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Abstract: Energy management systems are used to find a compromise between conflicting goals that
can be identified for battery electric vehicles. Typically, these are the powertrain efficiency, the comfort of
the driver, the driving dynamics, and the component aging. This paper introduces an optimization-based
holistic energy management system for a battery electric vehicle. The energy management system can
adapt the vehicle velocity and the power used for cabin heating, in order to minimize the overall energy
consumption, while keeping the total driving time and the cabin temperature within predefined limits.
A genetic algorithm is implemented in this paper. The approach is applied to different driving cycles,
which are optimized by dividing them into distinctive time frames. This approach is referred to as the
sliding window approach. The optimization is conducted with two separate driving cycles, the New
European Driving Cycle (NEDC) and a recorded real-world drive. These are analyzed with regard to
the aspects relevant to the energy management system, and the optimization results for the two cycles
are compared. The results presented in this paper demonstrate the feasibility of the sliding window
approach. Moreover, they reveal the differences in fundamental parameters between the NEDC and
the recorded drive and how they affect the optimization results. The optimization leads to an overall
reduction in energy consumption of 3.37% for the NEDC and 3.27% for the recorded drive, without
extending the travel time.

Keywords: energy management system; genetic algorithm; battery electric vehicle; New European
Driving Cycle (NEDC); multi-objective optimization

1. Introduction

Energy management systems (EMSs) for battery electric vehicles (BEVs) are becoming increasingly
important. They can help resolve the conflict of objectives in the design of BEVs, e.g., the powertrain
efficiency, the component aging, the comfort of the driver and passengers, and the driving dynamics of the
vehicle. Another reason for the rising interest in EMS is the growing importance of autonomous driving
and driver-assistance functions. These add another variable to the EMS. At the same time, the computing
power of vehicles’ control units has increased, also making EMSs more attractive.

This paper introduces an optimization-based holistic EMS, which is based on a genetic algorithm
(GA). Essentially, the paper makes the following contributions:

• Comparison of real-world drives and driving cycles in regard to the EMS
• Application of a GA to an automotive EMS
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• Analysis of the optimization results
• Critical assessment of the use of a GA for an EMS

2. Related Work

This section gives a brief overview of the existing literature on EMSs in BEVs. For a description
of the whole electric vehicle and the powertrain, refer for example to [1]. The term EMS can be found
within different areas of engineering. An EMS can generally be defined as follows: it is the software
that controls the distribution of energy within the respective system. Energy refers to different forms of
energy. Some EMSs manage only electrical energy, while others also manage other forms of energy, such as
thermal or kinetic energy. An EMS system can either manage the energy flows within one component,
the whole system, or a subsystem within the superordinate system. The EMS is often the link between
other subsystems. It must be able to influence the energy flows actively during the operation of the system.
It can control different parameters in order to accomplish different aims. Typically, one of the aims is to
minimize energy consumption. Another might be to minimize component aging. If several aims must
be attained, it finds a trade-off between these aims. In some cases, the term is not only used to refer to
the software, but also to the hardware, which facilitates the distribution of the energy. In this publication,
the focus lies on the software aspect. In automotive engineering it is most often found in the context of
hybrid electric vehicles (HEV) and describes the power distribution between the electric machine and the
combustion engine.

EMSs for BEVs can be categorized in various ways: The first distinction can be made between holistic
and component-based EMS. A component-based EMS manages the energy of one component of the vehicle.
This may for example be the battery, the gear box, or multiple electric machines. A holistic EMS on the
other hand manages the energy flows for multiple components (the entire vehicle, ideally). Figure 1 shows
an example of a holistic EMS. The top part of the figure lists possible requirements that the EMS has to
fulfill. In the lower part of the figure, the subsystems with which the EMS has to communicate in order to
reach a globally optimal solution are shown.
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System

Thermal
Management HVAC

Driving
Strategy

Requirements

Subsystems

Figure 1. Example for the requirements and the subsystem managed by an energy management system
(EMS) in a battery electric vehicle (BEV).

The second option for distinguishing between types of EMS is by the method that is applied to
find the energy distribution [2]. Figure 2 shows this classification. The main distinction can be made
between optimization-based and heuristic EMSs. Optimization-based EMSs can be further subdivided
into multi-objective and single-objective approaches. “Multi-objective” means that the EMS has several
objectives, as opposed to the single-objective approach with only one. For an EMS, the single objective is



World Electric Vehicle Journal 2019, 10, 46 3 of 15

typically the energy consumption. Another distinction can be made between methods that find the global
optimum for the whole drive and methods that only achieve a local optimum. The last distinction can be
made between methods that can be used during the operation of the vehicle (online) and methods that
cannot be used during the drive itself (offline). Heuristic strategies can be subdivided into rule-based
strategies, strategies based on fuzzy logic, and market-based strategies. All heuristic strategies found
in the literature could be used online. The classification methodology can be applied for holistic EMSs,
as well as for EMSs focusing on one component.

EMS

Optimization based Heuristic

Multi-objective

Single-objective

Global Local

Online

Offline

Rule
based

Fuzzy
Logic

Market
based

Figure 2. Overview of the classification of EMS (refer to [2]).

Most of the literature focuses on EMSs for the components of the powertrain. In the following,
a brief summary of the existing literature is given. Table 1 gives an overview of the literature on EMSs
for individual components and holistic EMSs. The table is sorted by components for which EMS are
developed and by the method on which the EMS is based. Here, the main distinction is made between
heuristic and optimization-based strategies, as per Figure 2. The optimization-based strategies are divided
into those that can be applied online and those that can only be used offline. For the heuristic strategies,
two different groups are identified: on the one hand, strategies that are drawn up using the knowledge of
an expert; on the other hand, strategies that are based on an optimization procedure. More distinctions can
be made in accordance with Figure 2. However, for the sake of clarity, further subdivisions are neglected.
In the table, the literature on the following components is collected:

• Thermal management system: This includes systems that only consider the powertrain and those
that combine powertrain and heating, ventilation, and air conditioning (HVAC). The variables are
typically the energy that is used for thermal management and the internal states of the system.

• Hybrid energy-storage system: The considered literature deals with an EMS for storage comprising
a lithium-ion battery and super-capacitors. All of these strategies aim to optimize the power split
between the two sources.

• Variable gear ratio: Here, the focus lies on a gear-shifting schedule in order to minimize
energy consumption.

• Multiple electric machines: The literature cited on this row describes EMS for the use of multiple
electric machines. All sources focus on optimizing the power split between the machines.

• Variable voltage: Here, the EMS for the variable intermediate circuit voltage is considered. Only one
source is found that focuses on the EMS and not on the overall system. The reason for this is that
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the optimal voltage for the machine can be computed analytically. Therefore, the focus is on the
modeling of the machine.

• HVAC: HVAC constitutes the second largest energy consumer. Therefore, it provides leverage for the
EMS. The variable that is adapted is the power consumed by the HVAC. In addition to the energy
consumption, the thermal comfort of the passengers is taken into account.

• Driving strategies: Here, the literature on the development of driving strategies aiming to minimize
energy consumption is cited. This is achieved by adapting the velocity profile.

Even without going into further detail regarding the content of the cited sources, it is evident that
optimization plays an important role in the field of EMS. A large proportion of the heuristic strategies
is derived from optimization. Moreover, the table reflects that the goal of most authors is to design
an online EMS. In the last row of Table 1, two sources on holistic EMS for BEV are cited. As these are most
relevant for this paper, they are described in more detail than the EMS for the individual components.
In his dissertation, Basler [3] described a holistic EMS that aims to optimize the range, the vehicle dynamics
and the thermal comfort of the passenger. In order to do that, the torque, the total power consumption
and the power for acceleration are restricted. This author thus used optimization in order to design
a heuristic strategy that can be used during the operation of the vehicle. Additionally, the author designed
an optimization-based online strategy to divide the torque between two machines. The target of this
thesis was to provide a thorough analysis of EMS and to draw up a strategy that can be used during the
operation of the vehicle.

Table 1. Overview of literature EMS for BEV.

Component Optimization-Based Heuristic
Online Offline Derived from Optimization Not Derived from Optimization

Thermal management system [4] - - [5,6]
Hybrid energy storage [7] [8] [9–11] [12–15]

Variable gear ratio - [16,17] [18,19] [20]
Multiple electric machines - [21] [22–24] [25]

Variable voltage - - - [26]
HVAC [27] - - [28]

Driving strategies [29–31] [32–34] [35] -
Holistic EMS [36] - [3] -

In his dissertation, Suchaneck ([36]) also drew up a holistic EMS. It influences the power consumed by
the auxiliary consumers, primarily the HVAC, and uses recuperation for braking. The objective function
comprises the range, the battery aging, the thermal comfort of the driver, and the longitudinal dynamics of
the vehicle. The author uses stochastic dynamic programming and Pontryagin’s minimum principle. Both
approaches are optimization-based and implemented for online application. Neither of the two authors
simultaneously optimized the velocity and the HVAC.

3. Basics of Multi-Objective Optimization

In the following, the basics of multi-objective optimization relevant for this publication are introduced.
Two different approaches to multi-objective optimization exist: a priori and a posteriori methods [37].
The difference between them is when the decision-maker chooses the desired point in the Pareto front.
In an a priori method, the decision is made before the algorithm is started. For example, this can be
done by devising a fitness function that assigns weights to the objective functions. When using an a
posteriori method, the algorithm first comes up with the Pareto front, then the decision-maker decides
on one solution. For this publication, only a priori methods are considered. This is done because for
an EMS, the final goal is online use. This is not possible with an a posteriori approach as the input of
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the decision-maker is needed after the optimization is run. In contrast to this for an a priori approach,
the involvement of the decision-maker is completed after the design process. Moreover, a priori approaches
have a shorter computation time.

In order to compare several objective functions fi that contribute to a global optimization function
F( fi), an approach based on the compromise optimization method is used [38]. During optimization,
the different objectives fi are normalized within the range [0...1] by applying Equation (1). When an upper
constraint is violated (e.g., f̃i > 1), a penalty is applied, putting linear pressure on the fitness values,
in order for the individual to become feasible again [39,40]; see Equations (2) and (3):

f̃i =
fi − fi,U

fi,N − fi,U
(1)

f̄i = f̃i + 〈 f̃i〉pen (2)

with the operator 〈·〉pen being defined as:

〈·〉pen =

{
0, if constraints fulfilled

penalty( f̃i), if constraints violated
(3)

fi,U describe the utopian curves, i.e., the best possible curve or value the objective i can assume
during a driving cycle. These can be calculated independently of each other [37]. The worst physically
possible values are called nadir points fi,N . In this approach, the nadir values are set to objective function
values obtained by applying a conventional controlling policy π of the BEV’s variables, to force the used
multi-objective optimization algorithm to find the global optimum. Finally, the f̄i defines the sum of the
normalized objective values of a single objective function including its penalties for violating a constraint.

The weighted sum method lets the decision-maker assign his/her priorities θ = (θ1 ... θm) to the
single objective functions fi resulting in F( fi) described in Equation (4):

F( fi) =
m

∑
i=1

θi f̄i (4)

with ∑m
i θi = 1, where the index m denotes the number of objective functions f .

4. Approach

For this publication, recorded real-world drives were optimized. The drives were generated at the
Institute for Automotive Technology at the Technical University of Munich. A detailed description of the
selection and measurement process, as well as an analysis of the data, can be found in [41]. The route
was chosen to reflect a typical commuter drive. Thus, it is representative of the typical use case of
an electric vehicle. Additionally, the NEDC is considered as a standardized driving cycle. As it represents
a well-known test procedure, it provides a point of reference and ensures comparability with other studies.

For both driving cycles, the target velocity vx,tar(t) was transformed into vx,tar(x(t)). Consequently,
the velocity was expressed as a function of the current position x(t). Idle times ∆tn,idl were extracted from
the speed profiles vx,tar(t) and added during calculation of the fitness function’s value F( fi) gained from
simulation when an idle position x(t)n,idl (according to the driving cycle) was reached. Figure 3 depicts
how the NEDC was transformed from a representation of v(t) to a v(x(t)). For v(x(t)), the stop times are
no longer visible, because every x(t) has to be associated with a single v(t). This combination of time and
spatial dependency makes the optimization of real-world trips feasible: The power of the HVAC Pheat is
primarily dependent on the time t, while the velocity in a real-world trip depends on the traffic situation
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and other landmarks such as traffic lights, which are dependent on x. Therefore, v(x) must be optimized
instead of v(t).
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Figure 3. To the left: vx,tar(t)-curve; to the right: vx,tar(x(t))-curve of the NEDC.

Using a GA, the goal was to minimize the deviation ∆Tcab(t) from a desired cabin temperature
Tdes(t). Moreover, the accumulated energy demand Ebat(x(t), t) resulting from the vehicle’s total power
requirement Pbat(x(t), t) and the total driving time were minimized tcyc.

In order to do so, the power Pheat(t) of the HVAC unit can be varied between 0 and 5 kW, and the
vehicle’s velocity vx(x(t)) can be varied within the range of 10% on an urban road and 30% on a highway,
compared to the baseline of the driving cycle. This distinction is made under the assumption that larger
speed variations are tolerated on the highway. On urban roads, however, the velocity must be closer to the
target velocity.

For each of the stated target values (∆Tcab(t), Ebat(x(t), t), and ∆t), a single objective function fi is
defined according to (5)–(7):

fT =

∫
|T(t)− Tdes(t)|dt

∆tcyc
(5)

fE =
∫

Pbat(x(t), t)dt (6)

ft = ∆topt (7)

with ∆tcyc defining the simulated timespan of the driving cycle and ∆topt being the time taken for the
optimized speed profile to reach the destination. ∆xcyc is the accumulated driven distance.

The results of the objective functions fi were obtained by assigning time-series- and spatially-discretized
data to a BEV simulation. The simulation model was implemented in MATLAB/Simulink 2016b and was
parametrized to represent a VW eGolf. Implementation and validation were done at the Institute of
Automotive Technology and published in [42]. For the optimization, the model was implemented to be
run in parallel.

To ensure comparability among the single objective functions fi, they were normalized using
Equations (1)–(3) discussed in Section 3. ft was divided by ∆tcyc to normalize it. Finally, a single fitness
function value F( fi) resulted by taking the decision-maker’s preferences θ into account (Equation (4)).
The result was a single optimized parameter set π(x(t), t) instead of a Pareto front.

Figure 4 shows how the optimization and the simulation model interacted with each other. The GA
supplied the powertrain model implemented in Simulink with an individual. For this individual,
the objectives needed for the objective function were computed. Next, the overall fitness value was
computed using the objective function. This was used by the GA to evaluate the individual.
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Figure 4. Interaction between the GA used for the optimization and the Simulink model.

The strategy described above can be used to develop a global optimization policy π(x(t), t) for the
whole driving cycle. However, it can also be adapted to the sliding window approach. For the sliding
window approach, the driving cycle was subdivided into sections l = 1, ..., L. Each section l was optimized
separately with the same approach. A new section started at each position where the vehicle stopped.
Consequently, an optimization policy πl+1(x(t), t) was only computed for the section l + 1 immediately
ahead. This shortened optimization horizon means that it was very unlikely that a global optimum for
the entire test drive would be found. With the smaller prediction horizons, the computation times were
reduced. This approach was the first step towards the integration of the optimization-based EMS into
a vehicle, because it became feasible to optimize the driving cycle section l + 1 ahead while traveling the
distance of the current section l.

The GA was parametrized as shown in Table 2. The population size was adapted to the number of
parameters that were optimized per section l. The total distance in x and the driving time per window l
determined the number of parameters to be optimized.

Table 2. Parameters of the GA.

Parameter Value

Population size 1.5·(number of parameters per section l)
Number of max. generations 50

Crossover-fraction 0.80
Mutation rate feasible adaption

Elitism 0.05·population size
Selection rank-based

Discretization step of time-dependent optimization parameters 5 s [43]
Discretization step of space-dependent optimization parameters 400 m

5. Results

This paper presents the results from optimizing a recorded drive, as well as the results for the
optimization of the NEDC. For all optimizations, the sliding window approach was used. The results from
a global optimization can be found in [44].

For all experiments, the temperature of the environment was set to Tenv = 10 ◦C and the desired
cabin temperature to Tdes = 22 ◦C. The vehicle was preconditioned to Tstart = 18 ◦C.

In Table 3, different optimizations are summarized. The results for different decision-maker priority
vectors and different driving cycles are listed. The table illustrates that the decision-maker priority vector
controlled which point of the Pareto surface was chosen. If the time was given a higher weighting,
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the total time needed to finish the cycle stayed nearly constant. Simultaneously, this means that the energy
reduction was lower than if a lower weighting was associated with the time.

Table 3. Comparison of traveling time and energy demand Ebat for different decision-maker priority vectors θ.

Configuration Reduction of Energy Consumption Time Relative to Original Traveling Time

Recorded Drive

θ1 = (20 50 30) 15.2 % 112 %
θ2 = (20 30 50) 10.7 % 106 %
θ3 = (10 15 75) 3.39 % 100 %

NEDC

θ1 = (20 50 30) 9.79 % 106 %
θ2 = (20 30 50) 8.20 % 101 %
θ3 = (10 15 75) 3.27 % 97.4 %

The results differed depending on the driving cycle. The optimization led to a lower reduction of
the energy demand for the NEDC than for the recorded test drive. Figure 5 explores the reason for these
differences. The figure illustrates the relevant components of energy consumption:

• Ebat is the total electric energy provided by the battery. Ebat = EbatE f f + EbatLoss.
• EbatE f f is the electrical energy taken from the battery that can be used by the auxiliary consumers

and the drivetrain.
• EbatLoss is the electrical energy that is lost in the battery. It is computed as: EbatLoss = RinternalBat · I2

bat
with RinternalBat being the internal resistance of the battery dependent on current, temperature,
and state-of-charge.

• Eheat is the electrical energy used to heat the cabin. Because it can be computed as
Eheat =

∫ tmax
0 Pheater(t)dt, it is directly influenced by the optimization algorithm.

• Etract is the total mechanical energy needed for driving. It can be computed as Etract = Eair + Eroll +

Eacc + Erecu + Esail .
• Eacc is the mechanical energy that is used for accelerating the vehicle. Only the positive acceleration

is considered in this value. Eacc ∼ a.
• Ebrake is the mechanical energy needed to decelerate the vehicle. Because v(t = 0) = v(t = tmax)

= 0, it follows that Ebrake = − Eacc.
• Esail is the mechanical energy that is used during the deceleration of the vehicle to overcome the roll

and the air resistance. Like Ebrake, Esail is negative.
• Erecu is the electrical energy that can be recuperated into the battery. Like Ebrake, Erecu is negative.
• Eroll is the mechanical energy needed to overcome the rolling resistance. Eroll ∼ v.
• Eair is the mechanical energy needed to overcome the air resistance. Eair ∼ v2.

All energies are expressed as a % of the total energy taken from the battery (Ebat). This was done to
allow a comparison between the recorded drive and the NEDC, even though the absolute Ebat differed.
It was 1.67 kWh for the NEDC and 3.08 kWh for the recorded drive.



World Electric Vehicle Journal 2019, 10, 46 9 of 15

0 10 20 30 40 50 60 70 80 90 100

Eair

Eroll

Eacc = −Ebrake

Etract

Eheat

−Ereku

−Esail

Etract + Eheat

EbatLoss

EbatE f f

23.05

44.85

35.18

72.08

10.39

21.62

9.39

82.87

2.45

97.55

19.21

41.14

65.84

70.45

8.22

35.09

20.65

78.66

5.16

94.84

Energy in % of total energy supplied by battery

NEDC
Recorded Drive

Figure 5. Comparison of the energy components for the recorded drive and the NEDC. All values are
expressed as % of Ebat of the respective driving cycle.

Figure 5 shows that EbatE f f was higher for the NEDC than for the recorded drive. Consequently,
EbatLoss was higher for the recorded drive. As EbatLoss ∼ I2

bat, this was due to the difference in Erecu: for the
recorded drive, Erecu was significantly higher than for the NEDC. The recuperated energy led to a battery
current Ibat, which also led to losses. The total used energy expressed by Etract + Eheat was relatively lower
for the recorded drive. Eheat was slightly larger for the NEDC, because the recorded drive was longer by
570 s. This means that the energy needed to heat the cabin initially was smaller compared to the total
energy for the recorded drive. Etract was smaller for the recorded drive. This difference can be traced to
the differences in Eair and Eroll . Both were higher for the NEDC. This was due to higher velocities. Eacc for
the recorded drive was significantly higher, because the recorded drive was more dynamic: The mean
acceleration amean of the NEDC was 0.12 m/s2, while amean of the recorded drive was 0.24 m/s2. The higher
Eacc led to a higher Ebrake. This means that more energy could be retrieved: The retrieved energy was
expressed as Esail and Erecu.

In the following, one of the results listed in Table 3 is looked at in more detail. Because the recorded
drive was closer to a real-world scenario, the optimization results obtained with these data were considered.
Moreover, it was assumed that the driver would prefer a smaller difference in the time to arrival. Therefore,
the results with θ3 = (10 15 75) and the recorded drive are described in more detail. θ3 = (10 15 75) means
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that the deviation from the cabin temperature ∆Tcab was weighted with 10%, the total energy demand Ebat
at 15%, and the time to arrival t at 75%.

Figure 6 displays the energy components for the optimized and the original recorded drive. In order
to ensure optimal comparability, all values were expressed as % of the unoptimized Ebat. Therefore,
the unoptimized Ebat was expressed as 100%. The optimized Ebat indicated the total reduction in the
energy consumption and corresponded to the value in Table 3. This reduction can be traced to a reduction
of both EbatE f f and EbatLoss. The reduction of EbatE f f was mostly due to a reduction of Etract, whereas
Eheat stayed nearly constant. This reduction can be attributed to a reduction in Eroll and Eair. As both
were connected to the velocity, they could be reduced because the optimization lowered the top speeds.
This effect can be seen in Figure 7 in the plot of the optimized and unoptimized v(t). Especially during
phases with a high vcon(t), the vopt(t) stayed well below vcon(t). Moreover, the optimization increased
the share of energy that could be recuperated, and thus Erecu. This could be done by ensuring that the
deceleration was small enough to allow the energy to be recuperated.
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Figure 6. Comparison of the energy components for the recorded drive unoptimized and optimized.
All values are expressed as % of Ebat of the unoptimized drive.
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Despite the higher Erecu, EbatLoss could also be reduced. This effect can be explained by a shift in
Pheat(t): Pheat(t) was increased during recuperative braking. Consequently, the energy was not stored
in the battery, but directly used for the cabin heating. This avoided battery losses due to the internal
resistance of the battery. In Figure 7, the effects can be seen by the oscillating Pheat(t) and as a consequence
the oscillating cabin temperature.
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Figure 7. Comparison of optimized and unoptimized time series of the variables v(t) and Pheat(t), as well
as the components of the objective function Ebat(t) and ∆Tcab(t).

The computations were done on a computer with 64 GB RAM, four cores, and an NVIDIA K4000.
The optimization could be run in parallel, as well as serially. If the GA was parallelized, the evaluations of
the individuals using the Simulink models were performed in parallel on the four cores of the computer.
In the following, a short analysis of the computation time for the first sliding window of the real-world
drive is presented. The total number of optimized variables for this window was 70. This means that the
GA was run with 105 individuals. If the algorithm was run in parallel with four parallel threads, the total
computation time was 1789 s; if it was run in series, the total time was 7845 s. In both cases, each model
call took an average of 1.38 s, and the model was called 5356 times. In the case of series computation,
the total time taken for model calls was 7413 s. This means that the model calls took up 94.5% of the total
computation time.
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The results showed that the GA was feasible for the problem at hand. However, it also had
considerable drawbacks. Firstly, the Simulink model had to be called over 5000 times for every section.
This number varied because the number of individuals depended on the length of the sliding window.
The numerous model calls led to a high computation time. Secondly, the GA did not guarantee that a global
optimum was found for every sliding window.

The detailed analysis of the optimization results can be summarized as follows:

• The proposed approach led to a significant reduction in the total consumed energy, while keeping the
driving time nearly constant and the cabin temperature within acceptable limits.

• The holistic approach considering v(x(t)) and Pheat(t) at the same time had an impact on the battery
losses, by avoiding to store the energy in the battery, using it directly for heating instead.

• The execution of the model took about 95% of the total optimization time. This made the GA very
dependent on the run time of the simulation model.

6. Conclusions

This paper described a holistic optimization-based EMS. The implementation using a GA and a sliding
window approach was described. The proposed method was applied to a standard driving cycle, namely
the NEDC, and a recorded real-world drive. In order to better understand the mechanisms behind the
optimization, the two driving cycles were compared with each other. The optimization results showed that
the approach was feasible for the real-world data, as well as for the NEDC. The paper explored how the
EMS achieved a reduction in the energy consumed. It analyzed the shares of the total energy consumption
Ebat in order to understand how the optimization worked.

This paper closes the gap identified in the related work (see Section 2): It introduced an EMS that
simultaneously considered the velocity profile and the HVAC using an optimization-based approach.
Thus, it provides a feasibility study for a holistic EMS. While the results demonstrated the overall feasibility,
they also showcased the problems of GAs in EMS. The first is the long computation times due to the large
number of executions of the Simulink model. Secondly, the GA does not guarantee that a global optimum
is found. Lastly, total foresight was assumed for this research. This means that the presented approach
cannot be employed in combination with prediction areas.

Future work will address these problems and work on the expansion of the presented approach.
Alternative optimization procedures will be explored, especially dynamic programming as a benchmark
approach. The run time of the overall optimization will be improved by two approaches: Firstly, the run
time of the simulation will be reduced by replacing it with a black-box model based on the existing model.
Secondly, approaches with fewer model calls, e.g., gradient-based approaches like sequential quadratic
programming, will be investigated.

Additionally, the EMS will be expanded to deal with prediction errors. In this context, the prediction
errors will be simulated and the influence on the prediction accuracy investigated. The results from the
optimization-based approach will be used to devise a rule-based strategy. Moreover, the objective function
will be extended to include component aging and driving dynamics, and more variables will be included
in the optimization.
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