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Abstract: As electric vehicles’ penetration increases, more impacts on urban systems are observed and
related to both driving (e.g., on traffic congestion and reduced pollution) and charging (e.g., on the
electrical grid). Therefore, there is a need to design coupled incentive mechanisms. To propose and
numerically evaluate such incentives, a game theory model is adopted. Its originality comes from the
coupling between the charging cost and the driving decisions: to drive downtown or to charge at
an e-Park & Ride hub with solar panels and then take public transport, in order to reach destination.
Optimal ticket fares and solar park’s size are computed using real photovoltaic production data.
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1. Introduction

1.1. Motivation

At a local scale, urban well-being is sensitive to road usage and its impact on traffic congestion,
local air pollution and noise. Electric vehicles (EV), considering both battery and plug-in hybrid
technologies, are a promising solution to these issues. However, the forecasted high penetration
of EV (see middle scenario in [1]) may lead to local grid constraints, e.g., transformers aging
and power losses. Even if the penetration rate of EV is not yet really significant at the national
scale, it can already be substantial at a local scale (see e.g., the case of “Île-de-France”, with more
than 20,000 EV in circulation: http://www.automobile-propre.com/dossiers/voitures-electriques/
chiffres-vente-immatriculations-france/, in French). This “grid congestion” problem has to be
considered as a key factor for the large scale deployment of EV. Therefore, a model to evaluate
coupled driving-and-charging incentives for EV can be very useful to understand and predict future
performances of such complex interaction between transport and energy. The flexibility of EV
charging—in terms of compatibility with end users’ mobility needs and technical capabilities for
load management—makes it a significant tool in “Demand Response” mechanisms [2] which is
an emerging field in “Smart Grids”. Such scheduling techniques consist in shifting/adapting the
consumption profile by, e.g., postponing usages in time, or reducing the level of power consumed,
with different objectives for the electrical system: local management of production-consumption
balance, mitigating the impact on the electrical grid [3], etc. This is totally innovative compared to
the traditional paradigm of the electrical system, where almost only generation units were flexible
to ensure its effective operation. (For other tasks than EV charging like heating, cooking and so on,
there is less potential to “smartly” schedule the associated electricity consumption profile. Currently,
the main flexibility in France is water-heating, controlled through on/off-peak fares.) In this context,
taking into account charging strategies into everyday EV driving decisions will become an important
issue in smart cities, particularly for urban networks [4]. Another important problem is the design of
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charging incentives (e.g., under the form of pricing or services) to share—in space and time—public
EV Charging Stations (or EVCS) [5].

To solve these problems, EV driving decisions must also be taken into account. This coupling
is clearly observable during widespread holiday journeys or particular events: the majority of
driving EV need to charge at public EVCS, where there could be a significant waiting time and
available power reduction (when allocated/shared between plugged EV) due to simultaneous power
demands. As an example of incentive mechanism, Tesla EVCS proposes a differentiated service and
adapts the charging prices in order to encourage EV to charge in empty EVCS rather than congested
ones (https://www.tesla.com/support/supercharging). Another example from the French company
Compagnie Nationale du Rhône (CNR) is the “Move In Pure” charging subscription: in order to guarantee
an EV charging green power sourcing, drivers are incited to charge at specific hours of the day
(resp. locations) when (resp. where) renewable energy is available. In a more futuristic vision, the EV
charging-and-driving coupling can be transposed into a charging-by-driving one, with an inductive
charging system (under the road) as suggested in [6]. Finally, Park & Ride hubs—associated with
public transport—are in vogue to mitigate congestion and local pollution in urban areas: up to 18,000
parking spaces are expected at Paris gates by 2021 (www.iledefrance-mobilites.fr/actualites/18-000-
places-de-parc-relais-2018/). This multimodal alternative solution represents a great opportunity for
smart charging. The model presented in this work takes into account this coupled framework between
EV driving and charging decisions in order to offer an accurate representation of EV behavior. A direct
application of the proposed model allows testing incentives aimed at, e.g., mitigating the impact of
EV charging on the electrical grid, minimizing the proportion of gasoline vehicles into city center
or maximizing the profit of charge point operators (CPO). Having this context in mind, we propose
a scenario in which a population of electric and gasoline vehicles follow the same journey from
a sub-urban area to a city center, which corresponds to regular commuting patterns.

1.2. Related Methodologies

Basic traffic assignment problem (TAP) with single-class drivers (meaning that there is only one
type of vehicle) is defined and studied in [7]. Under certain conditions (drivers equally affected by
traffic congestion and increasing cost functions), it is shown that there is a unique solution (the solution
concept, explained in next section, is close to the Nash equilibrium concept in game theory) to this
problem. In recent years, there has been an increasing interest for mixed TAP where two or more classes
of vehicles are considered [8] (e.g., electric and gasoline vehicles). The uniqueness of the solution in
mixed TAP is proved in [9] when the cost functions are the same for every driver, up to an additive
constant.

On the charging side of the problem, the water-filling schedule of [10] will be used. The coupling
of the driving and charging problems is studied in particular in [11] and [12]. However, [11] focuses
only on a single class of vehicles and [12] considers that the EV charging need is constant and does not
depend on their driving decisions.

2. E-Park & Ride Hub Scenario

Note that the scenario considered here is one of the many practical applications of the generic
model developed in our previous work [13]. This work focuses typically on daily commuters who
want to get to their workplace in the morning: they come from the suburb area (Origin O in Figure 1)
and head to the city center (Destination D). This city is concerned with traffic congestion and local
pollution, so an e-Park & Ride hub is built on the outskirts of the city to limit the number of vehicles
downtown. In this scenario, when commuters arrive at the hub, they can choose between two transport
modes. First, they can park at the hub and finish their trip by public transport (publ in Figure 1).
Second, they can drive past the hub into the city center with their private vehicle (priv). At the hub,
a charge point operator (CPO) is in charge of smart public EVCS and PhotoVoltaic (PV) solar panels.
Usually, the CPO is separate from the network operators of the electrical grid and the traffic network.

https://www.tesla.com/support/supercharging
www.iledefrance-mobilites.fr/actualites/18-000-places-de-parc-relais-2018/
www.iledefrance-mobilites.fr/actualites/18-000-places-de-parc-relais-2018/
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Here for simplicity it is assumed that the same operator (still called CPO) is in charge of the EVCS,
the PV panels, and the electrical grid. The relationships between the three operators have not been
considered because our work is focused on EV drivers’ decisions and their impact. However, these
higher level economic relationships between the CPO and network operators can be added on top of
our model, which will be the focus of future works.

Note that while the private transport mode may be faster, the public one may be cheaper thanks
to incentives, like public transport ticket fare discount or cheaper charging service for EV due to a local
electricity production at the hub. The aim of this work is to model and then to predict the choice of
commuters and to find how it may be affected by various incentives like the two mentioned above.

Figure 1. Schematic representation of the charging hub scenario: commuters can either choose to leave
their vehicle at the hub and take public transport (publ), or drive all the way to their destination (priv).
A local source of renewable energy is available at the hub.

2.1. Route Choice

2.1.1. Model Assumptions

• Two types of vehicle are considered: an electric one (denoted EV and associated with subscript e)
and a gasoline one (GV, associated with subscript g). Each commuter is associated with one
of the two vehicles and the proportion of EV among them is denoted by Xe in the model
(in numerical tests, Xe = 50% which is in line with 2035 predictions for France; see middle
scenario of [1]). The proportion of GV is then given by Xg = 1− Xe. The choice made by all
commuters between the two transport modes of Figure 1 is represented by the two variables xe,publ
and xg,publ , which are respectively the proportions of EV and GV choosing the public transport
mode. Note that the proportions of vehicles of type s = e, g choosing the private transport mode
may be easily deduced: xs,priv = 1− xs,publ .

• The decision process of commuters is assumed rational, meaning that they choose the transport
mode (publ or priv) with minimal cost. Here, the costs considered are travel duration (by private
or public transport), energy consumption (electricity for EV and fuel for GV) and the ticket fare
(for public transport only).

2.1.2. Costs Functions

The first type of cost considered is related to travel duration and/or delay from the hub to the
destination, which is perceived equivalently by EV and GV:
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(a) Travel duration costs

– For the private mode, it depends on the total proportion (here, proportion and number of
vehicles are equivalent, as the total number of vehicles is fixed) of vehicles driving downtown
xpriv = xe,privXe + xg,privXg = (1− xe,publ)Xe + (1− xg,publ)Xg due to congestion effects [14] and
is expressed as:

τpriv ×
l
v

(
1 + 2

( xpriv

C

)4
)

︸ ︷︷ ︸
dpriv(xpriv)

, (1)

where the function dpriv(.) is the estimated travel duration on the road downtown: the higher the
flow xpriv, the higher the travel duration and xpriv = 0 yields the (minimal) “free-flow” travel
time. The parameters of the problem are set as follows, unless otherwise specified:

• τpriv = 10 e/h the value of time when driving, based on a French government report (http:
//www.strategie.gouv.fr/sites/strategie.gouv.fr/files/archives/Valeur-du-temps.pdf),

• l = 5 km the length of the road, approximately the radius of Paris,
• v = 50 km/h the speed limit, as in French urban areas,
• C = 1 the capacity of the road, expressed in proportion of the total number of vehicles,

like xpriv.

Note that if all vehicles choose to drive downtown (xpriv = 1), the corresponding travel duration
is multiplied by three compared to the empty road situation (or free-flow) due to traffic jams
(see Figure 2) (a typical value for inter-urban areas [15]).

Figure 2. Travel duration dpriv(.) (and the associated cost τprivdpriv(.), along the right axis) for vehicles
driving downtown depending on their proportion xpriv. If all vehicles choose the private transport
mode, the associated duration will be three times higher than the free-flow case (when all vehicles
choose public mode).

– For the public transport mode linking the hub and the destination, the travel cost is assumed constant:

τpubl × dpubl , (2)

• τpubl = 12 e/h value of time in public transport (http://www.strategie.gouv.fr/sites/
strategie.gouv.fr/files/archives/Valeur-du-temps.pdf), which is perceived by commuters as
less comfortable than personal vehicles,

• dpubl =
l
v = 6 min constant travel time of public transport, which was chosen equal to the

free flow travel time of the private mode. Indeed, there exist reserved pathways for public
transportation in several cities like Paris, so that congestion can be considered as marginal.

http://www.strategie.gouv.fr/sites/strategie.gouv.fr/files/archives/Valeur-du-temps.pdf
http://www.strategie.gouv.fr/sites/strategie.gouv.fr/files/archives/Valeur-du-temps.pdf
http://www.strategie.gouv.fr/sites/strategie.gouv.fr/files/archives/Valeur-du-temps.pdf
http://www.strategie.gouv.fr/sites/strategie.gouv.fr/files/archives/Valeur-du-temps.pdf
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The duration cost of the public mode is then equal to the fixed value τpubl dpubl = 1.2 e and is
higher than the free flow cost of the private mode. This induces trade-off decisions for vehicles
between both strategies.

(b) Energy consumption cost

It corresponds to the energy consumed by the vehicle from the origin to the destination;
it is different for EV and GV. The expression of this cost for vehicles of type s = e, g which have
chosen transport mode r = publ, priv is as follows:

lr ×ms × λs . (3)

Note that here, the consumption model is assumed to be distance-dependent.

• lr is the total distance driven by the vehicles which have chosen transport mode r, and is equal to:

– lpubl = 10 km distance between the origin and the hub, so that the two-way trip
between origin and destination is 30 km, the daily average individual driving distance
in France (following Enquête Nationale Transports et Déplacements: https://utp.fr/system/
files/Publications/UTP_NoteInfo1103_Enseignements_ENTD2008.pdf), 2008, in French),

– lpriv = lpubl + l = 15 km,

• ms is the electricity or fuel consumed per distance unit and is supposed constant (e.g., it does not
depend on speed profiles):

– me = 0.2 kWh/km, following [16],
– mg = 0.06 L/km (Liter/km),

• λs is the charging/fueling unit price:

– For EV, the key distinction made here is that it depends on the transport mode chosen.

Public mode: At the hub, this charging unit price λe will depend on the total charging need
Le(xe,publ), proportional to the number of EV parked in the hub: for example, if there are few
EV at the hub (xe,publ close to 0), there is enough electricity produced at the hub to provide
the charging need of these EV. This price is obtained by solving a charging problem, which is
detailed in the next section.

Private mode: Downtown, there is a standard constant electricity fare λ0
e = 40 ce/kWh,

which corresponds to the electricity unit price in France (15 ce/kWh) with an additional cost
(25 ce/kWh) meant for the charging operation.

– λg = 1.50 e/L is considered constant.

(c) Public transport ticket fare

It is the same for EV and GV: tpubl = 1 e.

Finally, the total costs for each type s = e, g of vehicle which have chosen transport mode
r = publ, priv are given in Table 1 (where x =

(
xe,publ , xg,publ

)
).

Note that the driving and charging operations are coupled: the mode choice depends on the
charging cost (charging impacts driving) while the EV charging need depends on their driving
consumption (driving impacts charging).

According to the rationality assumption, each commuter chooses the transport mode with minimal
total cost, under complete information: he knows all the total cost expressions presented in the previous
table and know that all the other commuters want to minimize their total cost too. By all acting
rationally in this sense, commuters will reach a certain distribution of choices between the public and

https://utp.fr/system/files/Publications/UTP_NoteInfo1103_Enseignements_ENTD2008.pdf)
https://utp.fr/system/files/Publications/UTP_NoteInfo1103_Enseignements_ENTD2008.pdf)
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Total costs Public transport mode Private transport mode

EV ce,publ

(
xe,publ

)
= τpubl dpubl + tpubl ce,priv (x) = τpriv dpriv(xpriv)

+ lpubl meλe

(
Le(xe,publ)

)
+ lpriv meλ0

e

GV cg,publ = τpubl dpubl + tpubl cg,priv (x) = τpriv dpriv(xpriv)
+ lpubl mgλg + lpriv mgλg

Table 1. The total costs for EV and GV in different transport mode.

the private modes. Such a distribution is denoted by x∗ =
(
x∗e,publ , x∗g,publ

)
and is called a Wardrop

Equilibrium (or WE in game theory literature) [17]. This equilibrium situation gives a model of
commuters’ behavior in a stable regime where no commuter has an interest to change his choice
unilaterally. This is a typical situation, after some learning periods, when drivers determine their
route or follow a guidance app, for their everyday journey from their home to their job. The proposed
approach can thus be used to evaluate various incentive mechanisms numerically—in a planning stage
or tool—in order to “select” a particular equilibrium before it will be observed in practice (observe that
this concept is now commonly used in many operational public transportation planning tools for the
“route choice” step in four-steps models), as done in Section 3.

Before that, the next section introduces the hub charging operation and the determination of the
charging unit price in more detail.

2.2. Hub Charging Operation

This section explains how the charging unit price λe at the hub is determined optimally and
depends on the proportion of EV choosing the public transport mode, and thus charging at the hub.

2.2.1. Charging Scenario

When commuters arrive at the hub, those having an EV leave it plugged in during work hours and
let the CPO choose the charging schedule (“centralized optimization problem”). For example, the CPO
might refer to a state entity which built a smart charging infrastructure in order to minimize social
costs, or to a private company opening its parking lot to the public. The CPO determines the individual
charging profiles of all EV connected at the hub during the day. Here, instead of solving this optimal
scheduling problem with the per-EV profiles—which is a topic in itself, see e.g., ref. [18], an aggregate
version of this problem is tackled. It consists in considering an optimization problem in which the
variable is the aggregated charging profile, i.e., the sum of the individual ones. With a significantly
lower complexity of resolution (an explicit solution is available), it provides a good approximation of
the aggregate charging cost, from which the charging unit price is derived. On top of that, the hub
owns a local source of energy like photovoltaic (or PV) panels. Therefore, performing most of the
charging operation around noon when PV panels are at their production peak may be a better solution
for the CPO rather than a uniform charging profile. At the end of the day, the total cost/impact of the
charging operation affects the hub charging unit price such that the CPO is at a break even point.

2.2.2. Modeling of Charging Problem

Aggregated Charging Need

It is assumed that before leaving the suburb areas (corresponding to the Origin on Figure 1),
all EV’s state of charge is full, so that their charging need corresponds exactly to the electricity
consumed during their trip from their origin to the hub. This assumption may be lifted by grouping
the vehicles with the same initial state of charge. As the consumption model is distance-dependent,
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the aggregated charging need Le(xe,publ) for all EV is then proportional to the total traveled distance
lpubl xe,publ by the EV choosing the public transport mode:

Le(xe,publ) = lpubl me xe,publ . (4)

The CPO commits to fully charge all EV at the hub, i.e., the whole aggregated charging need Le.

Temporal Charging Scheduling

The CPO determines which portion of the total charging need Le has to be charged during each
working hour of the day in order to minimize total charging costs. Note that these costs are supposed
to be aligned with the costs/impact of the charging operation on the electrical grid (introduced later
in this section); in practice, a specific electricity contract would be signed between the CPO and the
grid operator, determining the remuneration of the CPO for such “effort” (in France see the “Offres de
Raccordement Intelligentes” by Enedis for an example of such a remuneration scheme). To simplify,
the charging operation is assumed to take place only between 9 a.m. and 5 p.m., when all the EV which
have chosen the public transport mode are likely to be plugged in (considering a hub with enough
capacity). EV arriving at the hub before 9 a.m. or leaving after 5 p.m. will not be charged outside this
period, so that the scheduling in this work might not be exactly optimal and the resulting charging
unit price might be overestimated. The charging period consists in eight time slots of one hour each
and the CPO decides the load `e,t to charge during each time slot t ∈ {1, . . . , 8}, so that the aggregated
charging need is satisfied:

8

∑
t=1

`e,t = Le(xe,publ) (in kWh) . (5)

Photovoltaic Production

The CPO determines the aggregated charging profile taking into account its local PV energy
production (assuming the PV production of the day is known when solving the charging problem,
typically “just before” 9 a.m.). For each time slot t ∈ {1, . . . , 8}, the PV energy produced at the hub is
denoted by pt ≥ 0. Figure 3 shows the open source data (available at https://www.renewables.ninja/)
from [19] considered for the PV production. This figure shows the energy produced each working
hour (averaged over the year 2014) per square meter of a regular photovoltaic panel (with a nominal
power of 360 Wp and a surface of 2.06 m2) located in Paris (example taken from https://us.sunpower.
com/solar-resources/products/datasheets/).

Figure 3. Energy produced by 1 m2 (equivalent to a nominal power of 175 Wp) of a solar panel in Paris
during working hours (averaged over the year 2014).

https://www.renewables.ninja/
https://us.sunpower.com/solar-resources/products/datasheets/
https://us.sunpower.com/solar-resources/products/datasheets/
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Cost/Impact on the Local Electrical Grid

The cost/impact of the charging operation on the local electrical (distribution) grid at time slot
t ∈ {1, . . . , 8} depends on the net load (“seen” from the grid) `t = −pt + `e,t; it writes:

f (`t) =

{
0 if `t ≤ 0 ,

η`2
t if `t > 0 .

(in e) (6)

This cost is typically quadratic when the net load is positive and zero if not (see Figure 4). This
form of function means that: when the charging operation uses only PV production, there are no
grid costs: when the CPO needs electricity from the grid (i.e., `e,t > pt), costs are considered under
an increasing and convex form standardly used in optimization/game-theory smart grid models to
represent local grid congestion effects [10]. Following are a few observations regarding this grid cost
modeling: 1. Regarding the particular choice of a quadratic function, note that the following study
is still valid with more general monomials (cost function f with a higher degree); 2. Because the
cost function in (6) does not depend on the variables at the other time slots (in particular on the
previous net load `t−1), this “proxy” does not include dynamical (e.g., transformer temperature inertia
as in [3]) nor locational effects; 3. A local electricity storage for PV production is not considered here;
its presence could decrease the net load and, in turn, the impact on the grid of (6); 4. Finally, this
cost function incites the CPO to maximize the self-consumption of its PV production; this fact will be
detailed further.

Figure 4. Cost/impact on the electrical grid of electric vehicles (EV) charging and PhotoVoltai (PV)
production (through the net load `t) at time slot t. If PV production is higher (resp. smaller) than EV
charging load, there is no (resp. a quadratic) impact.

Charging Problem and Solution

Formally, the charging problem solved by the CPO writes:

min
(`e,t)t

8

∑
t=1

f (−pt + `e,t) , s.t.

{
∀t , `e,t ≥ 0 ,

∑8
t=1 `e,t = Le(xe,publ) .

(7)

The solution of this problem only depends on the total PV energy produced during working hours
E = ∑8

t=1 pt (relatively to Le) and not on the profile (pt)t shape. To illustrate that, in Figure 5, the PV
profile considered corresponds to a PV panel surface of 125 m2 (equivalent to the area of approximately
10 parking spots, or a nominal power of 21.9 kWp), with a mean (average over working days) total
production of E = 57.9 kWh during working hours per day.

• If the aggregated charging need Le(xe,publ) verifies Le < E, any charging profile below the PV
production is optimal, since the associated cost is zero.

• If Le = E (which corresponds to the charging need of 29 EV), the optimal scheduling has to
perfectly match the production.
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• If Le > E, all PV production is consumed and the remaining charging need has to be equally
shared between all time slots such that the net load taken from the grid is constant.

Figure 5. Water-filling optimal scheduling of the charging operation with 125 m2 of solar panel
(in black), for 15 EV (in red) and 45 EV (in blue). For 15 EV, any scheduling using only PV production
is optimal, while for 45 EV, the only optimal scheduling uses the whole PV production plus the same
amount from the electrical grid at each time slot.

The optimal charging schedule solution of (7) gives a minimal total cost/impact on the electrical
grid denoted by C(Le) (in e), which is equal to (this minimal total cost C corresponds to the value
function concept in optimization):

C(Le) =

{
0 if Le ≤ E ,
η
8 (−E + Le)

2 if Le > E .
(8)

Having optimally scheduled the aggregated charging need Le(xe,publ) in different time slots,
the CPO then determines the charging unit price (for Le > 0) as follows:

λe(Le) = λcst +
C(Le)

Le
(in e/kWh) , (9)

with λcst = 20 ce/kWh (= λ0
e

2 ) a fixed charging fee. This way, the CPO makes EV pay equally (per
energy unit) for the total charging cost caused by their aggregated electricity consumption need. Note
the threshold role played by the total PV production E during working hours: λe depends on the total
charging need Le(xe,publ) only if E is not sufficient to provide for Le; otherwise the charging unit price
is constant, equal to λcst.

The parameter η = 4 e/kWh2 was adjusted so that the maximal charging unit price λe at the
hub (with λcst = 0), which occurs when there is no PV production (E = 0) and all EV choose public
transport and thus charge at the hub (Lmax

e = l0meXe), is equal to 5
4 λ0

e = 50 ce/kWh. Note that this
maximal price is higher than the fixed price downtown λ0

e .

3. Numerical Experiments

3.1. Wardrop Equilibrium Representation

When the charging unit price at the hub λe introduced in the previous section is an increasing
function of the total charging need Le(xe,publ) (which is the case here), a unique Wardrop equilibrium
(WE) exists—please refer to our previous work [13], Corollary 1. This equilibrium corresponds to a
situation where no vehicle could lower its cost by choosing the other transport mode. To illustrate the
concept of WE, we consider the parameters values set in Section 2.1.2 and no PV production. The WE
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corresponding to this particular case is (x∗e,publ , x∗g,publ) = (0.53, 0), meaning that no GV choose the
public transport mode while half EV do so. To understand why, the different EV costs are shown
in Figure 6 for any proportion xe,publ of EV choosing the public mode, with fixed xg,publ = x∗g,publ
(at its WE value).

Figure 6. EV costs as a function of the proportion xe,publ of EV choosing public transport. In blue
(resp. red) is the cost for EV choosing public (resp. private) transport mode. The dotted lines refer to
the monetary costs (consumption and ticket fare for public mode; only consumption for private mode)
and the dashed lines refer to travel duration. The equilibrium (black star) happens when total costs are
equal between the two transport modes, for xe,publ = x∗e,publ = 0.53.

For example, if there were no EV choosing the public transport mode (xe,publ = 0, on the extreme
left of Figure 6), the total cost for EV choosing the private mode would be higher than for those
choosing the public one, due to the congestion effect on the travel duration. Thus, xe,publ = 0 cannot
be an equilibrium situation, as some EV would prefer the public mode which is cheaper. Similarly, too
many EV at the hub (xe,publ > 0.53) would lead to ce,publ > ce,priv, so that it is not a WE as some EV
would rather choose the private transport mode. In turn, Figure 6 shows that there is a unique WE
xe,publ = 0.53. Note that in this case total costs are equal between the two transport modes, so that no
EV would rather choose the other mode. In addition, note that the monetary cost for vehicles at the
hub (blue dotted line) are made of a fixed part (the ticket fare), and of a variable part (the charging
cost) which depends on the proportion xe,publ of EV choosing the public transport mode.

3.2. Equilibrium sensitivity to parameters of the problem

Thanks to the WE obtained in the proposed model, network operators are able to predict the
number of EV and GV choosing the public or the private transport modes, whatever the problem
parameters may be. In this section, the sensitivity of the WE is studied for various parameters of the
problem. The default values of parameters correspond to the ones given in previous section, except
that here it is supposed that there is enough PV production so that the charging unit price λe at the
hub is reduced to its constant component λcst.

Figure 7a shows the proportions of vehicles choosing the public transport mode in function of
ticket fare. Starting from the right side of the Figure and decreasing ticket fare from tpubl = 3 e, EV are
the first and only ones choosing the public transport mode instead of the private one. This is because
EV have more to gain than GV in terms of consumption costs by switching from private to public
mode, due to the large amount of PV production available. Some GV will choose the public mode
only when all EV will have already chosen the public mode. No vehicle will be left downtown if the
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(a) (b)

(c) (d)

(e)
Figure 7. Proportion of vehicles at the hub at WE in function of. . . (a) PT ticket fare tpubl ; (b) value of
time on the road τpriv; (c) unit consumption of EV me; (d) unit consumption of GV mg; (e) penetration
of EV Xe.
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ticket fare is under tpubl = 0.25 e. Note that the same sensitivity is obtained with the Public Transport
duration dpubl or the value of time τpubl in PT.

In Figure 7b, the impact of the value of time τpriv on the road is studied. Note that the ratio
τpubl
τpriv

= 1.2 is kept constant, so that the value of τpubl changes too. When the value of time is small,
vehicles do not mind if their trip is very time-consuming, so that most vehicles prefer driving in the
congested city-center rather than paying a PT ticket.

The WE sensitivity to the consumption of EV per distance unit me is showed in Figure 7c. The
proportion of EV choosing the public mode is an increasing function of this consumption, as driving
into the city-center becomes more expensive. The value me = 12 kWh/100km corresponds to the
threshold where EV have more to gain than GV in terms of consumption costs by switching from
private to public mode. Similar results are obtained with the consumption of GV per distance unit mg

in Figure 7d.
Finally, Figure 7e shows the proportions of EV and GV at the hub for any proportion of EV Xe

among all vehicles. The first new EV (left of figure) will replace the last GV parked at the hub. Then, the
additional EV will choose the private transport mode in order to keep the congestion in the city-center
balanced with the other financial costs. As there are more and more EV in this problem, the number of
vehicles at the hub remains almost constant, so that the proportion of EV choosing the public transport
mode necessarily decreases.

3.3. Optimal Solar Panel Surface

In this section, we focus on the financial viability of investing into PV solar panels at the hub,
over a period of time T of interest for the CPO (here, T = 20 years). The CPO chooses the size of its
solar park, and is associated with an objective function F which corresponds to its payoff obtained
T years after investing into solar panels. As the CPO is assumed to be in charge of the PV panels,
the electrical grid and the EVCS, this payoff F is made of three different parts:

F = −I + T ×∑ (R− C) , (10)

with:

• I the initial Investment cost in solar panels, with 750 e/kWp for a solar park of the order of
magnitude of 1 MWp,

and, summed over the days of a typical year:

• C the daily grid Costs (associated with the electricity bought from the grid), defined in Equation (8),
• R the daily Revenues from EV charging at the hub which are, by definition of the charging unit

price λe:
R = λe × Le

(
x∗e,publ

)
, (11)

with x∗e,publ the proportion of EV at the hub at equilibrium corresponding to λe and the total
charging need Le, defined in Equation (4).

This section shows that thanks to our model, the CPO can find the optimal PV size which
maximizes its payoff F. Note that the goal of this section is not to precisely tackle the PV sizing issue
but only to give possible applications of our model.

As a first step, this payoff is studied in the framework introduced in Section 2 except from the
charging unit price λe at the hub, whose variable component has been omitted. Hence, λe = λcst is
constant throughout the period of time T and does not depend on the number of EV charging at the
hub xe,publ . The full charging unit price λe introduced in Equation (9) is considered afterward.

Before computing the optimal PV size, the CPO has to find for each PV size the optimal λcst,
the constant charging unit price at the hub for the T years to come, which maximizes F. For the moment,
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the solar park is fixed to 1MWp for the calculations, corresponding approximately to a surface of
450 parking spots. Figure 8a shows how λcst impacts the number of vehicles at the hub at equilibrium.

(a) (b)
Figure 8. Impact of the charging unit price λcst on the Wardrop equilibrium (WE) and the charge point
operator (CPO) revenues R. (a) Number of vehicles at the hub at WE in function of λcst; (b) CPO daily
revenues R in function of λcst. As λcst increases, fewer EV choose the hub while R increases, up to a
threshold λ∗cst = 37.5 ce/kWh beyond which all EV drive downtown.

For λcst ≤ 7 ce/kWh, charging at the hub is cheap enough so that all EV choose this option
while all GV prefer to drive through the empty (from all EV) city center. Naturally, the higher λcst,
the fewer EV at the hub at equilibrium but the higher the daily revenues R: the decrease in the number
of EV at the hub is compensated by the increase in λcst (see Figure 8b). Figure 8a also shows that
there is a threshold λ∗cst = 37.5 ce/kWh above which charging at the hub is so expensive that all EV
would rather drive downtown and some GV would stop at the hub to avoid downtown congestion.
This threshold happens to be the optimal charging unit price which maximizes the daily revenues R
(see Figure 8b).

Note that the equilibrium illustrated in Figure 8a is the same for any daily PV energy E produced
at the hub, since in this simplified framework the charging unit price λcst does not depend on charging
demand and PV production (unlike λe defined in (9)). While the revenues R illustrated in Figure 8b do
not depend on E either, the electricity distribution cost C does depend on the amount of electricity
taken from the grid, and thus on E. Figure 9 shows the daily payoff R− C in function of the charging
unit price λcst at the hub, for different daily PV productions E. Note that for E ≥ 1 MWh, there is
enough PV production for all EV so that there are no grid costs and maximizing the payoff is equivalent
to maximizing the revenues R (the top curve in Figure 9 is the same as Figure 8b).

Figure 9. Daily payoff R− C in function of the charging unit price λcst at the hub, for different daily
PV productions E. No matter E, λcst = λ∗cst maximizes R− C.

Figure 9 illustrates the fact that the threshold λ∗cst = 37.5 ce/kWh maximizes the daily payoff
R− C, no matter the PV production E (e.g., for all PV sizes and any day of the year). This means that
choosing the same λcst = λ∗cst for every day of the year is better than any pricing made of a constant
charging unit price each day, like for instance peak/off-peak tariffs (e.g., one for winter and one for
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the rest of the year). Naturally, the maximal payoff increases with E, and is always positive, even for
E = 0. This means that even if EV at the hub may cause grid costs C, the payoff R− C will always be
better than when there are no EV at the hub (i.e., R− C = 0).

In the following, the solar park is not fixed to 1 MWp any longer: in Figure 10 the payoff F over
20 years (with λcst = λ∗cst) is represented in function of the PV nominal power.

Figure 10. Payoff F over 20 years (with λcst = λ∗cst) in function of the PV nominal power. The CPO can
make more profits by installing (the right amount of) PV.

Figure 10 shows that the payoff F is concave, as grid costs C defined in (8) is a quadratic function
of the PV nominal power (for daily PV productions low enough), I is linear and R constant. As nominal
power increases, revenues R remain the same while investments I increase proportionally and grid
costs C decrease to zero. Installing solar panels can be profitable if the investments are lower than the
grid costs avoided (as it is the case here), but the solar park must not be oversized or the improvement
in grid costs will not be significant enough compared to the investments. In order to maximize its
payoff F (around 503 ke), the CPO has to install a 236 kWp solar park, corresponding to a surface of
110 parking spots. The CPO can install up to 1.43 MWp of PV (corresponding to 650 parking spots)
until its payoff F becomes negative.

Two key parameters impact the nature of the previous results. First, the period of time T over
which the CPO’s payoff is considered: for small enough T, the optimal way to maximize the CPO’s
payoff is not to install PV at all. The same phenomenon is observed for low enough charging unit
price λ0

e inside the city. In these cases, the charging unit price λcst at the hub must be low enough too
in order to attract EV at the hub. However, these λcst are too low to have sufficient revenues R to pay
back the initial investment in PV I.

The previous study can now be easily extended to the variable charging unit price λe introduced
in Equation (9). As in the previous simplified framework, the CPO has to choose the optimal fixed
part λcst of λe for all PV nominal power values. Note that here, unlike in the simplified framework,
the optimal λcst depends on the nominal power (see Figure 11a): larger PV capacities lead to lower
grid costs and thus lower λe due to the variable part, so that the CPO may increase the fixed part λcst

in compensation. After 20 years, the payoff F is similar to the one of the simplified framework (see
Figure 11b compared to Figure 10), although the maximal payoff (reached with a 89 kWp solar park,
equivalent to surface of 40 parking spots) is 3 % higher with the charging unit price λe defined in
Equation (9). This means that a real-time feedback on the impact of the charging operation on the grid
for EV owners (i.e., the variable part of λe) yields higher revenues for the CPO.
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(a) (b)
Figure 11. Optimal CPO variables to maximize F in function of nominal power. (a) Optimal fixed part
λ∗cst in function of nominal power; (b) Payoff F (with λcst = λ∗cst) in function of nominal power. The
variable charging unit price λe offers a little more benefit than a fixed one (λcst, Figure 10).

4. Conclusions

This work focuses on the following scenario: electric and gasoline vehicles (EV and GV) can either
drive all the way from the suburbs to the city center, or stop at an e-Park & Ride hub and continue by
public transport. At the hub, a charge point operator (CPO) is in charge of the charging scheduling in
presence of a local PV production. The vehicles’ choices are predicted taking into account congestion
effects both on the traffic and on the electrical grid. The latter is represented here as a quadratic cost
depending on the net curve at the charging station. Then, predictions of drivers’ reaction to various
control parameters can be made. For example, using real data of PV production, the CPO can compute
the PV surface which maximizes its profits by inciting EV to stop and charge at the hub. Similarly,
the public transport operator can compute the optimal ticket fare, to attract vehicles at the hub and
minimize congestion and local pollution in the city center. In a future work, each EV will have the
possibility to choose its own charging need and charging place based on its initial State of Charge
(instead of being fully charged). In addition, the case when the charging station is located on a site
with other non-controlled electricity consumptions could be considered. In this case, the local PV
production has to be shared between the charging usage and the other ones.
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