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Abstract: Energy management systems are used to find a compromise between conflicting goals
that can be identified for battery electric vehicles. Typically, these are the powertrain efficiency,
the comfort of the driver, the driving dynamics, and the component aging. This paper introduces
an optimization-based holistic energy management system for a battery electric vehicle. The energy
management system can adapt the vehicle velocity and the power used for cabin heating, in order
to minimize the overall energy consumption, while keeping the total driving time and the cabin
temperature within predefined limits. A genetic algorithm is implemented in this paper. The approach
is applied to different driving cycles, which are optimized by dividing them into distinctive time
frames. This approach is referred to as the sliding window approach. The optimization is conducted
with two separate driving cycles, the New European Driving Cycle (NEDC) and a recorded real-world
drive. These are analyzed with regard to the aspects relevant to the energy management system,
and the optimization results for the two cycles are compared. The results presented in this paper
demonstrate the feasibility of the sliding window approach. Moreover, they reveal the differences
in fundamental parameters between the NEDC and the recorded drive and how they affect the
optimization results. The optimization leads to an overall reduction in energy consumption of 3.37%
for the NEDC and 3.27% for the recorded drive, without extending the travel time.

Keywords: energy management system; genetic algorithm; battery electric vehicle; New European
Driving Cycle (NEDC); multi-objective optimization

1. Introduction

Energy management systems (EMSs) for battery electric vehicles (BEVs) are becoming increasingly
important. They can help resolve the conflict of objectives in the design of BEVs, e.g., the powertrain
efficiency, the component aging, the comfort of the driver and passengers, and the driving dynamics
of the vehicle. Another reason for the rising interest in EMS is the growing importance of autonomous
driving and driver-assistance functions. These add another variable to the EMS. At the same time,
the computing power of vehicles’ control units has increased, also making EMSs more attractive.

This paper introduces an optimization-based holistic EMS, which is based on a genetic algorithm
(GA). Essentially, the paper makes the following contributions:

• Comparison of real-world drives and driving cycles in regard to the EMS
• Application of a GA to an automotive EMS
• Analysis of the optimization results
• Critical assessment of the use of a GA for an EMS
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2. Related Work

This section gives a brief overview of the existing literature on EMSs in BEVs. For a description
of the whole electric vehicle and the powertrain, refer for example to [1]. The term EMS can be
found within different areas of engineering. An EMS can generally be defined as follows: it is the
software that controls the distribution of energy within the respective system. Energy refers to different
forms of energy. Some EMSs manage only electrical energy, while others also manage other forms
of energy, such as thermal or kinetic energy. An EMS system can either manage the energy flows
within one component, the whole system, or a subsystem within the superordinate system. The EMS
is often the link between other subsystems. It must be able to influence the energy flows actively
during the operation of the system. It can control different parameters in order to accomplish different
aims. Typically, one of the aims is to minimize energy consumption. Another might be to minimize
component aging. If several aims must be attained, it finds a trade-off between these aims. In some
cases, the term is not only used to refer to the software, but also to the hardware, which facilitates the
distribution of the energy. In this publication, the focus lies on the software aspect. In automotive
engineering it is most often found in the context of hybrid electric vehicles (HEV) and describes the
power distribution between the electric machine and the combustion engine.

EMSs for BEVs can be categorized in various ways: The first distinction can be made between
holistic and component-based EMS. A component-based EMS manages the energy of one component of
the vehicle. This may for example be the battery, the gear box, or multiple electric machines. A holistic
EMS on the other hand manages the energy flows for multiple components (the entire vehicle, ideally).
Figure 1 shows an example of a holistic EMS. The top part of the figure lists possible requirements
that the EMS has to fulfill. In the lower part of the figure, the subsystems with which the EMS has to
communicate in order to reach a globally optimal solution are shown.
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Figure 1. Example for the requirements and the subsystem managed by an energy management system
(EMS) in a battery electric vehicle (BEV).

The second option for distinguishing between types of EMS is by the method that is applied to
find the energy distribution [2]. Figure 2 shows this classification. The main distinction can be made
between optimization-based and heuristic EMSs. Optimization-based EMSs can be further subdivided
into multi-objective and single-objective approaches. “Multi-objective” means that the EMS has several
objectives, as opposed to the single-objective approach with only one. For an EMS, the single objective
is typically the energy consumption. Another distinction can be made between methods that find
the global optimum for the whole drive and methods that only achieve a local optimum. The last
distinction can be made between methods that can be used during the operation of the vehicle (online)
and methods that cannot be used during the drive itself (offline). Heuristic strategies can be subdivided
into rule-based strategies, strategies based on fuzzy logic, and market-based strategies. All heuristic
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strategies found in the literature could be used online. The classification methodology can be applied
for holistic EMSs, as well as for EMSs focusing on one component.

EMS

Optimization based Heuristic

Multi-objective

Single-objective

Global Local

Online

Offline

Rule
based

Fuzzy
Logic

Market
based

Figure 2. Overview of the classification of EMS (refer to [2]).

Most of the literature focuses on EMSs for the components of the powertrain. In the following,
a brief summary of the existing literature is given. Table 1 gives an overview of the literature on EMSs
for individual components and holistic EMSs. The table is sorted by components for which EMS are
developed and by the method on which the EMS is based. Here, the main distinction is made between
heuristic and optimization-based strategies, as per Figure 2. The optimization-based strategies are
divided into those that can be applied online and those that can only be used offline. For the heuristic
strategies, two different groups are identified: on the one hand, strategies that are drawn up using the
knowledge of an expert; on the other hand, strategies that are based on an optimization procedure.
More distinctions can be made in accordance with Figure 2. However, for the sake of clarity, further
subdivisions are neglected. In the table, the literature on the following components is collected:

• Thermal management system: This includes systems that only consider the powertrain and those
that combine powertrain and heating, ventilation, and air conditioning (HVAC). The variables are
typically the energy that is used for thermal management and the internal states of the system.

• Hybrid energy-storage system: The considered literature deals with an EMS for storage
comprising a lithium-ion battery and super-capacitors. All of these strategies aim to optimize the
power split between the two sources.

• Variable gear ratio: Here, the focus lies on a gear-shifting schedule in order to minimize energy
consumption.

• Multiple electric machines: The literature cited on this row describes EMS for the use of multiple
electric machines. All sources focus on optimizing the power split between the machines.

• Variable voltage: Here, the EMS for the variable intermediate circuit voltage is considered. Only
one source is found that focuses on the EMS and not on the overall system. The reason for this is
that the optimal voltage for the machine can be computed analytically. Therefore, the focus is on
the modeling of the machine.

• HVAC: HVAC constitutes the second largest energy consumer. Therefore, it provides leverage
for the EMS. The variable that is adapted is the power consumed by the HVAC. In addition to the
energy consumption, the thermal comfort of the passengers is taken into account.

• Driving strategies: Here, the literature on the development of driving strategies aiming to
minimize energy consumption is cited. This is achieved by adapting the velocity profile.
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Even without going into further detail regarding the content of the cited sources, it is evident that
optimization plays an important role in the field of EMS. A large proportion of the heuristic strategies
is derived from optimization. Moreover, the table reflects that the goal of most authors is to design
an online EMS. In the last row of Table 1, two sources on holistic EMS for BEV are cited. As these
are most relevant for this paper, they are described in more detail than the EMS for the individual
components. In his dissertation, Basler [36] described a holistic EMS that aims to optimize the range,
the vehicle dynamics and the thermal comfort of the passenger. In order to do that, the torque, the total
power consumption and the power for acceleration are restricted. This author thus used optimization
in order to design a heuristic strategy that can be used during the operation of the vehicle. Additionally,
the author designed an optimization-based online strategy to divide the torque between two machines.
The target of this thesis was to provide a thorough analysis of EMS and to draw up a strategy that can
be used during the operation of the vehicle.

Table 1. Overview of literature EMS for BEV.

Optimization-Based Heuristic

Component Online Offline Derived from Optimization Not Derived from Optimization

Thermal management system [3] [4,5]
Hybrid energy storage [6] [7] [8–10] [11–14]

Variable gear ratio [15,16] [17,18] [19]
Multiple electric machines [20] [21–23] [24]

Variable voltage [25]
HVAC [26] [27]

Driving strategies [28–30] [31–33] [34]
Holistic EMS [35] [36]

In his dissertation, Suchaneck ([35]) also drew up a holistic EMS. It influences the power consumed
by the auxiliary consumers, primarily the HVAC, and uses recuperation for braking. The objective
function comprises the range, the battery aging, the thermal comfort of the driver, and the longitudinal
dynamics of the vehicle. The author uses stochastic dynamic programming and Pontryagin’s minimum
principle. Both approaches are optimization-based and implemented for online application. Neither of
the two authors simultaneously optimized the velocity and the HVAC.

3. Basics of Multi-Objective Optimization

In the following, the basics of multi-objective optimization relevant for this publication are
introduced. Two different approaches to multi-objective optimization exist: a priori and a posteriori
methods [37]. The difference between them is when the decision-maker chooses the desired point
in the Pareto front. In an a priori method, the decision is made before the algorithm is started.
For example, this can be done by devising a fitness function that assigns weights to the objective
functions. When using an a posteriori method, the algorithm first comes up with the Pareto front,
then the decision-maker decides on one solution. For this publication, only a priori methods are
considered. This is done because for an EMS, the final goal is online use. This is not possible with
an a posteriori approach as the input of the decision-maker is needed after the optimization is run. In
contrast to this for an a priori approach, the involvement of the decision-maker is completed after the
design process. Moreover, a priori approaches have a shorter computation time.

In order to compare several objective functions fi that contribute to a global optimization function
F( fi), an approach based on the compromise optimization method is used [38]. During optimization,
the different objectives fi are normalized within the range [0...1] by applying Equation (1). When an
upper constraint is violated (e.g., f̃i > 1), a penalty is applied, putting linear pressure on the fitness
values, in order for the individual to become feasible again [39,40]; see Equations (2) and (3):
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f̃i =
fi − fi,U

fi,N − fi,U
(1)

f̄i = f̃i + 〈 f̃i〉pen (2)

with the operator 〈·〉pen being defined as:

〈·〉pen =

{
0, if constraints fulfilled

penalty( f̃i), if constraints violated
(3)

fi,U describe the utopian curves, i.e., the best possible curve or value the objective i can assume
during a driving cycle. These can be calculated independently of each other [37]. The worst physically
possible values are called nadir points fi,N . In this approach, the nadir values are set to objective
function values obtained by applying a conventional controlling policy π of the BEV’s variables, to
force the used multi-objective optimization algorithm to find the global optimum. Finally, the f̄i defines
the sum of the normalized objective values of a single objective function including its penalties for
violating a constraint.

The weighted sum method lets the decision-maker assign his/her priorities θ = (θ1 ... θm) to the
single objective functions fi resulting in F( fi) described in Equation (4):

F( fi) =
m

∑
i=1

θi f̄i (4)

with ∑m
i θi = 1, where the index m denotes the number of objective functions f .

4. Approach

For this publication, recorded real-world drives were optimized. The drives were generated at
the Institute for Automotive Technology at the Technical University of Munich. A detailed description
of the selection and measurement process, as well as an analysis of the data, can be found in [41].
The route was chosen to reflect a typical commuter drive. Thus, it is representative of the typical use
case of an electric vehicle. Additionally, the NEDC is considered as a standardized driving cycle. As it
represents a well-known test procedure, it provides a point of reference and ensures comparability
with other studies.

For both driving cycles, the target velocity vx,tar(t) was transformed into vx,tar(x(t)).
Consequently, the velocity was expressed as a function of the current position x(t). Idle times ∆tn,idl
were extracted from the speed profiles vx,tar(t) and added during calculation of the fitness function’s
value F( fi) gained from simulation when an idle position x(t)n,idl (according to the driving cycle) was
reached. Figure 3 depicts how the NEDC was transformed from a representation of v(t) to a v(x(t)).
For v(x(t)), the stop times are no longer visible, because every x(t) has to be associated with a single
v(t). This combination of time and spatial dependency makes the optimization of real-world trips
feasible: The power of the HVAC Pheat is primarily dependent on the time t, while the velocity in a
real-world trip depends on the traffic situation and other landmarks such as traffic lights, which are
dependent on x. Therefore, v(x) must be optimized instead of v(t).
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Figure 3. To the left: vx,tar(t)-curve; to the right: vx,tar(x(t))-curve of the NEDC.



World Electric Vehicle Journal 2019, 00, 0 6 of 14

Using a GA, the goal was to minimize the deviation ∆Tcab(t) from a desired cabin temperature
Tdes(t). Moreover, the accumulated energy demand Ebat(x(t), t) resulting from the vehicle’s total
power requirement Pbat(x(t), t) and the total driving time were minimized tcyc.

In order to do so, the power Pheat(t) of the HVAC unit can be varied between 0 and 5 kW, and
the vehicle’s velocity vx(x(t)) can be varied within the range of 10% on an urban road and 30%
on a highway, compared to the baseline of the driving cycle. This distinction is made under the
assumption that larger speed variations are tolerated on the highway. On urban roads, however,
the velocity must be closer to the target velocity.

For each of the stated target values (∆Tcab(t), Ebat(x(t), t), and ∆t), a single objective function fi is
defined according to (5)–(7):

fT =

∫
|T(t)− Tdes(t)|dt

∆tcyc
(5)

fE =
∫

Pbat(x(t), t)dt (6)

ft = ∆topt (7)

with ∆tcyc defining the simulated timespan of the driving cycle and ∆topt being the time taken for the
optimized speed profile to reach the destination. ∆xcyc is the accumulated driven distance.

The results of the objective functions fi were obtained by assigning time-series- and
spatially-discretized data to a BEV simulation. The simulation model was implemented in
MATLAB/Simulink 2016b and was parametrized to represent a VW eGolf. Implementation and
validation were done at the Institute of Automotive Technology and published in [42]. For the
optimization, the model was implemented to be run in parallel.

To ensure comparability among the single objective functions fi, they were normalized using
Equations (1)–(3) discussed in Section 3. ft was divided by ∆tcyc to normalize it. Finally, a single fitness
function value F( fi) resulted by taking the decision-maker’s preferences θ into account (Equation (4)).
The result was a single optimized parameter set π(x(t), t) instead of a Pareto front.

Figure 4 shows how the optimization and the simulation model interacted with each other. The GA
supplied the powertrain model implemented in Simulink with an individual. For this individual,
the objectives needed for the objective function were computed. Next, the overall fitness value was
computed using the objective function. This was used by the GA to evaluate the individual.

Genetic
Algorithm

Simulink
Model

Objective
Function

Individual

Objectives

Fitn
ess

Valu
e

Figure 4. Interaction between the GA used for the optimization and the Simulink model.

The strategy described above can be used to develop a global optimization policy π(x(t), t) for
the whole driving cycle. However, it can also be adapted to the sliding window approach. For the
sliding window approach, the driving cycle was subdivided into sections l = 1, ..., L. Each section
l was optimized separately with the same approach. A new section started at each position where
the vehicle stopped. Consequently, an optimization policy πl+1(x(t), t) was only computed for the
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section l + 1 immediately ahead. This shortened optimization horizon means that it was very unlikely
that a global optimum for the entire test drive would be found. With the smaller prediction horizons,
the computation times were reduced. This approach was the first step towards the integration of the
optimization-based EMS into a vehicle, because it became feasible to optimize the driving cycle section
l + 1 ahead while traveling the distance of the current section l.

The GA was parametrized as shown in Table 2. The population size was adapted to the number of
parameters that were optimized per section l. The total distance in x and the driving time per window
l determined the number of parameters to be optimized.

Table 2. Parameters of the GA.

Parameter Value

Population size 1.5·(number of parameters per section l)
Number of max. generations 50

Crossover-fraction 0.80
Mutation rate feasible adaption

Elitism 0.05·population size
Selection rank-based

Discretization step of time-dependent optimization parameters 5 s [43]
Discretization step of space-dependent optimization parameters 400 m

5. Results

This paper presents the results from optimizing a recorded drive, as well as the results for the
optimization of the NEDC. For all optimizations, the sliding window approach was used. The results
from a global optimization can be found in [44].

For all experiments, the temperature of the environment was set to Tenv = 10 ◦C and the desired
cabin temperature to Tdes = 22 ◦C. The vehicle was preconditioned to Tstart = 18 ◦C.

In Table 3, different optimizations are summarized. The results for different decision-maker
priority vectors and different driving cycles are listed. The table illustrates that the decision-maker
priority vector controlled which point of the Pareto surface was chosen. If the time was given a higher
weighting, the total time needed to finish the cycle stayed nearly constant. Simultaneously, this means
that the energy reduction was lower than if a lower weighting was associated with the time.

Table 3. Comparison of traveling time and energy demand Ebat for different decision-maker priority
vectors θ.

Configuration Reduction of Energy Consumption Time Relative to Original Traveling Time

Recorded Drive

θ1 = (20 50 30) 15.2 % 112 %
θ2 = (20 30 50) 10.7 % 106 %
θ3 = (10 15 75) 3.39 % 100 %

NEDC

θ1 = (20 50 30) 9.79 % 106 %
θ2 = (20 30 50) 8.20 % 101 %
θ3 = (10 15 75) 3.27 % 97.4 %

The results differed depending on the driving cycle. The optimization led to a lower reduction of
the energy demand for the NEDC than for the recorded test drive. Figure 5 explores the reason for
these differences. The figure illustrates the relevant components of energy consumption:

• Ebat is the total electric energy provided by the battery. Ebat = EbatE f f + EbatLoss.
• EbatE f f is the electrical energy taken from the battery that can be used by the auxiliary consumers

and the drivetrain.
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• EbatLoss is the electrical energy that is lost in the battery. It is computed as: EbatLoss = RinternalBat ·
I2
bat with RinternalBat being the internal resistance of the battery dependent on current, temperature,

and state-of-charge.
• Eheat is the electrical energy used to heat the cabin. Because it can be computed as Eheat =∫ tmax

0 Pheater(t)dt, it is directly influenced by the optimization algorithm.
• Etract is the total mechanical energy needed for driving. It can be computed as Etract = Eair +

Eroll + Eacc + Erecu + Esail .
• Eacc is the mechanical energy that is used for accelerating the vehicle. Only the positive

acceleration is considered in this value. Eacc ∼ a.
• Ebrake is the mechanical energy needed to decelerate the vehicle. Because v(t = 0) = v(t =

tmax) = 0, it follows that Ebrake = −Eacc.
• Esail is the mechanical energy that is used during the deceleration of the vehicle to overcome the

roll and the air resistance. Like Ebrake, Esail is negative.
• Erecu is the electrical energy that can be recuperated into the battery. Like Ebrake, Erecu is negative.
• Eroll is the mechanical energy needed to overcome the rolling resistance. Eroll ∼ v.
• Eair is the mechanical energy needed to overcome the air resistance. Eair ∼ v2.

All energies are expressed as a % of the total energy taken from the battery (Ebat). This was done to
allow a comparison between the recorded drive and the NEDC, even though the absolute Ebat differed.
It was 1.67 kWh for the NEDC and 3.08 kWh for the recorded drive.

0 10 20 30 40 50 60 70 80 90 100
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Eheat

−Ereku

−Esail

Etract + Eheat

EbatLoss
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35.09
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Energy in % of total energy supplied by battery
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Recorded Drive

Figure 5. Comparison of the energy components for the recorded drive and the NEDC. All values are
expressed as % of Ebat of the respective driving cycle.
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Figure 5 shows that EbatE f f was higher for the NEDC than for the recorded drive. Consequently,
EbatLoss was higher for the recorded drive. As EbatLoss ∼ I2

bat, this was due to the difference in Erecu:
for the recorded drive, Erecu was significantly higher than for the NEDC. The recuperated energy led
to a battery current Ibat, which also led to losses. The total used energy expressed by Etract + Eheat was
relatively lower for the recorded drive. Eheat was slightly larger for the NEDC, because the recorded
drive was longer by 570 s. This means that the energy needed to heat the cabin initially was smaller
compared to the total energy for the recorded drive. Etract was smaller for the recorded drive. This
difference can be traced to the differences in Eair and Eroll . Both were higher for the NEDC. This was
due to higher velocities. Eacc for the recorded drive was significantly higher, because the recorded
drive was more dynamic: The mean acceleration amean of the NEDC was 0.12 m/s2, while amean of the
recorded drive was 0.24 m/s2. The higher Eacc led to a higher Ebrake. This means that more energy
could be retrieved: The retrieved energy was expressed as Esail and Erecu.

In the following, one of the results listed in Table 3 is looked at in more detail. Because the
recorded drive was closer to a real-world scenario, the optimization results obtained with these data
were considered. Moreover, it was assumed that the driver would prefer a smaller difference in the
time to arrival. Therefore, the results with θ3 = (10 15 75) and the recorded drive are described in
more detail. θ3 = (10 15 75) means that the deviation from the cabin temperature ∆Tcab was weighted
with 10%, the total energy demand Ebat at 15%, and the time to arrival t at 75%.

Figure 6 displays the energy components for the optimized and the original recorded drive.
In order to ensure optimal comparability, all values were expressed as % of the unoptimized Ebat.
Therefore, the unoptimized Ebat was expressed as 100%. The optimized Ebat indicated the total
reduction in the energy consumption and corresponded to the value in Table 3. This reduction can
be traced to a reduction of both EbatE f f and EbatLoss. The reduction of EbatE f f was mostly due to
a reduction of Etract, whereas Eheat stayed nearly constant. This reduction can be attributed to a
reduction in Eroll and Eair. As both were connected to the velocity, they could be reduced because the
optimization lowered the top speeds. This effect can be seen in Figure 7 in the plot of the optimized
and unoptimized v(t). Especially during phases with a high vcon(t), the vopt(t) stayed well below
vcon(t). Moreover, the optimization increased the share of energy that could be recuperated, and thus
Erecu. This could be done by ensuring that the deceleration was small enough to allow the energy to be
recuperated.

Despite the higher Erecu, EbatLoss could also be reduced. This effect can be explained by a shift
in Pheat(t): Pheat(t) was increased during recuperative braking. Consequently, the energy was not
stored in the battery, but directly used for the cabin heating. This avoided battery losses due to the
internal resistance of the battery. In Figure 7, the effects can be seen by the oscillating Pheat(t) and as
a consequence the oscillating cabin temperature.

The computations were done on a computer with 64 GB RAM, four cores, and an NVIDIA K4000.
The optimization could be run in parallel, as well as serially. If the GA was parallelized, the evaluations
of the individuals using the Simulink models were performed in parallel on the four cores of the
computer. In the following, a short analysis of the computation time for the first sliding window of
the real-world drive is presented. The total number of optimized variables for this window was 70.
This means that the GA was run with 105 individuals. If the algorithm was run in parallel with four
parallel threads, the total computation time was 1789 s; if it was run in series, the total time was 7845 s.
In both cases, each model call took an average of 1.38 s, and the model was called 5356 times. In the
case of series computation, the total time taken for model calls was 7413 s. This means that the model
calls took up 94.5% of the total computation time.
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Figure 6. Comparison of the energy components for the recorded drive unoptimized and optimized.
All values are expressed as % of Ebat of the unoptimized drive.

The results showed that the GA was feasible for the problem at hand. However, it also had
considerable drawbacks. Firstly, the Simulink model had to be called over 5000 times for every section.
This number varied because the number of individuals depended on the length of the sliding window.
The numerous model calls led to a high computation time. Secondly, the GA did not guarantee that a
global optimum was found for every sliding window.

The detailed analysis of the optimization results can be summarized as follows:

• The proposed approach led to a significant reduction in the total consumed energy, while keeping
the driving time nearly constant and the cabin temperature within acceptable limits.

• The holistic approach considering v(x(t)) and Pheat(t) at the same time had an impact on the
battery losses, by avoiding to store the energy in the battery, using it directly for heating instead.

• The execution of the model took about 95% of the total optimization time. This made the GA very
dependent on the run time of the simulation model.
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Figure 7. Comparison of optimized and unoptimized time series of the variables v(t) and Pheat(t), as
well as the components of the objective function Ebat(t) and ∆Tcab(t).

6. Conclusions

This paper described a holistic optimization-based EMS. The implementation using a GA and
a sliding window approach was described. The proposed method was applied to a standard driving
cycle, namely the NEDC, and a recorded real-world drive. In order to better understand the
mechanisms behind the optimization, the two driving cycles were compared with each other. The
optimization results showed that the approach was feasible for the real-world data, as well as for the
NEDC. The paper explored how the EMS achieved a reduction in the energy consumed. It analyzed
the shares of the total energy consumption Ebat in order to understand how the optimization worked.

This paper closes the gap identified in the related work (see Section 2): It introduced an EMS that
simultaneously considered the velocity profile and the HVAC using an optimization-based approach.
Thus, it provides a feasibility study for a holistic EMS. While the results demonstrated the overall
feasibility, they also showcased the problems of GAs in EMS. The first is the long computation times
due to the large number of executions of the Simulink model. Secondly, the GA does not guarantee
that a global optimum is found. Lastly, total foresight was assumed for this research. This means that
the presented approach cannot be employed in combination with prediction areas.

Future work will address these problems and work on the expansion of the presented
approach. Alternative optimization procedures will be explored, especially dynamic programming as
a benchmark approach. The run time of the overall optimization will be improved by two approaches:
Firstly, the run time of the simulation will be reduced by replacing it with a black-box model based on
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the existing model. Secondly, approaches with fewer model calls, e.g., gradient-based approaches like
sequential quadratic programming, will be investigated.

Additionally, the EMS will be expanded to deal with prediction errors. In this context,
the prediction errors will be simulated and the influence on the prediction accuracy investigated.
The results from the optimization-based approach will be used to devise a rule-based strategy.
Moreover, the objective function will be extended to include component aging and driving dynamics,
and more variables will be included in the optimization.
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