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Abstract: This work explores the impact of the rapid growth of plug-in electric vehicles on wholesale
electricity pricing. Understanding electric vehicle impacts on the grid is important for the mid- and
long-range planning of transmission owners, distribution utilities, and regional system operators.
Current research in electric vehicles considers technology adoption projections and the infrastructure
needed to support electric vehicle growth. This work considers how projected electric vehicle growth
in the State of Wisconsin would impact the transmission congestion and wholesale electricity pricing
in the year 2030. We find minimal impacts on electricity prices (<2%) even under rapid growth
assumptions, in which EVs comprise 5% of all vehicles in 2030. The increases seen in hourly locational
marginal prices (LMPs) due to projected electric vehicle growth are, on average, less than those seen
in annual changes of historic electricity prices in Wisconsin. We do find moderate, relative increases
in congestion prices (+16–32%), which could provide an opportunity to align electric vehicle charging
schedules with times of low transmission congestion.

Keywords: wholesale electricity pricing; location marginal prices; load growth; transmission planning;
transmission congestion

1. Introduction

The transmission system was built to accommodate delivery of power from generators to loads
given a snapshot in time. As both the world’s generation mix and load profiles evolve, electric
transmission systems must similarly adapt. One indication that new transmission lines are needed is
an increase in power flow congestion on existing lines. Concern over how the transmission grid must
evolve to accommodate increased electric vehicle charging load has arisen among practitioners.

Transmission owners are tasked with maintaining a reliable electric transmission system and
installing transmission infrastructure when necessary. State regulators are tasked with protecting
ratepayer interests and ensuring any increase in electricity operational costs are justified by system
need. The delicate balance of transmission system planning given changing generation and load is
overseen by the Regional Transmission Operators, of which both transmission owners and regulators
are participatory stakeholders. In order to plan necessary upgrades to the electric grid, practitioners
first test how anticipated changes would strain the existing electric grid. Only then will operators
consider what novel control schemes, metering tools, and grid modernization efforts common in the
research literature could be applied to address these concerns.
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This research was motivated to answer the question: Will the projected growth in Wisconsin
plug-in electric vehicles (PEV) increase electric system congestion and require the construction of new
transmission lines? To answer this question, we use the grid modeling tools available to operators,
assuming no changes to the existing Wisconsin electric grid, and use realistic electric vehicle growth
assumptions. This research required access to proprietary electric grid data not commonly available to
researchers for security purposes. This work is written to address the concerns of transmission system
practitioners, upon which the research community can build.

Current electric vehicle research considers technology adoption projections and the infrastructure
needed to support PEV growth [1–3], and a smaller subset of studies have considered the specific
impacts on distribution and transmission electric grids [4–6]. There are few studies specific to the
Midwestern United States [3], but no existing work for Wisconsin regarding PEV load growth and
transmission congestion. This study analyzes how electrification of light-duty vehicles will transform
the use of the electric power grid along bulk transmission lines. This work considers how projected
electric vehicle growth in the State of Wisconsin would impact transmission congestion, using wholesale
electricity pricing as a proxy for system impacts. The objective of this research is to create a better
understanding of how an emerging PEV market can impact transmission system need.

The structure of this article is as follows. A review of the current electric vehicles registered
in the State of Wisconsin is given in Section 1.1. An overview of the regional electric grid and the
many system operators in the State is given in Section 1.2. A discussion of the differences between
wholesale and retail electricity pricing, including the regulatory management of prices, is also included
in Section 1.2. Section 2 reviews the methods used in this study, namely, estimates of electric vehicle
growth, EV charging profiles, and the electricity market simulation tool used. Section 3 describes
the wholesale electricity price results for the three electric vehicle growth scenarios. A discussion of
the policy implications of the change in wholesale pricing due to EV growth is given in Section 4.
Conclusions are presented in Section 5.

1.1. Electric Vehicles in Wisconsin

The United States Energy Information Administration (EIA) estimates there are currently 1.7
million plug-in electric vehicles in the U.S. today [7], and there are several organizations with competing
future projection estimates of PEV adoption. The Organization of the Petroleum Exporting Countries
and Bloomberg, for example, respectively estimate that worldwide electric vehicles will reach 266
million and 559 million by 2040 [8,9]. Vehicle manufacturer investment and electric utility pilot
programs show that key actors anticipate this growth [2]. Manufacturers such as General Motors, Ford,
Nissan, Jaguar, Porsche, and Volkswagen have been investing billions into research and development,
training, and new employees, evidence that the PEV industry is rapidly evolving [10,11].

The transportation technologies discussed will be mainly passenger vehicles, light-duty vehicles,
and fleet vehicles registered with the Wisconsin Department of Transportation (WisDOT). There
are three main categories of PEVs: hybrid-electric vehicles (HEVs), plug-in hybrid electric vehicles
(PHEVs), and battery electric vehicles (BEVs). HEVs use an internal combustion engine (ICE) system
along with an electric propulsion system, resulting in improved fuel economy and performance
compared to standard ICE vehicles. These improvements occur through regenerative braking, idling,
and electric-only drive. HEVs also use gasoline or diesel as fuel and do not require battery charging.
PHEVs use an ICE system along with an electric propulsion system and a rechargeable battery. These
batteries are charged through an outlet and allow PHEVs to drive extended distances on an electric
charge. These vehicles typically run on only electricity until the battery depletes, at which point the
ICE engages and then powers the vehicle. BEVs use a rechargeable battery and run on electricity alone.
BEVs are charged by plugging into an outlet and can travel between 100 and 335 miles on a single
charge, depending on the battery size, make, and model. In this report, plug-in electric vehicles are
those vehicles that utilize battery charging: PHEVs and BEVs. HEVs do not use electricity from the
grid, therefore they are not applicable to the transmission impacts studied here.
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In September 2018, there were just over 2100 plug-in electric vehicles registered with the Wisconsin
Department of Transportation [12]. In February 2019, the Alternative Fuels Data Center identified
nearly 600 public charging outlets in the State of Wisconsin of all levels [13]. The geographical
dispersion of registered electric vehicles and public charging stations are shown in Figures 1a and
1b, respectively. Figure 1c shows the distribution utility jurisdictions in Wisconsin. Unsurprisingly,
the location of public charging stations closely aligns with the locations of registered plug-in electric
vehicles. Level 1 chargers are standard 110V outlets. Level 2 chargers are 240V chargers like those
used in the United States for clothes washing machines. Level 3 chargers are fast DC chargers used
only by the long-range BEVs [1].

The highest concentration of EVs occur in urban areas like Milwaukee, Madison, La Crosse, and
Green Bay. Wisconsin Electric Power Company, Madison Gas & Electric, and Wisconsin Power & Light
are the major investor owned utilities representing these urban areas, as shown in Figure 1c. According
to [14], Wisconsin is 29th in the U.S. with a 0.79% market share of existing vehicles within the state in
2018. Sixty percent of these Wisconsin vehicles are plug-in hybrid vehicles (PHEV).

1 
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 Figure 1. (a) Electric vehicle (EV) registrations in the State of Wisconsin as of September 2018 by zip
code, data from [12]. (b) Plug-in Electric Vehicle (PEV) charger locations in Wisconsin by charging level,
data from [13]. (c) Major Wisconsin utility jurisdictions and corresponding county, data from [15].
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1.2. The Bulk Electric System in Wisconsin

The Wisconsin transmission grid is overseen by the Midcontinent Independent System Operator
(MISO), the Regional Transmission Organization in the middle of the United States. There are
five investor-owned distribution utility companies in Wisconsin: Wisconsin Power & Light (WPL),
Madison Gas & Electric (MGE), Northern States Power Company (NSP), Wisconsin Energy Power
Company (WEPCO), and Wisconsin Public Service (WPS). Areas not served by these distribution
utilities are mostly served by small municipalities and cooperatives. NSP operates in both Minnesota
and Wisconsin, with the majority of load serving the twin cities of St. Paul and Minneapolis, Minnesota.
These entities are shown geographically in Figure 1b.

The price for electricity on the transmission grid is calculated as the cost of servicing the
next increment of power demand at a specific electric bus, known as the locational marginal price
(LMP) [16,17]. There are numerous electric buses in a utility company’s service territory, with the exact
number depending on the size of the service territory. The LMP is comprised of three cost components:
energy, congestion, and losses. The energy LMP component is uniform across an entire market region,
but inefficiency losses and energy congestion on any transmission line can cause nonuniform prices
between nodes [17]. Areas with a more expensive congestion LMP component indicate that there is
transmission line congestion causing difficulty in delivering electricity to loads in that area, requiring a
more expensive generator to be dispatched elsewhere.

If the congestion is significant or present for long periods of the year, practitioners may choose
to alleviate the congestion in order to lower annual system operating costs. The Federal Energy
Regulatory Commission requires system operators to lower system congestion based on locational
marginal pricing [16]. Additionally, system operators make transmission investment decisions—most
notably new transmission lines—to manage system congestion and lower wholesale electricity prices.
Since 2007, MISO has approved over $328 million in Market Efficiency Projects, new transmission
lines meant to alleviate system congestion and bring benefits to customers in the form of lower LMP
electricity prices [18].

The locational marginal price is the wholesale price of electricity traded among market participants
in the regional real-time energy markets. Retail customers are not typically exposed to the real-time
price volatility of wholesale electricity prices, though advances in smart metering technology have
renewed a debate that they should be [19]. Distribution utilities set retail electricity rates such that they
can recover their costs of trading electricity in the wholesale energy markets over longer periods than
the real-time market, as regulated by their state’s public utility commission [20]. Load growth is one of
many factors in an evolving electric grid that can influence transmission line congestion and changing
wholesale electricity prices.

The historic (2012 to 2018) hourly locational marginal prices (LMPs) of all five major service
territories are shown in Figure 2, organized both by service territory and by year. Monthly average
LMPs for all Wisconsin investor owned utilities are shown in Figure 3. Historic LMP data for each
service territory are from MISO’s archived markets database, representing ex post hourly LMPs at
the utility hub [21]. These historic LMP data will be compared to modeled changes in LMPs due to
electric vehicle growth in subsequent sections. Modeled LMPs used later are load-weighted averages
of hourly LMPs for every bus in a given service territory.
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Historic electricity prices on Wisconsin’s bulk electric system were very similar among the different
utilities. All utilities havd increasing LMPs from 2012 to 2014, a decrease from 2014 to 2016, and then
increase again between 2016 and 2018. The percent change in average hourly LMPs from year to year
ranged from 1% (2015 to 2016) to 33% (2014 to 2015). The upper Midwest experienced a polar vortex in
winter 2013–2014. The extreme cold resulted in larger than average LMP prices for several months.
These data show the extent of volatility in LMPs in Wisconsin over the past several years.

2. Materials and Methods

We consider how electric vehicle growth would impact the current Wisconsin transmission system
in the year 2030. Given that future PEV adoption in Wisconsin is unknown, we consider several
different growth scenarios, which serve as reasonable possibly pathways rather than forecasts. We are
most interested in changes in transmission congestion and how that would impact wholesale prices for
each of Wisconsin’s five main utility service territories.

2.1. Wisconsin PEV Charging Profiles

We used the WisDOT registration information from 2018 to quantify the number of plug-in electric
vehicles in Wisconsin. Vehicle owners identify their vehicle make and model on registration materials,
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and often we found that these identifiers did not match manufacturer specified models. As such, we
discarded 325 (13% of original dataset) inconclusive vehicles from the data set since we could not
confirm if these vehicles were indeed plug-in EVs. Due to these assumptions, the Wisconsin vehicle
registrations are conservative compared to other sources [13]. Vehicles are binned within each of the
five utility service territories based on registration zip code. While the majority of all PEV charging
occurs overnight in owners’ homes [22], this assumption may not accurately represent the service
territory in which every vehicle is frequently charged. Vehicle registrations with the primary owner
listed under non-Wisconsin zip codes were evenly distributed into all WI service territories.

Daily charging load curves are different for all EVs given vehicle characteristics like plug-in
hybrid vs nonhybrid, size of the vehicle, and intended battery range. The PEV categories used here are
plug-in hybrid electric vehicles with 20-mile (PHEV20) and 50-mile (PHEV50) battery ranges, plug-in
hybrid sports utility vehicles with 20-mile (PHEV20 SUV) and 250-mile (BEV250 SUV) battery ranges,
and battery-only electric vehicles with 100-mile (BEV100) and 250-mile (BEV100) battery ranges. All
registered Wisconsin electric vehicle makes and models were binned into these six main categories,
shown in Table 1.

Table 1. Number and percent share of registered Wisconsin PEVs by vehicle category [data from 12].

Category Counts Percent

PHEV20 241 11.4%
PHEV50 980 46.2%

PHEV20 SUV 101 4.8%
BEV100 405 19.1%
BEV250 305 14.4%

BEV250 SUV 89 4.2%

Daily charging load curves for each vehicle category were obtained from the National Renewable
Energy Laboratory (NREL) report “Charging Electric Vehicles in Smart Cities: An EVI-Pro Analysis of
Columbus Ohio” [23]. The EVI-Pro Analysis used by NREL to simulate charging profiles attempts to
optimize vehicle charging with operating costs and assumes drivers have access to multiple charging
stations throughout the day. The location of nearly 600 public charging stations in the State of
Wisconsin [13] are shown in Figure 1b. The charging stations closely match the location of registered
PEVs. EV charging load profiles from this study were used because of similar lifestyles and climatic
conditions in Ohio and Wisconsin, the attention to differences in load profiles by vehicle type, load
profiles which favor residential charging, and the exclusion of PEV-specific time-of-use pricing, which
is not commonly used by Wisconsin utility companies [24]. We applied the daily charging load profiles
of all six vehicle categories to current Wisconsin electric vehicles using a weighted average. A single
charging profile curve was determined by weighting these six profiles with the current share of vehicles
registered in Wisconsin as shown in Table 1. The six daily charging load curves from the NREL report
and the Wisconsin weighted charging curve are shown in Figure 4. The single weighted load curve
was applied to several Wisconsin PEV growth scenarios and assumed constant for every day of the
year, ignoring different driving behaviors based on the day of the week and season.
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2.2. Growth Scenarios

Data from the 2019 Annual Energy Outlook (AEO2019) by the U.S. Energy Information
Administration (EIA) was used to estimate PEV adoption in Wisconsin for the year 2030. The
EIA recorded 255 million light-duty vehicles in the United States in 2018, and 0.43% of these were
PEVs [7]. As of 2018, Wisconsin, with 2% of the U.S. population, has 0.19% of the total PEVs in the
United States [12]. The AEO2019 report projects energy growth for many different industry sectors,
with specific model assumptions for one reference case and six side cases. Under the reference case
assumptions, the EIA projects that there will be 272.1 million light-duty vehicles (LDV) in the U.S. by
2030, with PEVs representing 5.1% of that national total. This EIA projection implies a compound
annual growth rate of 0.54% per annum for the entire U.S. PEV stock.

There are three PEV growth scenarios used in this study: baseline, reference, and high-adoption.
All projected vehicles are expected to utilize the electric grid for 100% of their charging needs. In
many cases, PEV owners may also choose to install distributed generation resources, such as rooftop
solar, which would offset their use of the electric grid for charging. Our assumption puts more strain
on the grid than assuming some portion of future PEV owners will use distributed generation for
vehicle charging.

The baseline scenario uses internal load growth assumptions of the ABB PROMOD software,
described in the Section 2.3. These load growth assumptions use proprietary industry data accepted by
transmission system planners. We did not add any new electric vehicle charging loads to the PROMOD
load assumptions for the baseline scenario.

The reference growth scenario used here was determined using the EIA AEO2019 reference case
assuming Wisconsin’s adoption of PEVs continues to maintain a 0.19% share of PEVs in the U.S. in
2030. Wisconsin is assumed to share the same percentage of PEVs in 2030 and grow at the same rate as
the U.S. on average. Given these assumptions, the reference growth scenario used in this study results
in 26,600 electric vehicles registered in Wisconsin by 2030. Wisconsin currently has a 2.75% share of the
U.S. light duty vehicle stock. Assuming Wisconsin maintains the same percentage of U.S. vehicles, the
number of total vehicles for 2030 in Wisconsin is estimated to be 7,481,124. Assuming a light-duty
vehicle stock of 7.48 million, PEVs would only make up 0.36% of all Wisconsin LDVs in 2030. The
final, high-adoption growth scenario was selected assuming 5% of registered Wisconsin vehicles in
2030 will be plug-in electric vehicles, matching the 2030 national PEV penetration assumption of the
AEO2019 [7]. This would result in over 373,000 PEVs in Wisconsin in 2030. This scenario would only
be possible given the rapid adoption of electric vehicles by Wisconsin citizens.
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The number of Wisconsin registered PEVs in 2018 and those estimated in 2030 for the reference and
high-adoption growth scenarios are shown in Table 2. The 2030 load assumptions for the total state of
Wisconsin for each of the three scenarios are shown in Table 3. While there is a two-orders-of-magnitude
increase in Wisconsin plug-in electric vehicles between 2018 and 2030 under the high-adoption scenario,
total energy load only increases less than a percentage as a result of these new vehicles.

Table 2. Number of PEVs by service territory in 2018 [data from 12] and the modeled number in
2030 under the reference and high-adoption growth scenarios. PEV increases over 2018 registrations
are shown.

Utility

MGE NSP WEPCO WPL WPS Total Increase
Over 2018

2018 Registrations 355 272 1437 729 285 3077 -
Reference Growth 3072 2351 12,433 6309 2466 26,632 765%

High Adoption 43,114 32,993 174,479 88,549 34,627 373,761 12046%

Table 3. Modeled 2030 annual load (GWh/year) in Wisconsin utilities resulting from the baseline,
reference, and high-adoption growth scenarios. Energy increase over baseline scenario are shown.

Utility

MGE NSP WEPCO WPL WPS Total Increase
Over 2018

Baseline Growth 4508 64,126 42,928 16,304 15,581 143,447 -
Reference Growth 4518 64,133 42,970 16,326 15,589 143,536 0.06%

Progressive Growth 4650 64,191 43,483 16,591 15,734 144,649 0.84%

2.3. Electricity Market Simulation

To simulate the regional transmission grid, we used PROMOD IV (ABB, Zurich, Switzerland,
version 11.1) tool. PROMOD is an industry-standard software used by system planners today. MISO
uses this tool for production cost simulation modeling in their annual transmission planning process [25].
PROMOD makes general assumptions about utility load and growth for projected years using both
publicly and industry-proprietary available generation, load, and transmission system data. Notable
assumptions made by the PROMOD model include announced generation additions and retirements;
proposed transmission system additions; and simplified load profiles that differ only by weekdays,
weekends, seasons, and holidays. The baseline Eastern Interconnect transmission system model was
used, considering publicly known changes to which Wisconsin generators and transmission lines
would likely be in operation by the year 2030.

A baseline load for 2030 is created by the simulator for each of the five Wisconsin service territories
using these assumptions for each utility in 2030. We did not add any PEV charging load to the baseline
scenario for 2030. To create the reference and high-growth load scenarios for each Wisconsin utility, the
baseline load as modeled by PROMOD is increased considering the PEVs daily load charging curves
and growth scenarios for each utility territory separately.

The built-in PROMOD load assumptions are considered a good projection for load growth. To
confirm that the PROMOD load assumptions match practice, we compared historic PROMOD load
assumptions with known Wisconsin load. The ABB PROMOD baseline load assumptions for Wisconsin
in 2014 closely matched those calculated in the Strategic Energy Assessment (SEA) by the Public Service
Commission of Wisconsin in the same year [26], with the exception that the Northern States Power
utility territory in PROMOD does not disaggregate that load in Wisconsin from that in Minnesota. We
kept the full NSP territory load—both Wisconsin and Minnesota—in this study.
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3. Results

Box and whisker plots are used to comparatively visualize the differences in hourly LMPs of each
utility service territory under each load growth scenario. These plots represent how the dataset is
distributed for the year 2030 by summarizing data statistics. The modeled 2030 hourly LMPs and
congestion components are shown in Figure 5, and the representative statistics are given in Tables 4
and 5. These results can be compared with the historic ex post LMPs used in MISO market settlements
for each service territory, given in Figures 2 and 3. The line within the box represents the median, and
the cross represents the average of all hourly LMP values in 2030. The third quantile (75 percentile) is
presented from the median to the top of the box, and the first quantile (25 percentile) is represented
from the median to the lower portion of the box. The whiskers above and below each box indicate the
local maximum and minimum, excluding outliers which are more than 1.5 times the interquartile range.World Electric Vehicle Journal 2020, 11, x 9 of 14 
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Table 4. Statistics of modeled hourly LMPs ($/MWh) for each utility in Wisconsin in 2030 under the
three growth scenarios.

Utility

MGE NSP WEPCO WPL WPS

Baseline Scenario

Minimum 8.36 8.54 9.91 8.35 8.68
Lower Quartile (25%) 35.63 35.26 35.32 35.95 35.26

Median 41.99 41.31 41.93 42.10 42.17
Average 48.11 46.05 46.82 49.11 48.75

Upper Quartile (75%) 50.80 48.18 50.12 51.03 51.14
Maximum 785.82 781.26 751.24 805.51 828.95

Reference Growth Scenario

Minimum 8.03 8.00 8.27 8.03 8.10
Lower Quartile (25%) 35.61 35.30 35.33 35.93 35.26

Median 42.04 41.42 42.00 42.14 42.23
Average 48.16 46.04 46.86 49.17 48.78

Upper Quartile (75%) 50.59 48.10 49.96 50.88 50.97
Maximum 785.84 781.24 751.26 805.52 828.97

Progressive Growth Scenario

Minimum 20.62 23.17 21.61 20.44 19.96
Lower Quartile (25%) 35.72 35.27 35.38 36.02 35.32

Median 42.10 41.43 42.06 42.30 42.34
Average 48.90 46.26 47.33 50.13 49.38

Upper Quartile (75%) 51.62 48.22 50.78 51.97 51.84
Maximum 764.31 760.68 726.78 786.13 812.32

Table 5. Statistics of the modeled congestion component of hourly LMPS ($/MWh) for each utility in
Wisconsin in 2030 under the three growth scenarios.

Utility

MGE NSP WEPCO WPL WPS

Baseline Scenario

Minimum −116.53 −139.61 −69.25 −116.42 −104.73
Lower Quartile −0.47 −0.86 −0.44 −0.44 −0.49

Median 0.17 −0.21 0.06 0.24 0.19
Average 2.49 0.44 1.20 3.49 3.13

Upper Quartile 1.85 0.08 1.13 2.17 2.24
Maximum 212.02 200.70 212.11 283.80 278.96

Reference Growth Scenario

Minimum −116.34 −139.22 −68.99 −116.23 −104.55
Lower Quartile −0.45 −0.81 −0.41 −0.42 −0.47

Median 0.17 −0.20 0.08 0.23 0.19
Average 2.54 0.42 1.24 3.55 3.17

Upper Quartile 1.83 0.08 1.14 2.14 2.27
Maximum 210.05 202.03 209.68 281.93 275.03

Progressive Growth Scenario

Minimum −115.98 −138.47 −68.41 −115.87 −104.21
Lower Quartile −0.44 −0.89 −0.41 −0.40 −0.45

Median 0.21 −0.22 0.09 0.28 0.22
Average 3.15 0.51 1.58 4.38 3.63

Upper Quartile 2.12 0.07 1.32 2.55 2.62
Maximum 213.58 203.01 209.28 277.81 312.55
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There is little change between the average hourly LMP values of each growth case compared to
baseline, indicating little change in transmission congestion as a result of PEVs. The differences in
average hourly LMPs from the baseline case is less than $1/MWh for all utilities, representing a change
of less than 2%. The differences in average hourly LMP congestion from the baseline case is also less
than $1/MW, but representing a higher change in congestion prices of 15–32% for all utilities in the
high-growth scenario.

All utilities have LMPs with positive skewness, as seen in Figure 5. We note that while the
interquartile range of LMPs increased between the baseline and high-adoption growth scenarios for all
utilities, the maximum LMPs seen in the high-adoption case were less than those in the baseline case
for all utilities (Table 4). The maximum congestion component of LMPs do not show this same behavior
between the baseline and high-adoption cases (Table 5). A look at the load and LMP curves on the day
in which the maximum LMP occurred reveal that the afternoon shifting of load due to EV charging
also results in a shift and slight flattening of energy prices on that day. This behavior is demonstrated
in Figure 6, which shows the hourly LMP and load curves for Wisconsin Power and Light utility on
8–10 July 2030. The maximum LMP was recorded on 9 July for all utilities in all scenarios.
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year in either scenario occurs on 9 July 2030. Load shifts to the afternoon in the high-adoption scenario.

4. Policy Discussion

The policy implications of these results are mixed. The relatively small increases in electricity
prices resulting from modeled electric vehicle adoption in Wisconsin do not indicate that transmission
system upgrades will be needed in direct response to the growth in charging load. On the other hand,
the increase in congestion could be mitigated by aligning electric vehicle charging schedules with
wholesale electricity prices. By shifting charging load to times of traditionally low demand—such as
at night—the daily dispersion of LMPs is expected to decrease [27]. This work showed evidence of
marginal price flattening due to controlled load shifting in the high-adoption scenario. Load shifting
can also help during emergency generation events [28], which occur during extreme weather events as
seen in Midwest winters.

This work says nothing about upgrades that may be necessary on the distribution system, owned
and operated by utility companies. Many distribution utility companies are adopting retail rate
structures to encourage their customers to use electricity during off-peak times when wholesale
electricity prices are low [29], and the same practice could be useful in mitigating distribution system
upgrades. Time-of-use pricing is the most common retail rate structure to encourage demand shifting
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for all residential customers, but many utilities are implementing similar structures specifically for
residential EV charging outlets to shift drivers’ charging behaviors [30]. The temporal resolution of
off-peak rate structures could be more granular by exposing electric vehicles to real-time wholesale
electricity price signals and using electric vehicle charging as a demand response asset to smooth
electricity prices [31].

As Wisconsinites continue to adopt electric vehicles, there will be more opportunity to shift load
to times of historically low demand if a need does arise on either the distribution or the transmission
system. Implementing rate structures that align with off-peak load is the choice of distribution utility
companies, while encouraging the use of electric vehicle charging as a demand response asset would
require appropriate State legislation, regulations, and business incentives.

5. Conclusions

This analysis makes many assumptions about load, generation, and transmission growth in
the state of Wisconsin, relying heavily on the baseline assumptions of the ABB PROMOD modeling
software. As such, only comparative results between the baseline case and each tested case are robust
to the levels of the assumptions used.

There are minimal changes in the utility territory electricity prices between the AEO reference
and the baseline growth scenarios. There is a less than $0.50/MWh (1%) change in LMPs and less than
$0.10/MWh (4%) change in congestion LMP for these cases.

The high-adoption case showed a greater change in the congestion LMP prices compared to
baseline, but still little difference in overall LMPs for all service territories. Average LMPs changed by
less $1.05/MWh (2%) for all service territories. This is less than the historic annual changes of average
wholesale prices seen in MISO due to normal operation of the grid, as seen in Figures 2 and 3. LMP
congestion also changed by less than $1.00/MWh for the high-adoption case, but this represents a
higher percentage change between 16% and 32% of baseline congestion prices.

Overall, electric vehicle growth to 5% of all light-duty vehicles in Wisconsin by 2030 would not
result in significant changes to the LMPs of the five Wisconsin service territories considered given
model assumptions. The increase in LMPs resulting from electric vehicle adoption is expected to be
less than that seen due to usual changes in the electric grid on an annual basis—e.g., transmission
system upgrades, generator interconnections and retirements, conventional load growth, and extreme
weather events—based on historic electricity prices seen in Figures 2 and 3. There are, however,
moderate relative increases in congestion pricing, an indication of increased power flow congestion on
the transmission grid.

This study considers how unmanaged electric vehicle charging growth will likely impact the
existing Wisconsin transmission grid. There will be unforeseen electric grid system upgrades that may
lessen the impact of electric vehicle load, including owners’ decisions to install residential distributed
generation resources. In a high-growth scenario, it is likely that distribution utilities would make system
upgrades and incentivize customers to charge at desired times of day to specifically accommodate the
increase in charging load. For these reasons, the wholesale pricing increases seen at 5% PEVs in this
study may be an overestimate. It is possible that increased congestion pricing due to electric vehicle
growth may not been seen until more than 5% of Wisconsinites’ vehicles are charging from the grid.

This work is the result of a collaboration between state government and the university, which is
unfortunately rare within the academic literature. The study is motivated by concerns held by the
Public Service Commission of Wisconsin, the state electric grid regulatory body. The regulator is most
concerned with how modest load-growth scenarios would impact state electricity prices, without
assuming the implementation of new policies. This work exposes the questions of importance to
regulators and transmission planners in anticipating changes in wholesale congestion pricing.
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6. Limitations

The Wisconsin vehicle registration data was made available by the Wisconsin Department of
Transportation on a one-time basis. The authors do not have access to more recent vehicle registration
data. We recognize the gap in time between collecting data, analysis, and publishing results as a trait
of academia, and regret that the registration data used is a year older than the publication date.

The PEV growth scenarios used in this study were chosen in consultation with the PSCW to
answer questions they posed to the researchers. Similarly, researchers were asked to use the modeling
tools available to Commission engineering staff and not academic-built modeling tools. The use of
PSCW tools enabled reputable results that Commission staff can easily interpret and trust. In a purely
academic study, more aggressive load growth scenarios, modeling assumptions that include intelligent
charging and coupled distributed generation–PEV charging control schema, and publicly reviewed
production cost modeling tools may have been used.
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