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Abstract: The main barriers to the wide acceptance of electric vehicles, such as the limited driving
range or the high acquisition costs, are to be countered by various technology alternatives for the
powertrain of the future. Promising developments include improved battery technologies, fuel
cell technologies or a constant power supply of the vehicle while driving, for example through
dynamic inductive charging. In this context, a holistic technology comparison would contribute to a
comprehensive and understandable information situation by making the heterogeneous technological
concepts comparable with regard to different evaluation criteria. Therefore, this work describes
the basic assumptions of the proposed holistic comparison of alternative powertrain technologies
for long-distance mobility. Relevant framework conditions are structured and a procedure for the
evaluation of infrastructure expenditures is shown. Building on this, a selection of key performance
indicators is defined and explained. The proposed KPI framework is applied to a passenger car in the
economic area Germany. The results show that by using electrified roadways, ecological as well as
economic advantages against other alternative powertrain designs can be derived.
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1. Introduction

Alternative powertrains are the key to meeting future emission targets [1]. In addition to the pure
battery electric vehicle (BEV), many other technologies are traded as the powertrains of the future.
Among others, vehicles with fuel cells and high pressure hydrogen tanks (FCEV) or vehicles with
a constant power supply while driving, for example through inductive power transfer (IPTEV), are
promising developments. Decision-makers from politics and industry are now faced with the question
of which alternative powertrain technology should ideally be promoted through targeted investments.
The reduction of traffic-related emissions and the costs of individual mobility are only some of the
decisive parameters. Since alternative powertrain technologies require cost-intensive investments in
public infrastructure, their implementation can only succeed on the basis of systematically prepared
and evaluated information and with the involvement of all interest groups.

A wide variety of papers deal with the comparison of powertrain technologies, as shown later in
Section 2.2. However, only a few studies exist that integrate an electrified road (E|ROAD) infrastructure
into such a comparison. With this technology, electrical energy is transferred into the vehicle in motion
by wireless charging. The isolated evaluation of the expenditures for the implementation of an E|ROAD
is addressed in current studies. In [2,3], the E|ROAD infrastructure is examined in detail with regard to
its ecological influences using an extensive life cycle analysis. So far, comparisons to other alternative
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powertrain technologies are mainly known with an economic focus. In this context, [4,5] investigate
the effects of an E|ROAD on freight traffic in North America and summarize that far-reaching cost
advantages can be achieved compared to battery-operated trucks. However, there are hardly any
studies known that evaluate the available alternative powertrain technologies holistically against each
other. The present paper aims at such a holistic comparison.

The basic structure of the comparative methodology has already been presented and described
in [6]. The aim of this study is to extend the existing framework to include a consideration of the criticality
of raw materials similar to the work shown in [7]. Since the focus of the study is on long-distance
mobility, only relevant infrastructure expenses for long-distance mobility are to be included. Therefore,
an approach is presented and validated to calculate traffic performance-dependent infrastructure
investments. This approach is applied to separate the infrastructure for long-distance mobility from the
entire infrastructure expenses for a powertrain technology. Furthermore, the technical implementation
of the extensive data framework for the KPI calculation is shown.

2. Existing Approaches to Technology Assessment of Alternative Powertrains and Need for Action

2.1. Overview of Alternative Powertrain Technologies

The technological comparison methodology in this work is applied to BEV, IPTEV, and FCEV
powertrains. The relevant basics of the technologies are briefly described below.

Figure 1 gives an overview of the infrastructure and vehicle components of the BEV.
Relevant components are the battery system, the onboard charger (OBC), the electrical machine,
assuming a permanent magnet synchronous motor (PMSM), and a transmission as well as the power
electronics (PE). The components described are also used within the IPTEV and FCEV powertrains,
although a lower dimensioned energy storage is used.
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Figure 1. Components of BEV powertrains [6].

Regarding the individual components considered, the BEV represents the highest degree of
technological development at the time of this study. However, extensive research efforts are still
underway, particularly in energy storage technology. For the complete roll-out of the BEV vehicle
concept, a comprehensive charging infrastructure has to be installed. Moreover, for the operation of
the BEV powertrain, the energy supply path must be taken into account. Electrical energy is provided
by the electricity generation and made available at the charging point via the grid infrastructure.

For IPTEV, the electrical energy required for long-distance mobility is constantly provided by
an E|ROAD while driving. The onboard battery is therefore smaller than that of BEV vehicles, being
otherwise equal to that in Figure 1. With a high degree of expansion of the E|ROAD infrastructure,
the driving range is practically unlimited [8]. The implementation of the IPTEV concept requires
additional infrastructure- and vehicle-related adaptations and investments compared to a BEV [8].
Essential components are summarized in Figure 2.

As this paper will show, the inductive power transfer is expected to reduce overall efficiency
compared to BEV. However, due to the lower vehicle mass caused by the smaller vehicle battery, the
energy demand is reduced. However, due to the lower vehicle mass caused by the smaller vehicle
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battery, the energy demand is reduced. With regard to total cost of ownership (TCO) calculations,
the high infrastructure expenditures for the expansion of the E|ROAD are particularly significant.
The roads have to be equipped with charging pads that consist of magnetic field-generating coils,
corresponding power electronics and a connection to the power grid [8]. The electrical energy is
provided by the energy generation and the grid infrastructure.
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The basic idea of an E|ROAD can be implemented by further technological alternatives. In addition
to inductive energy transmission, the vehicle can also be powered by conductive energy transmission,
either by a contact from above through overhead lines or from below via conductors in the road.
For instance, the eROAD Arlanda technology transfers energy from a rail in the road to the vehicle,
using a movable arm on the vehicle side [9]. The Siemens eHighway applies the technologically
well-engineered pantograph technology to trucking [10]. Both technologies are currently under
intensive investigation.

The FCEV has similar vehicle components to the BEV. The vehicle’s battery, in turn, is small in
size, and the necessary energy is provided by an onboard fuel cell. The supply paths of the FCEV
technology are manifold. To achieve comparability to the given powertrain configurations, the supply
path via electricity generation, grid infrastructure, central electrolysis, H2 compression, and fueling are
being assumed as shown in Figure 3.
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2.2. Existing Studies Comparing Powertrain Technologies

The state of the art for methodical comparisons of powertrain technologies cannot be conclusively
assessed. Some relevant studies are characterized in the following. Li et al. [12] compared the
conventional combustion engine technology (ICE) with BEV and FCEV. The assessment is based on the
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total energy requirement and the generated level of greenhouse gas emissions. The development of
the energy mix in China until 2050 is taken into account. In addition, Pollet et al. [13] addressed hybrid
electric vehicles (HEV) and evaluated powertrains with regard to vehicle costs and technical parameters,
such as energy density, achievable energy efficiency, and safety aspects. Regarding individual vehicle
components, a technology roadmap addresses future technological improvements. The effects on
the infrastructure are also considered. Wietschel et al. [14] evaluated the profitability with regard to
acquisition costs as well as maintenance; servicing, energy efficiency; and greenhouse gas emissions of
ICE, HEV, BEV, and FCEV. The powertrains are analyzed at different times of comparison to address
varying framework conditions. Different vehicle sizes and segments complement the analysis. Table A1
summarizes the selected studies on the evaluation of alternative powertrain technologies. As can
be seen, different criteria for technology assessment are used in the studies under consideration.
In addition to technical factors such as solution specific drive power, economic parameters etc., the
acquisition and maintenance costs of the vehicle can be included in the comparison. Other studies
include ecological parameters such as greenhouse gas (GHG) emissions.

Although individual criteria and assumptions are defined in the various publications, there is
the common feature that not only vehicle side aspects have to be examined but also the associated
infrastructure. This is widely realized by applying well-to-wheel (WTW) analysis. Furthermore,
the identified studies focus on the presented powertrain technologies BEV and FCEV and include
various types of hybridization, like HEV, plug in hybrid electric vehicles (PHEV) or range-extended
electric vehicles (REEX). A small number of studies include the IPTEV powertrain into examination.
However, [4,5] investigated the effects of an E|ROAD on freight traffic in North America and came to
the conclusion that far-reaching cost advantages can be achieved compared to battery-operated trucks.

2.3. Existing Studies Assessing Powertrain Technology Dependent Raw Material Criticality

Not many studies are known that evaluate the resource criticality of alternative powertrain
technologies. For instance, [15] considered the raw materials lithium (Li), cobalt (Co), nickel (Ni),
graphite (Gra), and platinum (Pt) and calculated their global demand for a scenario of global warming
by 2 ◦C by 2100 and a distribution of the proportions of the powertrain alternatives. The segments
considered are passenger cars, trucks, buses, motorcycles, and pedelecs. The study comes to the
conclusion that the sharp rise in demand for lithium does not lead to a long-term physical shortage
of raw material due to the large reserves and resources. The same conclusion is drawn for cobalt,
whose increase in demand is mainly caused by electric mobility. This statement also applies to the
other raw materials nickel, graphite, and platinum, which are used much more widely. However,
temporary shortages for various reasons are by no means unrealistic. In the case of lithium and cobalt,
the increased demand requires the development of new production sites as well as the establishment of
further recycling structures, which so far only exist for cobalt to an acceptable level. The well-developed
nickel production and the substitutability of graphite by synthetic graphite make a temporary shortage
of these two raw materials unlikely.

A more holistic approach is to include the raw materials and energy for vehicle production and
disposal as well as the energy for vehicle use into the scope of a study [16]. It is determined that the
higher material requirements of BEV and various hybrid electric vehicle topologies (xEV) approximate
the lower material requirements of the conventional ICE over the observation period up to 2050. In the
case of electric vehicles, not only the battery but also the power electronics are declared to be decisive,
which is why the additional demand falls mainly on lithium and gold as well as the non-critical metals
steel and copper (Cu). A decisive role is also assigned to the use phase in the current state of technology.
By 2050, the environmental balance of the xEV can be improved and the material requirements of the
utilization phase reduced by a high proportion of regenerative energy generation. The production
phase of the life cycle of the vehicles will then be even more important for the material requirements.

In contrast to the other studies, [17] assumes that one powertrain technology covers the mobility
demand completely. The maximum requirement of a raw material is deduced from this assumption.
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Just for the FCEV scenario, however, approximately 50% FCEV and 50% BEV are taken into account.
In addition to mobile applications in cars, trucks and buses, stationary systems are also considered
separately. Due to the extreme consideration and the diverse scenario selection, the results of the study
are not suitable for a direct comparison with other results.

2.4. Need for Further Research

A limitation of previous studies is the focus on single technological aspects. For example, prior
publications focus on the ecological effects of a powertrain concept without considering other factors
like economic efficiency [12,18]. Furthermore, it is not possible to combine the core statements from
several studies to develop a holistic statement since the study’s specific results are based on different
assumptions and are therefore incompatible.

Different phases of technological development complicate comparisons further. For example,
conventional powertrains are the result of a development and improvement process over 150 years,
reaching the physical limits more and more. In contrast, there is still considerable technological and
economic optimization potential for today’s BEV, especially with regard to the installed energy storage.
Thus, when interpreting existing technology assessments, it must be taken into account that the applied
key figures only allow limited conclusions on the best possible powertrain due to deviating conditions
and development stages.

A further limitation results from the context of the considered vehicle concepts or the data basis
for determining any comparative values. Existing models or reference vehicles are frequently used
to compare different powertrains [13]. This approach makes it possible to depict the current state of
the art and draw conclusions on current market conditions. However, due to manufacturer-specific
adaptations, the available vehicle models may show significant differences with regard to the parameters
under investigation. Consequently, the specification of currently available vehicle models as reference
models is not expedient if a long-term conclusion on technologies is to be drawn. Instead, the objective
and unbiased consideration of different technologies requires the derivation of key figures that are as
neutral as possible, and thus, manufacturer-independent.

Another restriction is a consistent consideration of infrastructure specifics. In the case of
energy efficiency and ultimately absolute energy demand, most investigations rely on WTW
analyses [12,18]. In the case of infrastructure expenditure, there is no uniform procedure for taking
into account the resource demand and the costs for necessary infrastructure components across all
powertrain technologies.

3. Basic Assumptions and System Boundaries

In order to ensure a holistic investigation, a comprehensive KPI system has to be defined.
This requires, among others, general assumptions, the definition of framework conditions, and the
identification of suitable KPIs from a technical, ecological and economic point of view.

3.1. Scope and Basic Assumptions

The comparative methodology enables the evaluation of alternative powertrain technologies.
The scope of the study is defined as follows:

• The focus is on individual long-distance mobility. Thereby, exclusively highway traffic
is considered.

• For the life cycle analysis, the system boundaries are selected in such a way that vehicle,
infrastructure and energy supply are taken into account. The provision of raw materials, production,
maintenance, and recycling are recorded.

• The reference vehicle represents a passenger car from the compact car class.
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• As the economic area, Germany is selected in terms of energy prices, highway infrastructure
or traffic performance. However, government influences like levies or taxes are separated by
adjusted energy prices.

• The points in time for the evaluation of the technology comparison are the current state of the art
and the assessable technological potential. The framework conditions of +30 years are used to
assess the technological potential.

3.2. Base Vehicle Configuration

The base vehicle defines vehicle-specific assumptions, independent of the assessed powertrain.
For calculation, mass and costs as well as raw material requirements therefore only result from the
configuration of the base vehicle with powertrain components, which are presented in Section 2.1.
The technological parameters of the components are summarized in Table S3. The parameters of the
base vehicle and the configured BEV are shown in Table 1. To validate the BEV configuration in this
work, its parameters are compared with BEVs currently available on the market.

Table 1. Parameter of base vehicle and BEV compared to available BEVs for state of the art (SoA).

Parameter Unit Base Vehicle
(SoA) [6] BEV (SoA) BMW i3 [19] VW e-Golf [20] Tesla Model 3 SR

2019 [21]

Mass kg 1000 1641 1345 1615 1611
Battery capacity kWh 75 37.9 35.8 50
Nominal power kW 90 75

Peak power kW 150 125 100 192
Net costs € 15,000 28,578 31,933 26,807 33,429

3.3. System Boundaries of Life Cycle Analysis

In order to compare powertrain technologies against each other, the system boundaries of the
viewing area must be defined. A common concept is the life cycle approach. Long-term ecological
effects, such as carbon footprints, are recorded by a life cycle analyses (LCA). The current state of
this research is based only on an LCA-based indicator, the LCA resource demand, which relates the
materials required to implement a powertrain alternative to the available resources of this material on
earth. Required materials are recorded according to the different life cycle phases as shown in Figure 4.

In [2], the life cycle of an IPTEV is analyzed and the necessity is determined to consider an
infrastructure life cycle in addition to the vehicle life cycle. This structure is adopted and adapted in
detail to determine the materials required. Figure 4 shows the different life cycles. Only the filled
components are taken into account at the current status of the work. In summary, a WTW life cycle to
model the energy supply, a life cycle to consider the vehicle equipment, and a life cycle to consider the
infrastructure are included in the analysis.

The WTW life cycle initially includes the extraction of energy resources. The generation
of electrical energy comprises a combination of necessary resources such as coal (ID 1011
“resource_energy_per_energy”), gas and oil. A network infrastructure consisting of distribution
and medium-voltage networks is required to transport electric energy to the infrastructure component.
Relevant raw materials are shown in Table S3. In the case of the BEV, the electrical energy is finally
transferred to the vehicle via the technology specific infrastructure from the charging point.

In this paper, the vehicle life cycle comprises the raw materials, the materials for providing the
production energy and the recycling of the vehicle materials. The relevant data is presented in Table S3.

The infrastructure life cycle includes the materials necessary to build the infrastructure and
material recycling at the end of the life cycle. Literature does not yet allow a consistent estimation of
the energy requirements for the construction of the respective infrastructures and their maintenance,
which is why these are not assessed for raw material criticality.



World Electric Vehicle Journal 2019, 10, 77 7 of 20

World Electric Vehicle Journal 2019, 10, x FOR PEER REVIEW 6 of 19 

3.2. Base Vehicle Configuration 

The base vehicle defines vehicle-specific assumptions, independent of the assessed powertrain. 

For calculation, mass and costs as well as raw material requirements therefore only result from the 

configuration of the base vehicle with powertrain components, which are presented in Section 2.1. 

The technological parameters of the components are summarized in Table S3. The parameters of the 

base vehicle and the configured BEV are shown in Table 1. To validate the BEV configuration in this 

work, its parameters are compared with BEVs currently available on the market. 

Table 1. Parameter of base vehicle and BEV compared to available BEVs for state of the art (SoA). 

Parameter Unit 
Base Vehicle 

(SoA) [6] 
BEV (SoA) 

BMW i3 

[19] 

VW e-Golf 

[20] 

Tesla Model 3 SR 

2019 [21] 

Mass kg 1000 1641 1345 1615 1611 

Battery 

capacity 
kWh  75 37.9 35.8 50 

Nominal 

power 
kW 90 75   

Peak power kW 150 125 100 192 

Net costs € 15,000 28,578 31,933 26,807 33,429 

3.3. System Boundaries of Life Cycle Analysis 

In order to compare powertrain technologies against each other, the system boundaries of the 

viewing area must be defined. A common concept is the life cycle approach. Long-term ecological effects, 

such as carbon footprints, are recorded by a life cycle analyses (LCA). The current state of this research is 

based only on an LCA-based indicator, the LCA resource demand, which relates the materials required 

to implement a powertrain alternative to the available resources of this material on earth. Required 

materials are recorded according to the different life cycle phases as shown in Figure 4. 

In [2], the life cycle of an IPTEV is analyzed and the necessity is determined to consider an 

infrastructure life cycle in addition to the vehicle life cycle. This structure is adopted and adapted in 

detail to determine the materials required. Figure 4 shows the different life cycles. Only the filled 

components are taken into account at the current status of the work. In summary, a WTW life cycle 

to model the energy supply, a life cycle to consider the vehicle equipment, and a life cycle to consider 

the infrastructure are included in the analysis. 

 

Energy resource 

extraction

Energy carrier 

production

Energy carrier 

distribution

Operation phase

Equipment

end of life

Material production

Equipment 

manufacturing

Equipment 

maintenance

Infrastructure

end of life

Material production

Infrastructure 

construction

Infrastructure 

maintenance

Equipment life cycle Well-to-Wheel life cycle Infrastructure life cycle

Life cycle of alternative powertrain technology

key: considered not considered
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3.4. Traffic Performance Dependent Infrastructure Design

As shown, the life cycle of the infrastructure is to be included in the calculation of key figures.
In order to focus on long-distance mobility, only the long-distance-relevant infrastructure share must
be assessed for each technology (BEV: charging point; IPTEV: E|ROAD; FCEV: H2 charging station).
In this paper, a procedure for calculating the necessary infrastructure via traffic performance is
presented. Highway infrastructure is defined on the basis of a design hour of the design traffic intensity.
This represents the 50th hour with the highest load on the respective motorway section [22].

The design methodology is presented in three main steps: Measurement of the traffic performance
in the design hour, determination of the average power demand in the design hour, and validation of
the design methodology using the calculated instances to fit the power demand. Table 2 describes
the procedure.

The average traffic performance of the vehicle fleet on motorways is calculated from the sum of the
documented vehicles per hour and road segment in both directions multiplied by the length of the road
segments. The parameter is given as “design driving performance”. Each powertrain technology has
an alternating power demand from the infrastructure. In the case of the BEV, the parameter represents
the tank to wheel (TTW) efficiency added by the losses of the charging procedure (Infrastructure_tW
efficiency). Using average charging powers for DC fast charging, the necessary instances to fit the
power demand are measured. For the BEV technology, this results in a necessary number of 90,660 fast
charging points at an average of 10 charging points per charging station. For long-distance mobility,
this order of magnitude can be confirmed on the basis of the literature [23,24].

Table 2. Traffic performance-dependent infrastructure design.

Parameter Unit BEV (Charging Stations) IPTEV (E|ROAD
IPT Components)

FCEV (Hydrogen
Refilling Station)

Design driving performance km/h 61.9 × 106 [25]
Infrastructure_tW efficiency Wh/km 220 257 435

Power demand by vehicle fleet GW 13.6 15.9 26.9
Power of infrastructure instance kW 1500 (with 10 points per charging station) 612 (1/km) 7600 [26]
Instances to fit power demand 9066 1 3540
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The traffic performance-based infrastructure design is used to calculate costs and resource
demands for various infrastructures relevant for the operation of alternative powertrains. Table 3
calculates costs and raw material investments for the charging infrastructure of the BEV consisting
of charging points and a transformer. The specific raw material demand and costs per power are
calculated using a reference charging point with 150 kW. By multiplying the specific costs and raw
material demands with the calculated power demand of the BEV vehicle fleet in Table 2 (13.6 GW), the
total material demand and costs are estimated.

Table 3. Exemplary raw material and investment demand for charging points for SoA.

Component Power Material Mass or Cost ( R
P )/( C

P ) Total Demand

Charging point 150 kW
[27]

Ag 1 × 10−6 kg [28] 6.67 × 10−9 kg/kW 9.1 × 10−5 t
Cu 7.5 kg [28] 0.05 kg/kW 6.8 × 102 t
Ga 1 × 10−6 kg [28] 6.67 × 10−9 kg/kW 9.1 × 10−5 t
. . . . . . . . . . . .

25,000€ [27] 167€/kW 2.3 B€

Transformer
1200 kW

[29]

Cu 1.3 kg/kW [30] 1.8 × 104 t
Ste 3.0 kg/kW [30] 4.1 × 104 t

55,000€ [31] 46€/kW 0.6 B€

The same procedure is used for the assessment of the other infrastructures. For the E|ROAD,
the relevant components are a transformer, power electronics, parallel cabling for grid connection,
and coils in the road infrastructure. Since a complete electrification of the vehicle fleet is assumed
here, the assumption of equipping all lanes of the motorway infrastructure with inductive charging
coils is consistent. To calculate the copper demand of the coils, the demand per lane is used first.
According to [2], about 3550 kg/km per road direction is to be assumed. Over the average number
of lanes of 2.29 in Germany [25], the copper demand per km results in 8139 kg. For Germanys
highway infrastructure, 12,996 km are to be electrified in both directions of travel which corresponds
to a copper demand of 2.1×105 t for charging coils [32]. Power-dependent specific requirements for
power electronics and transformers must be multiplied by the power requirement of the fleet when
calculating the E|ROAD. This corresponds to 15.9 GW in the state of the art. The investment costs for
the electrification of all lanes based on [5] and scaling of the lanes result in a requirement of 84.2 B€.
The relevant calculation steps are as shown in Table A2.

4. Data Management, Calculation Methods and Technical Implementation

4.1. Implementation Architecture

Data management of the general conditions, associated calculation methods and the presentation
of the calculation results according to the target group are structured, changeable and extendable to be
implemented. The selected architecture is shown in Figure 5.
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All framework conditions for the calculation of key figures are stored in a relational database.
The different types of framework conditions as well as the definition of individual data sets and the
structure of the relational database are summarized in Section 4.2.

The database is accessed via a tool implemented in Python 3 to calculate the key figures.
The calculation logics are described in the following Section 4.3. An essential advantage of
object-oriented programming in Python is the description of general calculation logics, which can be
further specified for selected technologies by the principle of inheritance.

The calculation results of the KPIs are presented and interpreted in Section 5. The presentation of
the results can, for example, take place via a web server and thus a complete server-side implementation
of the calculation tool can be realized.

4.2. Definition of the Data Structure

The framework conditions summarize the data for the calculation of KPIs. They are structured in
general data, location-specific data and technological data. In doing so, all parameters that are neither
technology- nor location-dependent are defined as general data. Among other things, the parameters
of the base vehicle, e.g., mass or performance, are listed in the general data as well as the globally
assumed raw material resources (Table S1).

In particular, location-specific framework conditions summarize definitions of the local energy
mix and the associated energy costs as well as traffic performances and the size of the vehicle fleet.
Furthermore, the energy raw materials for the provision of electrical energy must be taken into account.
For the German energy mix, e.g., the use of hard coal per kilowatt hour of electrical energy generated
is assessed. Energy prices are adjusted for the share of political influence through levies, taxes or
guaranteed market-unusual returns. Related data are also part of the location-specific framework
conditions. A summary is presented in Table S2.

All technological framework conditions are subdivided into infrastructure and powertrain
components and are assigned to the various powertrains for the key figure evaluation. For the battery
component, for example, parameters such as capacity, energy efficiency, energy density, resource
requirements, and recycling rates as well as production energy demands and costs per storage capacity
are taken into account. A summary of the technological parameters is given in the Table S3.

The entire framework data are subdivided according to data type and the respective thematic
reference. For the data type separation, the following nomenclature is introduced, which assigns a
fixed ID_param, a parameter name, a unit, and a unique symbol to each data type. Figure 6 shows
the defined data schema using the example of an ID_param 0040, defining the energy density of a
powertrain component.
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Dimension

0: performance

1: ecological

2: economical

3: other

Parameter

000: mass

010: capacity

020: power

030: efficiency

040: energy_density

…

ID_param Symbol Parameter Unit

0000  mass kg

0020  power kW

0060   lifecycle year

0061    mileage km/year

1001 (R/E) Resource_per_energy kg/kWh

1300 Xres Resource_recycling_rate %

Figure 6. Explanation of the four-digit ID_param and examples.

The unique ID_param has four digits. The first digit determines the dimension of the parameter,
which can vary between performance, ecological, economical or other parameters. Within the
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dimensions, the individual parameters are numbered consecutively to achieve a logical sequence in
terms of content. The ID_param allows to flexibly extend the framework by additional parameter types.

The database schema is visualized in an Entity Relationship Diagram (Figure A1) and is shortly
described in the following: The above mentioned parameters (e.g., nominal_power) are assigned
concrete values according to the thematic reference (e.g., 85 kW). The values differ depending on
whether the state of the art or the technological potential is assessed. Each value is derived from
a literature reference. Technological framework conditions (e.g., energy_density) are structured
according to its components (e.g., Battery). Each component can be installed in different powertrains
(e.g., BEV).

4.3. Calculation of Key Performance Indicators

Based on the above defined framework conditions, the definition and calculation of
powertrain-related indicators with regard to performance, ecological and economic aspects is presented
in the following.

4.3.1. Power-to-Weight-Ratio

The power-to-weight ratio is calculated from peak power output Pp,bv divided by vehicle mass
m. The vehicle mass is given by the base vehicle mass mbv, the mass of the powertrain, and the
payload mload. ( P

m

)
=

Pp,bv

m
applying m = mbv + mload +

n∑
i=1

(
Pbv

(m
P

)
i
+ Ei

(m
E

)
i

)
(1)

The mass of the powertrain is given by the multiplication of all power or energy densities of
the powertrain components with the nominal vehicle power Pbv respectively the design power of
the individual component or the design capacity of the energy storage Ei. Using the assumptions in
Table 1, the power-to-weight ratio for the state of the art BEV is 91 W/kg.

4.3.2. Absolute Well-to-Wheel Efficiency

The absolute WTW efficiency of the powertrain can initially be divided into infrastructure
(well-to-tank (WTT)) and vehicle (tank-to-wheel (TTW)) components and describes the efficiency
chain from energy supply to the vehicle wheel. Therefore, each loss-generating component of the
technological solution is evaluated in terms of achievable energetic efficiency ηi.

ηWtW =
n∑

i=1

ηi (2)

Figure 7 describes the loss shares of each component in relation to the initial energy amount for
the state of the art and the technological potential. The WTW efficiency index of a powertrain solution
is therefore the remaining energy after passing through all loss-bearing components.

Since all considered powertrains demand electrical energy, the efficiency of the provision of the
energy source “electricity” is not taken into account. For the state-of-the-art BEV, losses in energy
transport on the infrastructure side therefore amount to 6% of the output energy quantity and in the
charging unit at an efficiency of 85%. On the vehicle side, there are charging and discharging losses,
heat losses in the power electronics, as well as losses in the electrical machine and the mechanical
components of the powertrain. In the case of the BEV, this amounts to the remaining 60% of initial
energy for the state of the art.
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Figure 7. Absolute WTW efficiency of the BEV with efficiency data from Table S3.

4.3.3. Well-to-Wheel Efficiency

If the defined technological efficiencies are related to the energy requirement at the vehicle wheel,
the WTW efficiency is obtained. The calculation of the energy demand to overcome the driving
resistances, rolling resistance, air resistance, gradient resistance and acceleration resistance on the
basis of driving cycles is shown in [6]. This results in the total work to be performed Wacc and the
potentially usable deceleration work Wdec, which results from the deceleration phases in the driving
cycle. The energetic efficiency to which recuperation takes place is generally lower than the usual TtW
efficiency and is referred to as ηTtW*. The energy required for vehicle operation at the energy supply
level takes into account the infrastructure- and vehicle-specific efficiencies ηWtT and ηTtW according to:

EWtW =

Wacc
ηTtW
− ηTtW∗Wdec

ηWtT
(3)

4.3.4. Well-to-Wheel Greenhouse Gas Emission

For exclusively domestic electricity generation-based powertrain designs, a multiplication of the
WTW efficiency EWtW by the GHG emission factor (GHG/E)local of the domestic electricity generation
provides the calculation of WTW GHG emissions. Since there is no life cycle consideration, this
calculation cannot be taken as a GHG footprint.

GHGWtW = EWtW

(GHG
E

)
local

(4)

4.3.5. Life Cycle Analysis of Resource Demand

The powertrain-specific raw material demand is designed according to the life cycle definition in
Section 3.3. The KPI is calculated using the resources required to produce the powertrain components,
the base vehicle Rveh,pro as well as the infrastructure Rinf,pro. The raw materials required to provide
the energy for the production of the powertrain components Eveh,pro and for vehicle operation
(EWtW)(LCbv)(milbv) are also taken into account. The KPI is then calculated by referring the resource
demand to the globally available resources Ra per driven kilometer (LCbv)(milbv):

RLCA =
Rveh,pro + Rin f ,pro + Eveh,pro

(
R
E

)
global

+ EWtWLCbvmilbv
(

R
E

)
local

RaLCbvmilbv
(5)

The resource demand initially results from the raw materials for the production of powertrain
components Rveh,pro and associated infrastructure Rinf,pro. For the vehicle, the raw materials result
from the resources per power (R/P)i or the resources per storage capacity (R/E)i of each powertrain
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component multiplied by the respective power of the base vehicle Pbv or the design storage capacity Ei
of component i. The resource requirement of the base vehicle Rbv is also taken into account. The resource
requirements are reduced by the average recycling rate of the raw materials xR,rec.

Rveh,pro =

 n∑
i=1

((R
P

)
i
Pbv +

(R
E

)
i
Ei

)
+ Rbv

(1− xR,rec) (6)

Similarly, the resource demands of the infrastructure components per vehicle result from the
multiplication of the power-related resource demands per infrastructure component (R/P)i with the
average power demand of the vehicle against the infrastructure PItW as calculated above and reduced
by the recycling rate of the raw materials xR,rec. For length-related infrastructure demands (R/L)i,
the individual length of the component is multiplied to result in the total infrastructure demand.
The material demand for the infrastructure production is allocated over the vehicle life cycle:

Rin f ,pro =

 n∑
i=1

((R
P

)
i
PItW +

(R
L

)
i
Li

) LCbv
LCin f

(1− xR,rec) (7)

Furthermore, the necessary energy raw materials for the generation of the electrical energy for
the production of the powertrain have to be included over lifetime. The energy requirements for the
production of the infrastructure components are not taken into account. The energy demands result
from the energy demands per power (E/P)i or the energy demands per storage capacity (E/E)i for each
powertrain component i and the base vehicle Ebv. To determine the key figure, the production energy
demands are multiplied by the resources per energy of the global energy mix (R/E)global.

Eveh,pro =
n∑

i=1

((E
P

)
i
Pbv +

(E
E

)
i
Ei

)
+ Ebv (8)

4.3.6. Life-Cycle Analysis of Resource Range

The theoretical resource range of the critical raw material RrLCA can be calculated for the most
critical raw material determined for a powertrain alternative by multiplying it by the annually produced
vehicles nveh, which run through the life cycle and cover (LCbv)(milbv) kilometers:

RrLCA =
1

RLCA(nvehLCbvmilbv)
(9)

4.3.7. Adjusted Total Cost of Ownership

The key figure adjusted total cost of ownership aTCO is defined to illustrate economic effects of
the alternative powertrains. The input variables, in particular the energy costs for the calculation, are
adjusted for political influences on the energy prices in order to present the technological effects as
undistorted as possible. The aTCO consist of one-off costs Cone-off and running costs Crunning and are
divided by the mileage of the vehicle (LCbv)(milbv):

aTCO =
Crunning + Cone−o f f

LCbvmilbv
(10)

The one-off costs result from the sum of the costs per powertrain component (C/P)i or (C/E)i
multiplied by the base vehicle power Pbv or the energy storage capacity of the component Ei, the costs
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of the base vehicle Cbv and the expected resale value which is included in the calculation via a factor
xresale. The costs of the powertrain-specific infrastructure Cin are also taken into account:

Cone−o f f =

 n∑
i=1

((C
P

)
i
Pbv +

(C
E

)
i
Ei

)
+ Cbv

(1− xresale) + Cin (11)

The costs of powertrain-specific infrastructures are calculated in the same way as the raw material
requirements for the infrastructure and are allocated over the vehicle lifetime:

Cin =

(((C
P

)
i
PTTW +

(C
L

)
i
Li

) LCbv
LCin f

+
(C

E

)
i
(ETTWLCbvmilbv)

)
(12)

However, only the infrastructure interface to the vehicle (charging point, E|ROAD, hydrogen
filling station) not the energy supply path is taken into account since it is already included in the
TCO calculation via the energy costs. The running costs Crunning result from the energy costs per
powertrain component. The energy costs are calculated from average energy prices (C/E) multiplied by
the politically uninfluenced cost share xc,adj. For this investigation, influences of maintenance, repair
or insurance costs are not taken into account, as those cost components are not expected to differ over
the alternative powertrains.

Crunning = EWtWLCbvmilbv

(C
E

)(
xC,adj

)
(13)

5. Results and Discussion

The following Table 4 shows the defined KPIs for the described powertrain technologies.
Each technology is examined with regard to the state of the art and the technological potential.

Table 4. KPIs of passenger car in Germany.

State of the Art Potential

Key Figure Formula Unit BEV IPTEV FCEV BEV IPTEV FCEV

Performance
Power-to-weight ratio (p/m) W/kg 91 117 109 144 192 181

Absolute WTW
efficiency ηWtW % 60 44 20 78 74 35

Ecological

WTW efficiency EWtW Wh/km 235 273 719 145 129 335
WTW GHG emission GHGWtW g/km 109 127 333 23 20 53

LCA resource demand RLCA 1 × 10−16/km (res.)
2.7 (Li) 0.43 (Li) 1.3 (Pt) 1.6 (Li) 0.3 (Dy) 0.8 (Pt)
0.4 (Dy) 0.4 (Dy) 0.4 (Dy) 0.3 (Dy) 0.2 (Li) 0.3 (Gas)
0.4 (Co) 0.1 (BCo) 0.4 (BCo) 0.3 (Ni) 0.1 (Gas) 0.3 (Dy)

LCA resource range RrLCA years 271 (Li) 1692 (Li) 568 (Pt) 461 (Li) 2497 (Dy) 946 (Pt)
Economical Adjusted TCO aTCO €/km 0.19 0.16 0.46 0.16 0.14 0.16

The KPI power-to-weight ratio is given in W/kg. Since all powertrains are designed for the
peak power definition of the base vehicle, this ratio differs in terms of powertrain mass. A minimum
powertrain mass and thus a high power-to-weight ratio should be aimed at in order to optimize the
moving vehicle mass and thus the energy demand. The BEV, which is suitable for long distances, has
the worst power-to-weight ratio with a large traction battery weighing around 560 kg. Since the energy
storage of the IPTEV is smaller at 12 kWh and no fuel cell or tank system has to be carried, the IPTEV
consistently has the most favorable power-to-weight ratio.

The absolute WTW efficiency evaluates the efficiency of the infrastructure and the vehicle
powertrain. The aim is to achieve a high overall efficiency of the technology. In accordance with the
technologies described and the associated infrastructure paths, the IPTEV has an additional loss-bearing
component compared to the BEV due to the inductive energy transfer and therefore a lower overall
efficiency. With the FCEV, the available electrical energy is first converted into hydrogen by stationary
electrolysis and then converted back into electrical energy in the vehicle. Both steps contribute to the
less optimal overall efficiency.
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The WTW efficiency can finally be determined from the simulated energy demand of the vehicle as
a function of the powertrain mass and the described overall efficiency of the technology. Although the
IPTEV has a lower efficiency than the BEV, the lower powertrain mass leads to a lower overall energy
requirement in the technological potential. Due to the unfavorable efficiency of the FCEV, the related
efficiency of the FCEV is also out of favor.

Since the energy used in the powertrains is electrical energy and every powertrain under
consideration is emission-free locally, the existing GHG emissions, i.e., the WTW GHG emission, result
from the GHG emission factor of the energy supply multiplied by the operating energy demand.
The rankings of the powertrain technologies therefore correspond to the rankings of the related
WTW efficiency.

With regard to the life cycle analysis of the resource demand, the KPI LCA resource demand
results from the relation of the resource requirements to the globally available raw material resources.
Critical raw materials, in particular, are the electrode raw materials of the traction battery, which is
installed in various configurations in all powertrains. Graphite is the most widely used anode material
in Li–Ion batteries. Recycled graphite is not recovered for use in batteries, so there is no recycling
rate. Instead of natural graphite, synthetic graphite can be used, which is why graphite is not listed
in the evaluation table. Lithium is therefore the most critical raw material for the production of a
traction battery, despite the high recycling rates that can be achieved. Dysprosium (Dy) is used in
the permanent magnets of PMSM machines and is also recyclable. 0.78 kg of cobalt is due after the
deduction of secondary raw material recovery for a 75 kWh traction battery of a BEV in the state of the
art. Cobalt is therefore the third most critical raw material of BEV technology. Nickel is an increasingly
relevant component of the cathode material composition of traction batteries and can be recycled in this
application. The high copper demand for the E|ROAD infrastructure is distributed among the vehicle
fleet and recycling is taken into account, leaving just under 1 kg of additional copper requirement per
vehicle. Therefore, copper is only the third critical raw material for the IPTEV powertrain. Platinum is
used in the catalysts of the fuel cell and is very scarce. Some substitutes are already available.

Soft coal (BCo) and natural gas (Gas) are part of the local energy mix and are identified as critical
resources for IPTEV and FCEV due to the energy demand of the vehicle technologies. In vehicle
operation, the state of the art FCEV obtains 108 MWh over its life cycle. With a share of 0.24 kg/kWh of
soft coal in the German energy mix, it is critical with a raw material requirement of around 26 t over
the vehicle life cycle compared to the available resources of 14.5×107 t.

The most critical characteristic of the LCA resource demand key figure is used to calculate the
LCA resource range. The ranking of the two key figures across the technologies is therefore the same.
Accordingly, the resource range of the lithium limits the technologies BEV and IPTEV. For the calculated
key figure, it is assumed that the existing materials are used exclusively for the production of the
specific vehicles and infrastructures. However, range considerations of resources are to be understood
as snapshots of a dynamically developing system with various influencing variables.

Mainly due to the large traction battery, the BEV cannot compete with the other powertrains
regarding resource criticality. The IPTEV stands out as the most resource-efficient powertrain in
terms of state-of-the-art technology and technological potential. The high copper requirement for
infrastructure expansion is not significant due to the high recycling rate of copper in coil applications
and the allocation of the total copper demand over the vehicle fleet.

With regard to the adjusted TCO, the IPTEV can also prevail. The size is made up of the loss
in value of the vehicle, the infrastructure costs per vehicle and the ongoing energy costs. Over the
10-year mileage analysis, the loss in value has the highest proportion across all powertrain technologies.
Energy costs and loss of value are consistently highest for the FCEV. The IPTEV has to bear the
maximum infrastructure costs over all technologies, but can compensate this due to the lowest loss in
value and the low energy costs compared to the other technologies.
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6. Conclusions and Outlook

This paper compares the alternative powertrains BEV, IPTEV and FCEV in their application for
long-distance mobility. The proposed KPI framework is applied to a passenger car in the economic area
Germany. The results show that the IPTEV with an E|ROAD infrastructure offers massive ecological and
economic advantages over BEV or FCEV. Although the inductive energy transfer results in additional
losses compared to a conductively charged BEV, these can be compensated by the lower vehicle weight
and an expected optimized system efficiency in the technological potential. Thus, the IPTEV performs
better than an FCEV or a BEV in terms of both energy consumption and GHG emissions during
vehicle operation. With regard to the demand for critical resources, it can be summarized that an
IPTEV has lower demand for critical electrode materials due to a smaller traction battery. The high
copper demand for the electrified highway infrastructure is spread over the entire vehicle fleet and
the assumed infrastructure lifetime to an additional demand of less than 2 kg per vehicle. The high
recycling rates of copper also play an important role here. An initial analysis of the economic effects
already shows that the high costs of setting up an E|ROAD infrastructure are quickly amortized through
lower vehicle and energy costs.

The basic structure of the technology comparison could be fixed to the current state of research.
In future work, the following limitations are going to be addressed: As shown above, not all phases of
the life cycle have yet been comprehensively included in the analysis. A GHG footprint of a powertrain
technology can only be determined on the basis of the complete life cycle analysis. The TCO cost analysis
must also be supplemented by further components, such as infrastructure and vehicle maintenance,
repairs, etc. In general, no uncertainties have been recorded so far. Especially technological conditions
such as the energy density of a traction battery cannot be predicted in detail, which is why the
sensitivities to the various input conditions have to be assessed in further research. Therefore,
this analysis represents a first step in the evaluation of alternative powertrain technologies under
consideration of E|ROAD solutions.
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Appendix A

Table A1. Selected studies comparing alternative powertrain technologies.

Reference Technologies Evaluation Criteria

Performance Ecological Economical Other

Li et al. [12] ICE, BEV, FCEV Total energy
demand

Fossil energy demand,
GHG emissions

Pollet et al. [13] ICE, HEV, BEV,
FCEV

Energy density,
efficiency Vehicle costs Safety

Wietschel et al. [14] ICE, HEV, PHEV,
BEV, FCEV Energy efficiency GHG emissions

One-off acquisition
costs, maintenance &

repair costs

Helms et al. [18] ICE, HEV, PHEV,
REEV, BEV

Use of energy & raw
materials, emissions

(GHG/fine dust),
acidification and

summer smog potential,
recyclability

Huss et al. [33] ICE, HEV, PHEV,
REEV, BEV, FCEV

Fuel consumption,
Electrical energy

demand, GHG emissions

Redelbach et al. [34] ICE, HEV, PHEV,
REEV, BEV

Total cost, purchase
price, resale price,

energy costs,
maintenance costs,

other current
expenses

Jochem et al. [35] ICE, PHEV, BEV,
FCEV

Infrastructure,
performance

GHG emissions and
reduction potentials TCO

Füßel [36] ICE, BEV

Range, charging
duration, speed,

life cycle,
acceleration

GHG emissions Safety

Öko_Institut [15]
ICE, HEV, PHEV,
REEV, BEV, FCEV Raw material sourcing

Frieske et al. [16] ICE, HEV, PHEV,
REEV, BEV. FCEV

Energy generation, raw
material sourcing,

energy usage

Umweltbundesamt [17] HEV, PHEV, REEV,
BEV, FCEV Raw material sourcing

Limb et al. [5] ICE, BEV, IPTEV GHG emissions Return on
investment

Satisfaction of
driving use cases
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Appendix C

Table A2. Exemplary raw material and investment demand for IPTEV infrastructure (E|ROAD) for SoA.

Component Power or Length Material Mass or Cost ( R
P )/( C

P )/( R
L )/( C

L ) Total Demand

E|ROAD
parallel-distribution 1 km

Al 1700 kg [37] 1700 kg/km 4.4 × 104 t
Cu 2200 kg [37] 2200 kg/km 5.7 × 104 t
Pb 300 kg [37] 300 kg/km 7.8 × 103 t
. . . . . . . . . . . .

E|ROAD Coils lane of 1 km Cu 3550 kg [2] 8137 kg/km 2.1 × 105 t

Power electronics 100 kW [38]

Al 11 kg [39] 1.1 × 10−1 kg/kW 1.4 × 103 t
Cu 2.3 kg [39] 2.3 × 10−2 kg/kW 3.0 × 102 t
Fe 1.6 kg [39] 1.6 × 10−2 kg/kW 2.2 × 102 t
. . . . . . . . . . . .

Transformer
Cu 1.3 kg/kW [30] 1.6 × 104 t
Ste 3.0 kg/kW [30] 3.6 × 104 t

lane of 1 km 1,413,623€ [5] 3,240,024€/km 84.2 B€
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