estimation method using the RLS adaptive filter functions
well and is suited for real time SOH estimation. Even with a dynamic current profile, the estimation is
accurate and the battery ECM is simple and easy to implement for real time applications.
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5.2. Experimental Validation of the SOH Estimation Process

In order to validate these results and make sure that the proposed online identification process
works adequately, an experimental test is required. The battery SOH will be estimated through the
battery internal resistance online identification. A real LiFePo4 lithium ion battery is considered.
The test bench set up at the Hydrogen Research Institute is presented in Figure 7.
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First the battery internal resistance is measured experimentally using the current pulse method.
This method is based on the Ohm’s Law. It measures the voltage drop of the battery for a given current,
and then calculates the battery’s internal resistance, as follows [24]:

Rb(SOC, T) =
OCV(SOC, T) −Vbat(SOC, T)

Ipulse
(13)

where Rb stands for the battery internal resistance, OCV its Open Circuit Voltage, Vbat its voltage and Ipulse
the current applied. This method is widely used in laboratories to define the battery internal resistance
behavior in different working conditions with a very high accuracy. Even though this experimental
method is known to be very time consuming, it provides highly accurate resistance measurements and
will represent the reference in the validation of the online battery SOH estimation process.

The battery internal resistance is measured using the current pulse method, 10 A pulses are
considered and the relaxation time to reach the equilibrium for the OCV measurement is one hour.
The ambient temperature for this experiment is constant and equal to 21 ◦C. The measured internal
resistance is presented in Figure 8. In automotive applications and especially Hybrid Electric Vehicles,
the battery SOC is limited most of the time to use between 90% and 50%. For this SOC range, the battery
internal resistance appears to be constant and its measured value is approximately 0.05 Ω.

This measured value is considered the reference for the online battery internal resistance
identification. The LiFeP04 lithium ion battery is now discharged with a constant current profile.
This profile takes into consideration current pulses of 10 A. Its voltage and current are measured
in real time and used with the adaptive filtering method to identify the battery internal resistance.
The identification process is carried out experimentally and the results are shown in Figure 9. The battery
internal resistance value estimated with the online identification process matches with the reference
measured value. The convergence time in this test is quite important due to the lack of information
received by the RLS algorithm. The current pulse is short, therefore the accurate resistance value is
only reached after the second pulse.
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In order to give pertinent results that cope with real automotive applications, this identification
process is experimentally tested under a real driving cycle, as shown in Figure 6. The LiFePo4 lithium
ion battery is considered with an initial SOC of 70%. The ambient temperature is the same as for
the reference internal resistance measurement, 21 ◦C. The results of this experimental validation are
presented in Figure 10. The identification process is able to estimate the battery internal resistance
with high accuracy and under a low convergence time. The estimated value for the internal resistance
meets the measured one, 0.05 Ω. This value was reached after only 50 s of convergence. This duration
is very satisfying in SOH estimation considering the slow variation of the internal resistance with
battery aging.

The identification results indicate the aptitude of the model-based estimation method using the
RLS filter to identify the battery internal resistance in real time. This resistance represents an important
SOH indicator. Its current identified value is used to estimate the SOH as follows:

SOH(%) =
REOL −Rb

REOL −Rinit
∗ 100% (14)

The Rb identified by the online estimation process is equal to Rinit. In fact, the battery considered
is a new one, therefore its SOH is 100%. In case of degradation due to aging, the identified value of Rb
will increase which will lead to a lower SOH estimation.
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6. Conclusions

In this paper, a review of the main battery SOH estimation methods suited for automotive real
time applications, and especially hybrid electric ones, is given. Different indicators that allow SOH
estimation are presented. Battery internal resistance is an indicator of great interest in terms of hybrid
applications. This indicator reflects the battery degradation related to its power capability. The main
categories of estimation methods, experimental methods, model-based methods and machine learning
methods are presented and compared based on their key advantages and limitations in terms of real
time automotive applications. Due to their accuracy and compatibility with on-board and online
applications, model-based methods are highlighted. They present a satisfying accuracy in terms of real
time SOH indicator identification. The effective functioning of these method and their compatibility
with real time applications are shown through experimental testing. Using the RLS adaptive filter as
an example of a model-based estimation method associated with a first order battery ECM, the battery
internal resistance is identified. For both constant and dynamic current profiles, experimental results
for the real time identification are very accurate.

This review provides the latest research achievements in terms of real-time battery SOH estimation.
Future works on energy management strategies for hybrid vehicles can consider these real time
estimation methods to keep track of battery model parameters in real-time and improve the system’s
performances and lifetime.
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