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Abstract: The aging of lithium-ion batteries (LIBs) is a crucial issue and must be investigated.
The aging rate of LIBs depends not only on the material and electrochemical performance but also on
the working conditions. In order to assess the impact of vehicle driving conditions, including the
driving cycle, ambient temperature, charging mode, and trip distance on the battery life cycle, this
paper first establishes an electric vehicle (EV) energy flow model to solve the operating parameters of
the battery pack while working. Then, a powertrain test is carried out to verify the simulation model.
Based on the simulated data under different conditions, the battery capacity fade process is estimated
by using a semi-empirical aging model. The mileage (φ) traveled by the vehicle before the end of life
(EOL) of the battery pack is then calculated and taken as the evaluation index. The results indicate
that the φ is higher when the vehicle drives the Japanese chassis dynamometer test cycle JC08 than in
the New European Driving Cycle (NEDC) and the Federal Test Procedure (FTP-75). The φwill be
dramatically reduced at both low and high ambient temperatures. Fast charging can increase the φ at
low ambient temperatures, whereas long trip driving can always increase φ to varying degrees.

Keywords: electric vehicle; lithium-ion battery; life cycle assessment; driving condition

1. Introduction

As an energy storage system, power batteries play a vital role in the electrification of automobiles [1].
However, current mainstream lithium-ion batteries (LIBs) have a significant aging [2] problem
characterized by capacity fade and resistance increase [3] compared to the traditional fuel-powered
system. This leads to a series of problems when applying LIBs in electric vehicles (EVs) or hybrid
electric vehicles (HEVs). First, the capacity fade during the aging process decreases the range of EVs
and exacerbates the so-called range anxiety problem caused by the low energy density of LIBs [4].
Second, the increase in internal resistance causes a decrease in the output power [3], an increase in
heat generation [5], or even internal short circuiting of the battery cell [6], which affects the dynamic
performance and the safety of the vehicle. Third, the price of LIBs is high [7], and replacing the batteries
will greatly increase the life cycle cost of EVs/HEVs. In addition, the recycling of LIBs has no ideal
solution yet [8], and premature failure will lead to a large number of used LIBs that cannot be properly
handled. The above problems greatly limit the promotion of EVs/HEVs. Usually, the lifecycle of a
vehicle is 10–15 years [9], and extending the life of the LIBs to match the life of the vehicle is an urgent
problem to be solved.

There are many ways to extend the life of LIBs. The most basic way is to design the battery itself to
be reliable, such as improving the positive and negative electrode materials [10,11] and electrolytes [12]
of the battery. On the other hand, the operating parameters, including the current, temperature, state
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of charge (SOC), and depth of discharge (DOD), when LIBs are being used also have a significant
impact on their aging rates [13,14]. Therefore, it can be an effective way to extend the battery life cycle
by keeping the battery operating parameters related to aging mechanisms under appropriate ranges
when the battery is working. Usually, the battery’s charge and discharge current and DOD are limited
by the battery management system (BMS) [15], and the battery temperature is controlled by the battery
thermal management system (BTMS) [16]. Even so, different working conditions will still lead to
different life cycles of the battery pack. During utilization, battery working conditions directly depend
on the driving conditions of the vehicle.

Jeremy of the National Renewable Energy Laboratory (NREL) broadly studied the impacts of range
anxiety and home, workplace, and public charging infrastructure, driver aggression, climate, cabin
thermal management, and battery thermal management on EV battery lifetimes [17,18]. The impacts of
vehicle-grid and grid-vehicle strategies [19,20], dynamic driving loads and regenerative braking [21],
and battery thermal management strategies [22] were also investigated. This paper is aimed at studying
the impacts of vehicle driving conditions of driving cycle, ambient environment, charging rate, and
trip distance on the life cycle of the LIB pack, thereby providing guidance for the state of health
(SOH) estimation of the LIBs as well as battery health-conscious energy management and thermal
management for EV/HEV.

By taking a medium-sized electric sedan as the research object, this paper first establishes the
energy flow model of the whole vehicle. The model takes driving cycles as the input and can solve
the operating parameters, such as voltage, current, temperature, and SOC of the battery pack during
driving. An EV powertrain test bench is built to test the abovementioned parameters of the battery pack
in different working conditions, which is used to verify the accuracy of the simulation model. Based
on the model, the changes in the key parameters, such as temperature and current of the battery pack
under different ambient temperatures, driving cycles, charging rates, and trip distances, are calculated.
On this basis, the capacity fade process of the battery pack under different working conditions can be
predicted by using a semi-empirical battery life cycle model.

2. Electric Vehicle (EV) Energy Flow Model and Battery Aging Model

2.1. EV Energy Flow Model

The main purpose of this paper is to evaluate the life of battery packs under different working
conditions. Since parameters such as temperature and current related to battery aging depend on the
structure and performance parameters of the vehicle, it is necessary to first establish an energy flow
model for the electric vehicle. The model established in this paper is based on a medium-sized electric
sedan, the main parameters of which are shown in Table 1. In this paper, we used AMEsim as the
simulation platform.

Table 1. Main parameters of the selected electric vehicle (EV).

Parameter Value Parameter Value

Total weight 1620 kg Rolling radius 0.324 m
Frontal area 2.62 m2 Transmission efficiency 0.9

Rolling resistance coefficient 0.0075 Transmission ratio 7.79
Drag coefficient 0.363 - -

The vehicle control module includes the driver model, vehicle controller, and vehicle dynamic
model. The vehicle dynamic model solves the demanded driving force under a given velocity and
acceleration profile of the vehicle according to the vehicle parameters, such as weight, frontal area,
aerodynamic drag, rolling resistance, wheel radius, etc. The driver model is developed based on a
proportion integration differentiation (PID) controller to simulate the operations of the driver and
output the accelerating, braking, and gear shifting signals, which are further translated into motor and
braking system control signals by the vehicle controller.
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As the key component of the model, the powertrain module consists of a battery pack, a motor, an
inverter, and a transmission box. The motor and the two-speed transmission are mechanically linked,
and the mechanical work is transferred to the wheels by the shaft. A 132 Ah capacity LIB pack with
Nickel cobalt manganese (NCM) cathode chemistries is adopted to power the motor. In this study,
the equivalent circuit model of the battery pack was developed to calculate the states of the battery,
including the voltage and SOC. The heat generation rate of the battery pack was calculated by the
well-known Bernadi equation [23]. The main input parameters of the powertrain module are shown in
Tables 2–4.

The EV energy flow model includes three modules: a vehicle control module, a powertrain
module, and a cooling system module, as shown in Figure 1.

The liquid cooling system consisting of radiators, fans, pumps, temperature sensors, and expansion
water tanks is adopted to cool the battery, motor, and inverter of the vehicle. The battery is cooled
by a separate cooling circuit, the coolant is antifreeze, and it is re-cooled by the refrigerant in the
air conditioning system. The motor and inverter use the same cooling circuit, and the coolant first
cools the inverter and then cools the motor. Since the heat generation and heat dissipation processes
within the powertrain are rather complicated, the cooling system module is modeled by taking the
following simplifications:

• The lumped parameter method is used to model the battery pack, motor, and inverter;
• We neglect the heat dissipation in the cooling circuit (e.g., the heat dissipation on the surface of

the pipe).

In the model, the temperatures of the battery pack, motor, and inverter are detected during the
simulation, and the cooling system will be turned on or off according to the rule-based BTMS control
strategy of the vehicle. The BTMS control strategy is presented in Table 5.
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Table 2. The main parameters of the battery pack. State of charge (SOC).

Parameter Value Parameter Value

Nominal voltage of the cell 3.65 V Configuration of the pack 3P88S
Nominal capacity of the cell 44 Ah Filter capacitance of the pack 1467 F

Open circuit voltage of the cell 3.65 + 1.44 × (soc/100) − 2.16 × (soc/100)2 + 1.6 × (soc/100)3 V
Internal resistance of the cell [13] exp (2910/T) × 1.36 × (288/3) × 10−7 Ω

Table 3. Main parameters of the motor.

Parameter Value Parameter Value

Coil connection method Star Stator inductance in the d
coordinate 0.0018 H

Exciter type Permanent magnet Stator inductance in the q
coordinate 0.0022 H

Pole number 3 Rated voltage 189 V
Reference temperature of

stator coil 30 ◦C Rated power 53 kW

Stator resistance at reference
temperature 0.215 Ω Peak power 95 kW

Modified coefficient of stator
resistance 0.45 Rated torque 127 N·m

Magnetic flux at reference
temperature 0.35 Wb Peak torque 260 N·m

Modified coefficient of
Magnetic flux 0.1 Rated speed 4000 r/min

Inductance of stator winding 0.275 H Maximum speed 9000 r/min

Table 4. The main parameters of the inverter.

Parameter Setting

Number of phases 3
Nominal capacity 100 kVA

Maximum capacity 150 kVA
Rated input voltage 345 V

Voltage operating range 280–420 V

Table 5. The battery thermal management system (BTMS) control strategy of the vehicle.

Mode Slow Charging Fast Charging Discharging

Heating T ≤ 0 ◦C, turn on
T ≥ 5 ◦C, turn off

T ≤ 16 ◦C, turn on
T ≥ 18 ◦C, turn off

T ≤ −15 ◦C, turn on
T ≥ −12 ◦C, turn off

Cooling T ≥ 38 ◦C, turn on
T ≤ 32 ◦C, turn off

T ≥ 38 ◦C, turn on
T ≤ 32 ◦C, turn off

T ≥ 38 ◦C, turn on
T ≤ 32 ◦C, turn off

2.2. Battery Capacity Fade Model

The aging of battery pack is mainly reflected by capacity fade and internal resistance increase and
is caused by a series of side reactions [2], such as the forming and growing of a solid electrolyte interface
(SEI), lithium plating, etc. The rates of theses side reactions are greatly influenced by the operation
conditions of the battery, such as the temperature and charge/discharge current, and are time-varying
when the battery EV runs on the road. There are various aging estimation models for LIBs, such as
physics-based (electrochemical) models [9,24], semi-empirical models [13,25], and equivalent circuit
based models (mainly for online estimation) [26].

In this study, we assume that the battery operation parameters, like temperature and current, are
maintained in a very short period of time, so that the battery aging rate in this time step is approximately
a constant. Then the aging process is divided into numerous such steady-state processes (time steps).
Based on this, linear fatigue damage accumulation theory is introduced, and we consider each time
step as the damaging cycle defined in linear cumulative damage theory (though there is no alternating
stress but instead side reactions at constant rates) and the accumulated degradation is the summation
of the degradation of each time step [22,27,28]. This method helps to assess the aging of the battery
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operating at varying conditions by semi-empirical models, which is obtained by fitting the aging data
of specific cycling conditions and takes advantage of fast simulation. However, this method may cause
some errors in the assessment.

As a 20% reduction in capacity is usually regarded as the criterion for failure, this paper only
evaluated the fading capacity of the battery pack. The research object was equipped with a NCM
cathode LIB, so we used the semi-empirical life cycle model reported in the literature as follows [25]:

Qloss =
(
a · T2 + b · T + c

)
· exp((d · T + e) ·Crate) ·Ahthroughput (1)

where Qloss is the percentage of capacity loss; T is the battery temperature; Crate is the battery charge
and discharge rates, which is the measurement of the charge and discharge currents with respect to
its nominal capacity; a, b, c, d, and e are constants, the values of which are shown in Table 6; and
Ahthroughput is the amount of electricity output by the battery during the cycle. We assume that the
aging rule of the charging process and the discharging process are both subject to formula (1), then the
total charge and discharge of the battery is Ah = 2·Ahthroughput [22].

Table 6. Main parameters of the motor.

Parameter Value Parameter Value

a 8.6124 × 10−6, Ah−1K−2 d −6.7 × 10−3, K−1Crate
−1

b −5.1252 × 10−3, Ah−1K−1 e 2.35, Crate
−1

c 7.6292, Ah−1 - -

Based on the above method, the amount of capacity degradation caused by cycle aging from time
τ to τ + ∆τ can be calculated by the following formulas:

Qloss,τ+∆τ = Γτ+∆τ ·

(
Qloss,τ

Γτ+∆τ
+ ∆Ah∆τ

)
(2)

Γτ+∆τ =
(
a · T2

τ+∆τ + b · Tτ+∆τ + c
)
· exp[(d · Tτ+∆τ + e) ·Crate,τ+∆τ] (3)

Qloss,τ+∆τ = Γτ+∆τ ·

(
Qloss,τ

Γτ+∆τ
+ ∆Ah∆τ

)
. (4)

In this study, the battery temperature and current profiles when the vehicle drives in a specific
condition (including the charging process) are calculated by the EV energy flow model and then used
as the input parameters of the abovementioned battery capacity fade model, by which the capacity
loss of the battery pack after the vehicle travels a certain mileage can be solved. Then, by taking a 20%
capacity loss as the end-of-life (EOL) criterion, the total mileage traveled by the vehicle before the EOL
of the battery pack (denoted as φ) can be obtained.

3. EV Powertrain Test and Model Verification

As described above, the battery current and temperature are taken as the input parameters of
the battery capacity fade model. However, when the vehicle is running under a certain driving cycle,
the current and temperature of the battery pack are not only determined by the characteristics of the
battery pack itself, but also by the parameters of the other components or systems of the powertrain,
such as the motor, inverter, BTMS, etc. In order to obtain accurate simulated current and temperature
results, the EV energy flow model should be fully verified. Therefore, a test bench containing the
whole powertrain of the EV, similar to the simulation model, is established. Tests are carried out to
provide the experimental data to verify the simulation model. Note that replicating the aging process
of the battery pack in the test bench would take a long time, so it is not conducted.
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3.1. Test Bench Development

The EV powertrain test bench consists of the following four modules: a powertrain module,
cooling system module, bench control module, and data acquisition system module. A graphical
illustration and picture of the bench are shown in Figures 2 and 3.
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Figure 3. The electric vehicle powertrain test bench.

The powertrain module is the test object, including the battery pack, the motor, and the inverter.
The cooling module is used to cool the EV powertrain, which contains two independent liquid-cooled
circuits—one is used to cool the battery pack, and the other is to cool the motor and inverter—and the
coolant flows through the motor and inverter in sequence. The bench control module includes the
BMS, controller, host computer, and dynamometer controller to regulate the battery charge/discharge,
data acquisition, and dynamometer loading. The data acquisition module is composed of temperature
sensors (a thermocouple), flow sensors, a power analyzer, a dynamometer, etc., and is used for
measuring key parameters of the system, such as the temperature and current of the battery pack. The
dynamometer is needed to load the EV powertrain. The data acquisition scheme is shown in Figure 4.
The main measured parameters, used instruments/sensors, and the experimental uncertainties are
summarized in Table 7.
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Table 7. The used testing instruments/sensors and experimental uncertainties.

Instrument/Sensor Type Measured Parameters Uncertainty

Dynamometer WE31 (H) Motor torque ±0.1% of full scale
Motor speed ±1 r/min

Power analyzer ZLG PA5000 Battery voltage ±0.1% of reading
Current sensor CTA1000 Battery current ±0.03% of reading
Thermocouple Type T Battery temperature ±0.36 ◦C

Flowmeter LWGY-10 Coolant flow rate ±0.5% of reading

3.2. Experimental Method

Before the test, the battery pack was fully charged using the on-board slow charging system
of the vehicle. According to the charging protocol specified by the manufacturer, the battery was
charged at a constant current of 8 A up to the upper cut-off voltage (4.15 V for the cell), followed by
charging at a constant voltage until the current reduced to 2 A (constant-current constant-voltage mode
(CCCV)). Assuming that the battery capacity will not decrease over several stable test cycles, the actual
capacity of the battery pack was considered to be 132 Ah. Based on this, the SOC was estimated by the
ampere-hour integral method.

In a vehicle, the vehicle control unit (VCU) sends control signals through the controller area
network (CAN) communication bus to the BMS and the motor control unit (MCU) to control the battery
pack discharge and the running of the motor, respectively. In this study, the VCU was replaced by the
controller in the bench control module, in which a cRIO-9023 system and a high-speed CAN module
(NI 9853) manufactured by National Instruments were used to send control signals to the BMS and
MCU. In addition, a 12 V output module was used to provide the 12 V wake-up signal needed by the
powertrain. The test was terminated when the SOC of the battery pack reached 0.2.

Tests were performed under an ambient temperature of 15 ± 5 ◦C. As the temperature greatly
affects the performance of the powertrain, it is important for it to be well controlled during the test.
Before the start of the test, the powertrain was pre-heated to a proper temperature using the cooling
system module of the test bench. For the battery pack, the temperature of the coolant was maintained
at 30 ◦C by the thermostatic water tank before the start of discharge process. Similarly, the temperature
of the coolant in the motor and inverter cooling circuit was also heated to the required temperature
(45 ◦C) through the thermostatic water tank. In order to achieve full thermal equilibrium between
the powertrain and coolant, the pre-heating process lasted for more than 30 mins after the coolant
temperature reached the required value. During the discharging process, the temperature of the
coolant at the outlet of the thermostatic water tank was kept constant, and the coolant flow rates of
both cooling circuits were set to 14 L/min.

Before the test, the operating conditions of the motor (including the speeds and output torques)
when the vehicle was driving under constant speed conditions were estimated according to the actual
vehicle speed, rolling radius, drag coefficient, transmission ratio, and other parameters. In detail, when
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the vehicle was driving at 65 km/h constant speed, the motor had a speed of 4000 r/min and an output
torque of 50 N·m, which was made one of the test conditions. On this basis, four other conditions
were determined by keeping the motor speed at 4000 r/min and changing its output torque. The test
conditions are summarized in Table 8.

Table 8. The test cases.

Torque of Motor N·m (The Speed Is 4000 r/min)

50 70 90 110 127

3.3. Model Verification

The initial and operating conditions in the EV energy flow model were set to be same with the
test cases, and then the simulations were carried out. The simulated results, such as battery current,
voltage, and temperature, were compared with the experimental data and are shown in Figure 5.
During the charging process, the battery current was a constant (8 A) for most of the time (except the
constant voltage period) and the temperature had little change, so the charging data are not plotted.
It can be seen that the simulated results were close to the experimental results, and the deviations
indicated that the simulation model was reliable and could be used for further calculation.World Electric Vehicle Journal 2020, 11, 17 9 of 18 
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3.4. Simulation Settings

This paper mainly studies the impact of the vehicle driving conditions on battery life. The factors
considered in this paper and their ranges/levels are shown in Table 9.

Table 9. The simulation settings.

Affecting Factors Range/Level

Driving cycle New European Driving Cycle (NEDC),
Federal Test Procedure (FTP-75), JC08 [29]

Ambient temperature/◦C 0, 20, 40
charging rate fast charging, slow charging

Trip distance short trip (a single driving cycle followed by a long rest
period), long trip (drive under repeated driving cycles)

4. Results and Discussion

4.1. Effect of Driving Cycles on Battery Life Cycle

In order to study the impact of driving cycles on battery life, this paper adopted three typical
driving cycles of New European Driving Cycle (NEDC), Federal Test Procedure (FTP-75) and Japanese
chassis dynamometer test cycle (JC08) [29]. In the study, the ambient temperature was set to 20 ◦C, and
the condition of daily commute to work (short trip driving) was simulated, i.e., a short trip containing
a single driving cycle in the morning followed by a long period rest until the next short trip in the
afternoon. When the SOC dropped to 0.2, the battery was charged at night with a slow charging
strategy in CCCV mode. The changes to the current, voltage, temperature, and SOC of the battery
pack during the use of the vehicle under three cycle conditions are shown in Figures 6–8. It can be seen
from the figure that when the vehicle started to run, the temperature of the battery pack rose from the
ambient temperature. After finishing a short trip, the battery temperature decreased to the ambient
temperature while the battery voltage and SOC were unchanged during the rest period. As the battery
was not charged or discharged and cycle aging did not happen in the rest period, the profiles of the
time-varying parameters of this period were not plotted, and those of the adjacent short trips are
directly connected end-to-end in Figures 6–8. When the next trip started, the temperature of the battery
pack began to rise again.

Based on the simulated results of the battery pack operating parameters shown above, the capacity
fade process of the battery pack can be calculated by using the aging model of expression (1). As
the capacity fade of the battery in the aging model is proportional to the battery’s total ampere-hour
throughput, and a 20% capacity fade was considered as the failure criterion, the total number of the
charge and discharge cycles before the EOL, N, of the battery pack can be calculated by the following
expression:

N =
20%
θ′

(5)

where θ′ is the capacity fade of a single charge and discharge cycle. Then, the mileage traveled by
the vehicle before the EOL of the battery pack (φ) is the product of N and the mileage traveled by the
vehicle in each charge and discharge cycle of the battery.

In this paper, φwas taken as the evaluation index, and the calculation results of the NEDC, FTP-75,
and JC08 cases are plotted in Figure 9. It can be clearly seen from Figure 9 that there were significant
differences in φ under different driving cycles, among which φ in JC08 was the longest and was 18.7%
higher than the lowest NEDC condition. This is because the maximum speed was lower under the
JC08 cycle, which led to a lower discharge rate than that of the other two cycles. It is worth noting that
the battery pack temperature did not reach 24.4 ◦C under all three driving cycles, at which the battery
had the lowest capacity fade rate. Therefore, the higher temperatures under the NEDC and FTP-75
cycles may lead to a higher capacity fade rate. However, φ in the JC08 cycle was actually the longest,
which indicated that the higher discharge rate under the NEDC and FTP-75 cycles outweighed the
impact of the temperature.



World Electric Vehicle Journal 2020, 11, 17 10 of 17

World Electric Vehicle Journal 2020, 11, 17 10 of 18 

4. Results and Discussion 

4.1. Effect of Driving Cycles on Battery Life Cycle 

In order to study the impact of driving cycles on battery life, this paper adopted three typical 
driving cycles of New European Driving Cycle (NEDC), Federal Test Procedure (FTP-75) and 
Japanese chassis dynamometer test cycle (JC08) [29]. In the study, the ambient temperature was set 
to 20 °C, and the condition of daily commute to work (short trip driving) was simulated, i.e., a short 
trip containing a single driving cycle in the morning followed by a long period rest until the next 
short trip in the afternoon. When the SOC dropped to 0.2, the battery was charged at night with a 
slow charging strategy in CCCV mode. The changes to the current, voltage, temperature, and SOC of 
the battery pack during the use of the vehicle under three cycle conditions are shown in Figures 6–8. 
It can be seen from the figure that when the vehicle started to run, the temperature of the battery pack 
rose from the ambient temperature. After finishing a short trip, the battery temperature decreased to 
the ambient temperature while the battery voltage and SOC were unchanged during the rest period. 
As the battery was not charged or discharged and cycle aging did not happen in the rest period, the 
profiles of the time-varying parameters of this period were not plotted, and those of the adjacent 
short trips are directly connected end-to-end in Figures 6–8. When the next trip started, the 
temperature of the battery pack began to rise again.  

 
(a) 

  
(b) 

Figure 6. (a) The current and voltage and (b) temperature and SOC profiles of the battery pack under 
continuous NEDC cycles. 
Figure 6. (a) The current and voltage and (b) temperature and SOC profiles of the battery pack under
continuous NEDC cycles.World Electric Vehicle Journal 2020, 11, 17 11 of 18 

  
(a) 

 
(b) 

Figure 7. (a) The current and voltage and (b) temperature and SOC profiles of the battery pack under 
continuous FTP-75 cycles. 

  
(a) 

  
(b) 

Figure 8. (a) The current and voltage and (b) temperature and SOC profiles of the battery pack under 
continuous JC08 cycles. 

Based on the simulated results of the battery pack operating parameters shown above, the 
capacity fade process of the battery pack can be calculated by using the aging model of expression 
(1). As the capacity fade of the battery in the aging model is proportional to the battery's total ampere-

Figure 7. (a) The current and voltage and (b) temperature and SOC profiles of the battery pack under
continuous FTP-75 cycles.



World Electric Vehicle Journal 2020, 11, 17 11 of 17

World Electric Vehicle Journal 2020, 11, 17 11 of 18 

  
(a) 

 
(b) 

Figure 7. (a) The current and voltage and (b) temperature and SOC profiles of the battery pack under 
continuous FTP-75 cycles. 

  
(a) 

  
(b) 

Figure 8. (a) The current and voltage and (b) temperature and SOC profiles of the battery pack under 
continuous JC08 cycles. 

Based on the simulated results of the battery pack operating parameters shown above, the 
capacity fade process of the battery pack can be calculated by using the aging model of expression 
(1). As the capacity fade of the battery in the aging model is proportional to the battery's total ampere-

Figure 8. (a) The current and voltage and (b) temperature and SOC profiles of the battery pack under
continuous JC08 cycles.

World Electric Vehicle Journal 2020, 11, 17 12 of 18 

hour throughput, and a 20% capacity fade was considered as the failure criterion, the total number 
of the charge and discharge cycles before the EOL, N, of the battery pack can be calculated by the 
following expression: N = 20%𝜃′  (5) 

where θ′ is the capacity fade of a single charge and discharge cycle. Then, the mileage traveled by the 
vehicle before the EOL of the battery pack (Ф) is the product of N and the mileage traveled by the 
vehicle in each charge and discharge cycle of the battery. 

In this paper, Ф was taken as the evaluation index, and the calculation results of the NEDC, FTP-
75, and JC08 cases are plotted in Figure 9. It can be clearly seen from Figure 9 that there were 
significant differences in Ф under different driving cycles, among which Ф in JC08 was the longest 
and was 18.7% higher than the lowest NEDC condition. This is because the maximum speed was 
lower under the JC08 cycle, which led to a lower discharge rate than that of the other two cycles. It is 
worth noting that the battery pack temperature did not reach 24.4 °C under all three driving cycles, 
at which the battery had the lowest capacity fade rate. Therefore, the higher temperatures under the 
NEDC and FTP-75 cycles may lead to a higher capacity fade rate. However, Ф in the JC08 cycle was 
actually the longest, which indicated that the higher discharge rate under the NEDC and FTP-75 
cycles outweighed the impact of the temperature. 

 
Figure 9. Ф under different driving cycles. 

4.2. Effect of Ambient Temperature on Battery Life Cycle 

The ambient temperature directly affects the electrochemical performance and aging rate of the 
battery pack. Due to the local climate and changing seasons, EVs may run under a wide range of 
ambient temperatures. Therefore, this section studies the aging characteristics of the battery pack 
when the EV is driving at different ambient temperatures. Here, on the basis of the 20 °C condition 
in the previous section, the low-temperature condition of 0 °C and the high-temperature condition of 
40 °C were added. 

 

Figure 10. Ф under different ambient temperatures. 

70
75
80
85
90
95

100

NEDC FTP-75 JC08

M
ile

ag
e b

ef
or

e 
EO

L 
(*

10
00

 k
m

)

Driving Cycle

Tamb = 20 ℃, Slow charging

0

20

40

60

80

100

120

0 20 40

M
ile

ag
e b

ef
or

e 
EO

L 
(*

10
00

 k
m

)

Ambient Temperature  (℃)

NEDC FTP-75 JC08

Figure 9. φ under different driving cycles.

4.2. Effect of Ambient Temperature on Battery Life Cycle

The ambient temperature directly affects the electrochemical performance and aging rate of the
battery pack. Due to the local climate and changing seasons, EVs may run under a wide range of
ambient temperatures. Therefore, this section studies the aging characteristics of the battery pack
when the EV is driving at different ambient temperatures. Here, on the basis of the 20 ◦C condition in
the previous section, the low-temperature condition of 0 ◦C and the high-temperature condition of
40 ◦C were added.

It can be seen from Figure 10 that when the ambient temperature was 20 ◦C, the values of φ in
NEDC, FTP-75, and JC08 were much higher than those at the ambient temperatures of 0 ◦C and 40 ◦C.
The average value of φ of three driving cycles at 20 ◦C was 8.6 times that at 0 ◦C and 2.7 times that
at 40 ◦C, which shows that the BTMS in high and low ambient temperature environments played
an important role in prolonging the battery life. From the perspective of battery aging, heating in a
low-temperature environment is more important than cooling in a high-temperature environment.
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4.3. Effect of Charging Mode on Battery Life Cycle

EVs are usually charged in two ways: fast charging and slow charging. The battery current and
heat generation are largely different between the two charging modes. This section studies the impact
of the long-term use of two different charging modes on the battery life. The charging current in the
slow charging mode was 8 A while that of the fast charging mode was based on the vehicle charging
setting, in which different charging currents were used when the battery temperature was different,
and the maximum Crate was 1 C.

From the simulated results in Figure 11, it is found that when the ambient temperatures were
20 ◦C and 40 ◦C, using the fast charging mode all the time will reduce φ by 17.2–32.8%, compared to
slow charging, and the reduction was the most obvious when the ambient temperature was 20 ◦C.
However, when the ambient temperature was 0 ◦C, the fast charging mode will increase the battery
life by 27.6–30.1%. The reason is that a low temperature will also accelerate the capacity fade of the
battery. When the fast charging mode was adopted, the battery temperature quickly rose due to the
large heat generation rate under the high charging rate and heating by using the PTC heater. As shown
in Figure 12a, the higher average temperature and shorter charging time not only offset the negative
impact of high charging rate to battery aging, but also further extended the battery life.
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4.4. Effect of Trip Distance on Battery Life Cycle

In addition to the daily commute to work (short trip driving), there are also long trip driving
situations, which in this study was defined as the vehicle driving under repeated driving cycles without
rest until the battery reduced to SOC = 0.2, then the battery was charged to SOC = 1. The main
difference between the two cases was the battery temperature. The battery temperature in the short
trip driving was described in detail in 4.1, whereas the battery pack temperature will continue to rise
during long trip driving. The NEDC driving cycle was selected, and the ambient temperatures were
set as 0 ◦C, 20 ◦C, and 40 ◦C in this part of the study. By assuming that the vehicle ran with the same
trip distance (short or long) and driving cycle (NEDC) all the time, a series of simulations were carried
out, and the battery capacity fade and φwere estimated. The battery temperature profiles and φ under
these cases are shown in Figures 13 and 14, respectively.
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At the ambient temperatures of 0 ◦C and 20 ◦C, as there was no rest period and the battery pack
released heat all the time in long trip driving conditions, the battery temperature continued to rise and
was higher than in the short trip driving condition, as shown in Figure 13a,b. In the charging period
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of long trip cases, because the natural convection heat transfer rate is higher than the battery heat
generation rate due to the large temperature difference between the battery pack and the ambient air,
the battery temperature had a decreasing trend. However, in short trip cases, the natural convection
heat transfer rate was lower, the battery heat generation rate was higher (internal resistance of LIBs
increases with the decrease of temperature), and the battery temperature continued to rise.

As long trips can increase the temperature of the battery pack to a higher level with a slower aging
rate, φwas enlarged, as shown in Figure 14. In the low-temperature environment (corresponding to
the ambient temperature of 0 ◦C in this study), φ for the long trip condition was 2.2 times that of the
short trip condition. In the 20 ◦C cases, long trip driving can also enlarge φ by 22.8%. At the ambient
temperature of 40 ◦C, it can be seen in Figure 13c that the battery temperature started to decrease right
after the start of driving. In the charging period, the battery temperature remained within the range of
32–38 ◦C, which was attributed to the BTMS and its control strategy (presented in Table 5). A lower
average temperature of the battery pack was achieved by continuously working the BTMS in long trip
driving, and the φ in long trip driving was extended by 5.7%, as shown in Figure 14.

5. Conclusions

In this paper, the impacts of driving conditions on battery pack life cycle were studied. The results
showed that the driving cycle, ambient temperature, charging mode, and trip distance all had a great
impact on the mileage traveled by the vehicle before the EOL of the battery pack (φ): driving at low
speed and low acceleration can extend φ, while low temperature and high temperature environments
will significantly reduce φ. When the EV is running at an ambient temperature of 20 ◦C, the average
values of φ in NEDC, FTP-75, and JC08 were 8.6 times that of 0 ◦C and 2.7 times that of 40 ◦C.
The impacts of the charging mode and trip distance on φ are strongly related to the battery temperature
profile in specific cases. When the ambient temperature was 0 ◦C, using fast charging can extend φ
by 27.6–30.1% compared with slow charging. However, it can reduce φ by 17.2–32.8% in normal and
high-temperature ambient conditions. Compared with short trip driving (a daily commute to work),
long trip driving can achieve a higher φ. In the ambient temperatures of 0 ◦C, 20 ◦C, and 40 ◦C, the φ
in long trip driving was extended by 120%, 22.8%, and 5.7%, respectively.
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Nomenclature

Greek Symbols
θ′ Capacity fade of a single charge and discharge process
τ Time
φ Mileage traveled by the vehicle before the EOL of the battery

pack
∆ Change
Symbols
Ah Ampere-hour
Ahthroughput Amount of electricity output by the battery during the cycle
Crate Battery charge and discharge rate
N Total number of the charge and discharge cycles before EOL

of battery
Qloss Percentage of capacity loss
T Battery temperature
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Abbreviations
BMS Battery management system
BTMS Battery thermal management system
CAN Controller Area Network
CCCV Constant current constant voltage
DOD Depth of discharge
EV Electric vehicle
EOL End of life
FTP Federal Test Procedure
HEV Hybrid electric vehicle
JC08 A Japanese chassis dynamometer emission test cycle
LIB Lithium-ion battery
MCU Motor control unit
NCM Nickel cobalt manganese
NEDC New European Driving Cycle
PID Proportion Integration Differentiation
PTC Positive Temperature Coefficient
SOC State of charge
SOH State of health
SEI Solid electrolyte interface
VCU Vehicle control unit
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