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Abstract: In this paper, a general quasi-steady backward-looking model for energy consumption
estimation of electric vehicles is presented. The model is based on a literature review of existing
approaches and was set up using publicly available data for Nissan Leaf. The model has been
used to assess the effect of ambient temperature on energy consumption and range, considering
various reference driving cycles. The results are supported and validated using data available from
an experimental campaign where the Nissan Leaf was driven to depletion across a broad range of
winter ambient temperatures. The effect of ambient temperature and the consequent accessories
consumption due to cabin heating are shown to be remarkable. For instance, in case of Federal
Urban Driving Schedule (FUDS), simplified FUDS (SFUDS), and New European Driving Cycle
(NEDC) driving cycles, the range exceeds 150 km at 20 ◦C, while it reduces to about 85 km and
60 km at 0 ◦C and −15 ◦C, respectively. Finally, a sensitivity analysis is reported to assess the impact
of the hypotheses in the battery model and of making different assumptions on the regenerative
braking efficiency.

Keywords: electric vehicle; ambient conditions; range estimation; energy analysis; sensitivity analysis;
experimental validation

1. Introduction

In 2016, the transportation sector was responsible of about one-third of the world’s oil demand
and, as a consequence, of the total CO2 emissions [1]. Because of the related environmental concerns,
in recent years, innovative technologies have been progressively gaining a share in the automotive
industry, aiming at both improving the power train conversion efficiency and reducing the dependence
on fossil fuels. Solutions are mainly based on the adoption of new vehicle concepts that make use of
green energy carriers such as electricity or hydrogen, as in electric or hybrid vehicles [2–4].

In battery electric vehicles (BEVs), the battery remains the most critical component. Battery
state-of-health estimations, together with thermal safety issues, are of utmost importance for improving
performance, safety, and cost-effectiveness of these vehicles, as they strongly influence driving
performance and particularly range per charge [5,6]. In fact, the major barrier to large scale adoption of
BEVs is the rather low range—typically less than 300 km—compared with classical diesel or gasoline
fueled vehicles [7], which causes anxiety among the users [8], especially for the concern of finding
a charging station [9]. As a matter of fact, higher ranges can be obtained by increasing battery size
and although this affects the vehicle price, consumers may prefer spending more to gain some extra
range [10].
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Besides these problems, light-duty BEVs remain a promising technology and have been
extensively investigated in several studies, especially in terms of overall energy consumption and
vehicle range estimations [11–17]. Range is clearly affected by vehicle speed; driver’s driving style;
carried weight; terrain conditions; and all the on-board energy-consuming services such as heating,
ventilation, and air-conditioning (HVAC). Therefore, in order to assess the real opportunities of such
vehicles, it is necessary to have an extensive knowledge on the influence of real-world usage, which
can significantly affect the overall energy consumption and thus the vehicle range. In literature,
studies mainly focus on the effect of traffic conditions, accelerations, idling, and braking on vehicle
energy consumption [18,19]. Fiori et al. [20] investigated the impact of route selection on the energy
consumption of a BEV, using empirical global positioning system (GPS) commute data and traffic
micro-simulation data; Maia et al. [21] carried out an analysis to experimentally correlate trip distance,
speed, initial battery state of charge, and ambient temperature to energy consumption; Wu et al. [22]
investigated the effect of the driver’s behavior on the BEV efficiency between in-city driving and
freeway driving, providing a general relationship between the measured power of the battery and
the measured speed, acceleration, and road slope; and Shankar and Marco [23] reported on energy
consumption predictions for BEVs under real-world driving conditions, considering traffic type
and congestion.

Nonetheless, energy consumption and vehicle range of BEVs are affected also by varying climate
conditions, not only for their direct influence on the electric components operation, but mainly for the
increase in the accessory power consumption due to cabin heating, ventilating, and air-conditioning.
This aspect becomes critic in cold weather; unlike fossil fuel-powered vehicles, the thermal energy
available from the electric motor is not able to meet heating demands in winter and the energy
consumption related to heating can significantly affect the vehicle performance in terms of range.
Things obviously get worse when the main cabin heating systems are based on electrical resistive
heating, rather than a heat pump [24,25], as in the case of the popular Mitsubishi i-MiEV [26] and
Nissan Leaf electric cars [27].

In view of the significance of accurate energy consumption estimation, many experimental
campaigns have been directed to assessing BEVs’ range as climate conditions change [28–31]. Despite
that these analyses have contributed the rise of a rich library of information on the effect of auxiliary
loads on vehicle range, only a few studies provide analytical estimations on energy consumption related
to HVAC systems and most of them imply rather complex models. Kambly and Bradley [32] realized a
detailed dynamic vehicle thermal comfort model to evaluate the impact of HVAC loads on BEVs’ range,
considering ambient conditions and cabin thermal comfort, but the model accuracy requires a number
of assumptions and data that may vary significantly from vehicle to vehicle. Hendricks [33] focused
their analysis on the energy consumption of the HVAC system itself, not considering the effects on the
overall vehicle range. Farrington and Rugh [34] proposed a more straightforward model, showing
that the range of BEVs is reduced by about 50% as a result of cabin cooling as outside temperature
vary, but without making any considerations for cabin heating. At the same time, for range evaluation
purposes, simplified backward looking models are considered sufficiently accurate, and have the
advantages of higher flexibility, lower computational effort, and requiring the knowledge of a smaller
number of input data [35].

On the basis of these considerations, in this paper, a general BEV energy consumption model is
presented, based on a review of existing approaches on powertrain components modelling, which
can be easily calibrated using publicly available BEV data. By characterizing the model on data
available for Nissan Leaf, the effect of the ambient temperature on energy consumption and range
is investigated.

The paper is organized as follows: in Section 2 the model governing equations are presented,
based on state of the art analysis of existing models, particularly focused on Nissan Leaf; in Section 3,
the model is validated on data available from an experimental campaign during which the Nissan Leaf
was driven to depletion across a broad range of winter ambient temperatures; in Section 4, a sensitivity
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analysis is carried out on the assumptions on the battery model and the regenerative braking efficiency;
and conclusions are finally drawn in Section 5.

2. Model Description

A quasi-steady backward-looking model for the simulation of BEVs was developed in Matlab®,
following the approach first proposed by Larminie and Dicks [36] and subsequently adopted and
further improved by other researchers [19,37–40]. The proposed model is based on a critical analysis of
the main assumptions made in existing models of the different components, aiming at identifying the
best compromise between accuracy and the possibility to build up a straightforward and effective tool
for the simulation of commercial electric vehicles, whose construction and operating data are often
difficult to obtain from car manufactures. To this end, the analysis is particularly focused on the Nissan
Leaf, and Table 1 shows the main assumptions adopted in the most relevant up-to-date published
Nissan Leaf models. Last column of the table reports the assumptions used in the present study.

In a backward-looking approach, the vehicle follows the velocity specified by the driving cycle
so that the power required at the wheels can be determined as a function of the resistance and the
inertia forces. The power flow is bidirectional, as shown in Figure 1: electrical energy is drawn from
the battery and transformed into kinetic energy during traction, while kinetic energy from the wheels
is transformed into electrical energy during braking.

Figure 1. Block diagram of the power flows in the components of the electric vehicle [36,37].

The output of the model is the driving distance obtained after discharging the battery down to a
specified value of the state of charge (SOC). The traction power at the driving wheels can be expressed
as follows:

PWheels =

[
µrrmvgcosα +

1
2

ρACdv(t)2 + mvgsinα + (mv + mI)a(t)
]

v(t) (1)

where terms in the square brackets represent rolling resistance, aerodynamic drag, grading resistance,
and linear acceleration, respectively. According to the authors of [40], mI, which represents a fictitious
mass taking into account the inertia of rotating components, can be expressed as follows:

mI = mc

(
0.04 + 0.0025G2

)
(2)

It should be noted that PWheels can be either positive or negative. In the first case, the battery pack
provides energy to the motor. In the second case, representative of the regenerative braking mode,
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the energy flows from the wheels to the generator to charge the battery, as shown in Figure 1. Thus,
PMotor,out is expressed by the following:

PMotor,out =
PWheels

ηtr
if PWheels > 0

PMotor,out = PWheelsηtrηrb if PWheels < 0
(3)

where ηtr is the transmission efficiency and ηrb is the regenerative braking efficiency, which identifies
the percentage of the total braking power that can actually be recovered, as per the following equation:

ηrb =
PRecoverable

PWheels
(4)

Several expressions for ηrb have been proposed, as already reported in Table 1. In the work of [38],
all the available regenerative energy is assumed to be returned to the battery as long as the regenerative
power is lower than or equal to 20 kW; Genikomsakis and Mitrentsis [37] express ηrb as a function of
the vehicle speed and consider the recoverable power subject to the braking torque limitation of the
electric motor/generator. Maia et al. [40] introduce a braking torque reduction factor, a function of
some collection of variables that represent the instantaneous driving parameters (acceleration, jerk,
road inclination). In the present analysis, the approach proposed by the authors of [1] was applied,
where the regenerative braking efficiency ηrb is assumed to be a function of acceleration (always
negative when braking). The following exponential relationship, calibrated on empirical data on
regenerative braking energy efficiency for a Chevy Volt vehicle, has thus been used:

ηrb =

[
e(

0.0411
|a(t)| )

]−1
(5)

Next, the term PMotor,in (Figure 1) is computed on the basis of the efficiency of motor/generator ηm:

PMotor,in =
PMotor,out

ηm
if PMotor,out > 0

PMotor,in = PMotor,outηm if PMotor,in < 0
(6)

It is worth noting that, although the value of ηm is a general function of both instantaneous speed
and torque of motor/generator, in the present study, the more general approach, proposed by the
authors of [37], has been employed, in which the motor/generator efficiency is a piecewise function of
the load. The efficiency is finally corrected with a size coefficient that, in the case of the Nissan Leaf
motor with a rated power of 80 kW, is 0.988. The resulting efficiency values employed in this study are
reported in Table 2.
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Table 1. Summary of the main assumptions adopted in various Nissan Leaf published models. SOC—state of charge.

Reference [37] [38] [39] [40] [1] [19] Assumed Here

Nominal battery energy 24 kWh 24 kWh 24 kWh

Capacity of 65 Ah times
open circuit voltage as by
Equation (9) with SOC at

nominal conditions

- 24 kWh

Capacity of 65 Ah times
open circuit voltage as by
Equation (9) with SOC at
nominal conditions [40]

Battery efficiency 95%
Based on charge

efficiency of 85% and
Rint = 0.11 Ω

Based on round trip
efficiency of 85% and

Rint = 0.1 Ω

Based on round trip
efficiency of 97% and
Rint = as by Table 3

90% -

Based on internal resistance
as by Table 3 [40] and

Peukert battery model with
k = 1.03 [41]

Rolling coefficient 0.008
Vehicle load forces

expressed as function
of vehicle speed

0.008 0.007 1.75 × 10−3

(0.0328v + 4.575)
0.012 1.75 × 10−3

(0.0328v + 4.575) [1]

Drag coefficient 0.29 0.28/0.29 0.28 0.28 0.29 0.28

Frontal area, m2 2.19 2.19 2.29 2.3316 2.27 2.3

Air density, kg/m3 1.25 - 1.25 1.2256 1.2 Function of temperature

Transmission efficiency 0.97 0.97 0.97 0.83 0.92
Included in overall

power train
efficiency of 80%

0.97

Gear ratio, G 8.2 7.9377 7.94/8.19 7.937 - - 7.94

Tire radius, m 0.316 0.315 0.316 0.309 - 0.31

Maximum motor
power, kW 80 80 80 80 - - 80

Motor /generator efficiency Function of load
Based on a per-phase

equivalent circuit
electric model

89%–96% (Motor +
controller efficiency)

Varying between 85% and
95% as function motor

torque and speed
91%

Included in overall
power train

efficiency of 80%

Function of load, according
to authors of [37]

Power consumption of
accessories (cabin air

conditioning excluded), W
300 180 200 269 700 400 200

Vehicle mass
(curb weight), kg - 1521 1498/1691 1521 1521 1521 1521

Vehicle mass including
occupants

(gross weight), kg
1663 1701 - 1761 1595/1640 1601 /1731 1600

Fictitious vehicle mass
increase due to the inertia

of rotating components, kg
0.05·mc - - mc

(
0.04 + 0.0025G2) - 0.03·mc mc

(
0.04 + 0.0025G2) [40]

Regenerative braking
model

Speed-dependent
regeneration efficiency;

limit on maximum
generator torque

Limited to maximum
braking power

of 20 kW

100% regenerative
braking at all

vehicle speeds

Regenerative coefficient
based on a fuzzy

logic model
ηrb =

[
e(

0.0411
|a(t)| )

]−1
Not considered ηrb =

[
e(

0.0411
|a(t)| )

]−1
[1]
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Table 2. Motor/generator efficiency [37].

Part Load Fraction
ηm, %

Motor Generator

0.01 58.72 56.62
0.02 72.24 70.63
0.05 83.89 83.02
0.1 88.67 88.20
0.2 91.28 91.04
0.3 92.12 91.98
0.4 92.71 92.56
0.5 93.31 93.14
0.6 93.91 93.71
0.7 94.51 94.29
0.8 94.43 94.74
0.9 93.67 94.07
1 92.91 93.41

Still referring to Figure 1, PBat takes into account also the power consumed by the accessories as
per the following equation:

PBat = PMotor,in + PAcc (7)

where PAcc is assumed to be a linear decreasing function of the ambient temperature, ranging from a
maximum value of 6000 W at Tamb = −15 ◦C to a minimum value of 200 W at Tamb = 20 ◦C, when the
HVAC system is turned off.

Given the value of PBat, the input or output current flows, occurring during battery charging
(regenerative braking) and discharging (motoring), can be evaluated by solving the battery equivalent
circuit according to the following Equation (8) [36,40]:

I = E−
√

E2−4RintPBat
2Rint

if PBat > 0

I = −E+
√

E2−4RintPBat
2Rint

if PBat < 0
(8)

where Rint and E are the internal resistance and the open circuit potential, respectively. According to
the authors of [40], E can be expressed as a function of the SOC as per Equation (9), while the values of
Rint in charging and discharging can be defined as a piecewise function of SOC, as reported in Table 3.

E = 367.7789− 3.2085
SOC

− 14.3522SOC + 1.138 ln(SOC) + 6.0957 ln(1− SOC) (9)

Table 3. Battery internal resistance.

SOC 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Rint—charging, Ω 0.0830 0.0830 0.0892 0.0997 0.1051 0.0894 0.0919 0.1135 0.1026 0.0997
Rint—discharging, Ω 0.0620 0.0620 0.0587 0.0691 0.0593 0.0928 0.0906 0.0664 0.0892 0.0250

In addition to the efficiency loss due to the heat dissipated by the internal resistance, a battery
charge efficiency based on the Peukert model [37,41] is included in the analysis, where the Peukert
capacity Cp is given by the following:

Cp = Ikt (10)

In Equation (10), k is the Peukert constant of the battery, which in the case of the Li-ion battery,
according to the authors of [41], can vary between 1 and 1.08. Here, k = 1.03 has been chosen as a result
of the model validation, which will be discussed later in Section 3. Terms I and t are the rated current
and the rated discharging time, respectively. These values can be easily obtained from the discharge
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characteristic curve of the Nissan Leaf battery available from [42]. In fact, given the battery capacity
C = 65 Ah, by substituting the rated discharge current I = 0.3 C = 19.5 A and the corresponding rated
discharging time t = 3.33 h into Equation (10), the obtained result is Cp = 71.1 Ah.

Then, at each time step ∆ti, the charge removed during discharging or added during charging is
computed as follows:

∆CRi = Ik
i ∆ti if PBat > 0

∆CRi = −Ii∆ti if PBat < 0
(11)

so that SOCn, after n time steps, can be obtained as follows:

SOCn = 1− ∑n
i=1 ∆CRi

Cp
(12)

3. Model Validation

The model is validated on the data recorded through the experimental campaign reported in
the work of [27], where the Nissan Leaf was driven to depletion across a broad range of ambient
temperatures occurring in Winnipeg, MB, Canada, during winter. Several travelling ranges were
measured in routes with speed limits of 50, 60, 70, and 80 km/h, resulting in an average speed,
including all stoppages, of 35–40 km/h.

As the driving cycle data employed in the experimental analysis were not available,
the aforementioned driving conditions were reproduced with two standard driving cycles of similar
topology: Federal Urban Driving Schedule (FUDS) (vmax = 91 km/h, vav = 32 km/h) and Simplified
FUDS (SFUDS) (vmax = 87 km/h, vav = 31 km/h). FUDS, developed into the Federal Urban Driving
Schedule, is one of the most well-known standard driving cycles, based on real urban traffic flows
in Los Angeles. SFUDS is a simplified version of this cycle, commonly employed for the analysis of
electric vehicles performance [36,43]. Compared with FUDS, it is characterized by a similar average
speed, the same proportion of stationary time, and the same maximum acceleration and braking,
thus providing generally very similar results when used for simulating vehicle range. The analysis
was also extended to two additional driving cycles, namely the New European Driving Cycle
(NEDC) (vmax = 120 km/h, vav = 32 km/h) and FIGE cycle, named after the German FIGE Institute,
(vmax = 91 km/h, vav = 59 km/h), which differ from the urban nature of the reference experimental
data. In fact, NEDC consists of four repeated ECE-15 urban driving cycles and one extra-urban
driving cycle, while different driving conditions are represented by FIGE, which includes urban, rural,
and motorway driving. All the considered driving cycles are reported in Figure 2. Simulations are
carried out considering an external ambient temperature ranging from −15 to +20 ◦C. Accessories
consumption varies linearly from 6000 W at −15 ◦C with heating at full power to 200 W at 20 ◦C when
the heating is switched off. Simulations start with battery fully charged and end at SOC = 0.1.
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Figure 2. Driving cycles used for model validation.

The results of the validation are reported in Figure 3, showing the ranges obtained for each driving
cycle versus the external ambient temperature. It can be noted that the range profiles obtained with
FUDS, SFUDS, and NEDC are remarkably overlapped. This is mainly because of the similar urban
nature of these cycles, characterized by almost the same value of the average speed. On the contrary,
the FIGE cycle, where the urban conditions are representative of only one-third of the entire cycle time
span (the average speed is in fact 59 km/h), has a driving range higher than the others by 20–25 km.

In all the considered cases, the effect of accessories consumption due to cabin heating is remarkable.
In the cases of FUDS, SFUDS, and NEDC, the range exceeds 150 km at 20 ◦C, while it reduces to about
85 km and 60 km at 0 ◦C and −15 ◦C, respectively. In the case of FIGE, the range is 171 km at 20 ◦C,
122 km at 0 ◦C, and 88 km at −15 ◦C.

Figure 3. Results of the model validation.

4. Sensitivity Analysis

As shown in Table 1, several models can be found in the literature, specifically focused on
reproducing the Nissan Leaf performances. These are based on a rather wide range of assumptions,
which, in the present work, have been accurately analyzed and selected in order to best fit the
experimental data employed for the validation (Figure 3). Furthermore, in order to better investigate the
impact of such assumptions, a sensitivity analysis has been carried out on two key model parameters,
namely the battery Peukert constant k (Equation (10)) and the regenerative braking efficiency ηrb
(Equation (4)).
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As discussed in Section 2, the value of k quantifies the discharge efficiency. In fact, according to
the Peukert model as per Equation (11), for a supplied charge I∆t, the actual charge removed from the
battery is Ik∆t. Values of k, according to the authors of [41], in the case of Li-ion batteries, typically vary
in the range of 1.0–1.08. Figures 4–6 portray the driving range as a function of k for the four driving
cycles considered in this analysis at ambient temperatures of 20 ◦C, 0 ◦C, and −15 ◦C, respectively.
It can be noted that the impact of k on range is appreciable, varying from about 5% to 20% depending
on the driving cycle and ambient temperature, with the highest variation of 21% obtained in the case
of FUDS cycle at 20 ◦C (Figures 4–6).

Figure 4. Driven range as a function of the Peukert constant k in the case of ambient temperature of 20 ◦C.

Figure 5. Driven range as function of the Peukert constant k in the case of ambient temperature of 0 ◦C.

Figure 6. Driven range as function of the Peukert constant k in the case of ambient temperature of−15 ◦C.

Regarding the sensitivity analysis on the regenerative braking, the following cases have
been considered:

(a) ηrb = 0: no braking power recovered, that is, the entire braking power is wasted by mechanical brakes.
(b) ηrb = 1: the whole braking power available at the wheels is converted into electricity according to

the generator operating efficiency.
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(c) ηrb =

[
e(

0.0411
|a(t)| )

]−1
according to the authors of [1]; this case has been also assumed as the reference

case in the present model.
(d) ηrb as a function of the vehicle speed according to the model proposed in the work of [37] and

given by the following: 
ηrb = 0 if v < 5 km

h
ηrb = 0.0834v− 0.417 if 5 < v < 17 km

h
ηrb = 1 if v > 17 km

h

In addition, the maximum recoverable braking power is subject to the driving/braking torque
limitation of the electric motor/generator.

(e) Maximum regenerative power limited to 20 kW according to the authors of [38], that is, all the
available regenerative power PWheels is fed into the electric generator as long as its value does not
exceed 20 kW.

Cases from (a) to (e) have been simulated for all the driving cycles and the results are compared in
Figures 7–11. It can be observed that in all the analyzed cases, the results obtained with the assumptions
proposed in the work of [1,37] (case (c) and case (d), respectively) are very close to the assumption
of case (b) (ηrb = 1). On the contrary, neglecting the contribution of the regenerative braking energy,
as in case (a) (ηrb = 0), results in a significant reduction of the driving range. For instance, at an
ambient temperature of 20 ◦C, the range reduces with respect to the reference case from 160 km to
120 km (−25%) in the case of SFUDS, from 158 km to 115 km (−27%) in the case of FUDS, from 154 km
to 124 km (−20%) in the case of NEDC, and from 172 km to 160 km (−6%) in the case of FIGE.

Figure 7. Impact of different regenerative braking assumptions on range in the case of SFUDS
driving cycle.

Figure 8. Impact of different regenerative braking assumptions on range in the case of FUDS
driving cycle.
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Figure 9. Impact of different regenerative braking assumptions on range in the case of NEDC
driving cycle.

Figure 10. Impact of different regenerative braking assumptions on range in the case of FIGE
driving cycle.

Finally, the effect of the assumption on the maximum regenerative power, case (e), is evidenced
in Figure 11 for all the simulated driving cycles and an ambient temperature of 20 ◦C. Clearly, when
this limit is 0 kW, the results coincide with those obtained in case (a) with ηrb = 0, while they reach
asymptotically case (b) of ηrb = 1 as the value of the limiting regenerative power increases. The black
dashed line represents the hypothesis assumed in the work of [38] of a maximum regenerative power
of 20 kW. It can be observed that with FIGE and SFUDS driving cycles, the ranges obtained with
case (e) are very close to case (b) ηrb = 1, while the highest difference (about 5 km) is observed only
with NEDC.

Figure 11. Driving range as a function of the limit on the maximum power for regenerative braking at
20 ◦C.
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5. Conclusions

This paper presents a general BEV energy consumption model, based on a critical analysis of
the main assumptions made in existing models, aiming at identifying the best compromise between
accuracy and the possibility to build up a straightforward and effective tool for the simulation of
commercial electric vehicles, whenever general operating data are publicly available. The model
parameters were set up with the aim of reproducing the characteristics of the Nissan Leaf.

The model is validated on data recorded through the experimental campaign reported in the work
of [27], where the Nissan Leaf was driven to depletion across a broad range of ambient temperatures
occurring in Winnipeg, MB, Canada, during winter. The analysis aims at assessing the effect of
the ambient temperature (in the range of −15 ◦C/20 ◦C), due to the consequent accessory power
required for cabin heating, on energy consumption and range. To this end, vehicle simulations are
first carried out considering the FUDS (vmax = 91 km/h, vav = 32 km/h) and SFUDS (vmax = 87 km/h,
vav = 31 km/h) driving cycles, showing a good agreement with the experimental data, with these
cycles’ features similar to those of the reference routes, particularly in terms of average and maximum
speeds. The analysis was further extended to FIGE and NEDC cycles, thus also considering extra
urban, rural, and motorway driving profiles.

The effect of the accessories consumption due to cabin heating as ambient temperature varies is
remarkable. For instance, in the case of FUDS, SFUDS, and NEDC driving cycles, the range exceeds
150 km at 20 ◦C, while it reduces to about 85 km and 60 km at 0 ◦C and −15 ◦C, respectively.

Finally, through a sensitivity analysis, the impact of two key model parameters, namely the
battery Peukert constant k and the regenerative braking efficiency ηrb, has been assessed. In particular,
the results available in literature are found to be very close to the assumption of ηrb = 1.

Future analyses will investigate the design, modelling, and application of more efficient cabin
conditioning systems based on heat pumps coupled with innovative energy recovery devices in order
to mitigate the range reduction occurring in the case of severe weather conditions.
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Abbreviations

Notations
A Frontal area, m2

a Acceleration, m/s2

BEV Battery electric vehicle
C Battery capacity, Ah
Cd Drag coefficient
Cp Peukert capacity, Ah
∆CR Removed/added charge, Ah
E Open circuit voltage, V
FIGE FIGE (Forschungsinstitut Geräusche und Erschütterungen) Institute, Aachen, Germany
FUDS Federal Urban Driving Schedule
G Gear ratio
g Gravity acceleration, m/s2

HVAC Heating, ventilation, and air-conditioning
I Current, A
k Peukert constant
mc Vehicle mass with battery pack (curb weight), kg
mI Vehicle equivalent mass increase due to the angular moments of the rotating components
mv Total vehicle mass including occupants (gross weight), kg
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NEDC New Eu
P Power, W
Rint Battery internal resistance, Ω
SFUDS Simplified Federal Urban Driving Schedule
SOC State of charge
t Time, t
v Velocity, m/s
Subscripts
Acc Accessories
Bat Battery
av Average
max Maximum
i i-th time step
Greek symbols
α Slope angle of the road
ρ Air density, kg/m3

ηm Electric motor/generator efficiency
ηrb Regenerative braking efficiency
ηtr Transmission and gear efficiency
µrr Rolling resistance coefficient
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