
future internet

Article

TSKT-ORAM: A Two-Server k-ary Tree Oblivious
RAM without Homomorphic Encryption †

Jinsheng Zhang 1, Qiumao Ma 1, Wensheng Zhang 1,* and Daji Qiao 2

1 Department of Computer Science, Iowa State University, Ames, IA 50011, USA; alexanderzjs@gmail.com
(J.Z.); qmma@iastate.edu (Q.M.); wzhang@iastate.edu (W.Z.)

2 Department of Electric and Computer Engineering, Iowa State University, Ames, IA 50011, USA;
daji@iastate.edu

* Correspondence: wzhang@iastate.edu
† The Proceedings of the IEEE Conference on Military Communications, Cyber Security Track, Baltimore, MD,

USA, 1–3 November 2016.

Received: 24 August 2017; Accepted: 24 September 2017; Published: 27 September 2017

Abstract: This paper proposes TSKT-oblivious RAM (ORAM), an efficient multi-server ORAM
construction, to protect a client’s access pattern to outsourced data. TSKT-ORAM organizes each
of the server storages as a k-ary tree and adopts XOR-based private information retrieval (PIR)
and a novel delayed eviction technique to optimize both the data query and data eviction process.
TSKT-ORAM is proven to protect the data access pattern privacy with a failure probability of 2−80

when system parameter k ≥ 128. Meanwhile, given a constant-size local storage, when N (i.e., the
total number of outsourced data blocks) ranges from 216–234, the communication cost of TSKT-ORAM
is only 22–46 data blocks. Asymptotic analysis and practical comparisons are conducted to show that
TSKT-ORAM incurs lower communication cost, storage cost and access delay in practical scenarios
than the compared state-of-the-art ORAM schemes.

Keywords: cloud computing; storage; access pattern protection; oblivious RAM

1. Introduction

Many corporations and individuals are using cloud storage services to host their business
or personal data. As the first line of defense for data secrecy, these cloud storage clients can encrypt
their sensitive data before outsourcing them. This, unfortunately, is not sufficient, because the clients’
access pattern to the outsourced data can still be observed by the cloud service providers and the
attackers who compromise the service. Moreover, researcher have reported that even the content
of encrypted data could be inferred from the exposed access pattern [1].

Researchers have found the private information retrieval (PIR) [2–11] and the oblivious RAM
(ORAM) [12–28] to be security-provable methods for hiding the data access pattern from the data
storage server. While some studies indicate that the PIR schemes may be infeasible for large-scale
datasets as they need to process the whole dataset in order to hide just one data request [19], the
ORAM approaches still appear to be promising as more and more resource-efficient constructions
have been proposed. Particularly, communication cost is the most important metric to evaluate the
feasibility of an ORAM construction. In the literature, the most communication-efficient ORAM
constructions are C-ORAM [29] and CNE-ORAM [30], both consuming O(B) bandwidth for each data
query, when the total number of exported data blocks is N and each data block is of size B ≥ Nε bits
for some constant 0 < ε < 1. Though C-ORAM and CNE-ORAM have achieved better communication
efficiency than prior works, further reducing the requirement of the data block size and the query
delay is still desirable to make the ORAM construction more feasible to implement in cloud storage
systems.

Future Internet 2017, 9, 57; doi:10.3390/fi9040057 www.mdpi.com/journal/futureinternet

http://www.mdpi.com/journal/futureinternet
http://www.mdpi.com
http://dx.doi.org/10.3390/fi9040057
http://www.mdpi.com/journal/futureinternet

Future Internet 2017, 9, 57 2 of 22

In this paper, we propose a new ORAM construction, named TSKT-ORAM, in which data blocks
are out-sourced to two independent servers where the data blocks are stored in k-ary trees and
evictions are delayed and aggregated to reduce its cost. The design can further reduce the costs
of data access pattern protection and simultaneously accomplish the following performance goals
in practical scenarios:

• Communication efficiency: Under a practical scenario, the communication cost per data query
is about 22 blocks–46 blocks when 216 ≤ N ≤ 234 and the block size B ≥ Nε bits for some
constant 0 < ε < 1. In practice, this is lower or comparable to constant communication ORAM
constructions C-ORAM and CNE-ORAM. Furthermore, in TSKT-ORAM, there is no server-server
communication cost incurred.

• Low access delay: Compared to both the C-ORAM and CNE-ORAM schemes with constant
client-server communication cost, TSKT-ORAM has a low access latency.

• Small data block size requirement: Compared to C-ORAM and CNE-ORAM, TSKT-ORAM only
requires each data block size B ≥ 20 KB.

• Constant storage at the client: TSKT-ORAM only requires the client storage to store a constant
number of data blocks, while each server needs to store O(N · B) data blocks.

• Low failure probability guarantee: TSKT-ORAM is proven to achieve a 2−80 failure probability
given system parameter k ≥ 128.

In the rest of the paper, Section 2 briefly reviews the related work. Section 3 presents the problem
definition. Sections 4 and 5 present our proposed scheme. Section 6 reports the security analysis.
Section 7 makes a detailed comparison between our proposed scheme with existing ORAMs. Finally,
Section 8 concludes the paper.

2. Related Work

2.1. Oblivious RAM

Based on the data lookup technique adopted, existing ORAMs can be classified into two
categories: hash-based and index-based ORAMs. Hash-based ORAMs [12–21] require some data
structures such as buckets or stashes to deal with hash collisions. Among them, the balanced ORAM
(B-ORAM) [17] proposed by Kushilevitz et al. achieves the lowest asymptotical communication cost,

which is O(B · log2 N
log log N), where B is the size of a data block. Index-based ORAMs [22–27] use index

structure for data lookup. They require the client to either store the index or outsource the index to
the server recursively in a way similar to storing data, at the expense of increased communication
cost. The state-of-the-art index-based ORAMs are binary tree ORAM (T-ORAM) [22], path ORAM [23]
and SCORAM [28]. When B = Nε (constant 0 < ε < 1) is assumed, the communication cost
for T-ORAM is O(B · log2 N) with failure probability O(N−c) (c > 1), while path ORAM and
SCORAM incur O(B · log N) ·ω(1) communication cost with O(N−ω(1)) failure probability and
O(B · log N) ·ω(1) client-side storage.

2.2. Private Information Retrieval

PIR protocols were proposed mainly to protect the pattern in accessing read-only data at remote
storage. There are two variations of PIR: information-theoretic PIR (iPIR) [2,3,5,6], assuming multiple
non-colluding servers each holding one replica of the shared data; computational PIR (cPIR) [4,7–9],
which usually assumes a single server in the system. cPIR is more related to our work and thus
is briefly reviewed in the following. The first cPIR scheme was proposed by Kushilevitz and Ostrovsky
in [7]. Designed based on the hardness of the quadratic residuosity decision problem, the scheme
has O(nc) (0 < c < 1) communication cost, where n is the total number of outsourced data in bits.
Since then, several other single-server cPIRs [8,9] have been proposed based on different intractability
assumptions. Even though cPIRs are impractical when the database size is large, they are acceptable

Future Internet 2017, 9, 57 3 of 22

for small databases. Recently, several partial homomorphic encryption-based cPIRs [10,11] have been
proposed to achieve satisfactory performance in practice, when the database size is small. Due to
the property of partial homomorphic encryption, [31,32] show that these cPIR schemes can also be
adapted for data updating.

2.3. Hybrid ORAM-PIR Designs

Designs based on a hybrid of ORAM and PIR techniques have emerged recently. Among them,
C-ORAM [29] has the best known performance. However, due to the complexity of PIR primitives,
one data query would require the server to take about 7 min to process. In addition, the data block
size in C-ORAM is O(log4 N) bits, where N is the total number of outsourced data blocks. Thus, this
imposes another strict requirement on C-ORAM.

2.4. Multi-Server ORAMs

There are several multi-server ORAM schemes in the literature. Lu and Ostrovsky proposed
one of the earliest multiple-server ORAM constructions [33], in which there is no server-to-server
communication, but the client-server communication incurs at the cost of O(log N · B) per query.
Despite the asymptotic result, as pointed out in [27], this construction actually incurs very high
client-server communication overhead in practice.

Stefanov and Shi propose another multi-server ORAM construction [27], which follows the basic
design of partition-ORAM [25]. In this scheme, the client-server communication cost is reduced
to a constant number, but the server-server communication cost is O(log N · B). In addition, it requires
the client to store O(

√
N) data blocks in the local storage.

Recently, another multi-server ORAM called CNE-ORAM was proposed, which incurs O(B)
client-server communication cost using at least four non-colluding servers. In CNE-ORAM, each data
block is split into two parts using secret sharing techniques. Each part of one data block is further
copied into two copies, and each copy is stored onto two out of the four servers. The remaining part
is also copied and stored onto the other two servers. At the server side, the storage is organized as
a binary tree with of a height H = O(log N), and each tree node can store θ data blocks. For each
data query, the target data block is retrieved using the mechanism of XOR-based private information
retrieval (PIR). The client then writes φ data blocks to the root node of each server. After χ queries, the
data eviction process is executed to prevent the root node from overflowing. During data eviction, the
client guides the servers to merge nodes on the evicting path. In the post eviction process, the client
retrieves a block for the leaf node of the evicting path and replaces it with an empty block if it is a noise
block. The computation cost is mainly contributed by data XOR operations, where for each data query,
more than 0.5θ · L blocks are XORed, and the communication cost is mainly contributed by uploading
φ data blocks to the root per query, where L = O(log N) is the height of the tree.

3. Problem Definition

We consider a system model as follows. A client exports N equally-sized data blocks to two remote
storage servers, where the two servers do not collude with each other. Note that such an architecture
is feasible in practice, since the client can select two servers in a way that they will not know
the existence of each other. For example, a client can simply select Amazon S3 and Google Drive as two
independent storage servers. Each of the two servers has an identical copy of the data storage.

The client accesses the exported data every now and then and wishes to hide the pattern of the
accesses from the server. Specifically, the client has two types of private accesses to the data stored
at the server, as follows:

• private read D = (read, i);
• private write (write, i, D).

Future Internet 2017, 9, 57 4 of 22

Here, i and D denote the ID and content of the accessed data block, respectively. These two types
can be uniformly denoted as (op, i, D), where op can be either read or write and should be kept secret.

To hide each private access to data, the client usually needs to access the storage server multiple
times. As the server can observe the locations accessed by the client, we shall prevent the pattern
of location access from leaking any information about the data access. There are two types
of location access:

• retrieval from a location, denoted as D = (read, l);
• uploading to a location, denoted as (write, l, D).

Here, l and D denote the accessed location and the data block retrieved or uploaded, respectively.
The two types can also be generalized to (op, l, D), where op is either read or write.

As the ORAM construction is to protect the client’s data access pattern from the cloud storage
server, we assume the client to be trustworthy, while assuming the server to be honest but curious.
That is, though the server may attempt to find out the client’s data access pattern, it honestly stores
data and responds to the client’s requests for location access. We assume the client-server connection
to be secure, which can be accomplished using mechanisms like SSL [34].

Following the definitions adopted by existing ORAM constructions [12,23,25], the security of our
proposed ORAM is formalized as follows.

Definition 1. Given:

• security parameter λ;
• two arbitrary equal-length sequences of private data access denoted as ~x = 〈 (opx,1, ix,1, Dx,1),

(opx,2, ix,2, Dx,2), · · · 〉 and ~y = 〈 (opy,1, iy,1, Dy,1), (opy,2, iy,2, Dy,2), · · · 〉; and
• two sequences of the client’s access to storage locations that correspond to ~x and ~y, denoted as A(~x) = 〈

(op′x,1, lx,1, D′x,1), (op′x,2, lx,2, D′x,2), · · · 〉 and A(~y) = 〈 (op′y,1, ly,1, D′y,1), (op′y,2, ly,2, D′y,2), · · · 〉.

An ORAM construction is secure if:

• A(~x) and A(~y) are computationally indistinguishable; and
• the construction fails with a probability no greater than 2−λ.

4. Preliminary Construction: TSBT-ORAM

Before presenting our proposed TSKT-ORAM scheme, we first present a preliminary scheme:
TSBT-ORAM (multi-server binary tree ORAM). TSBT-ORAM follows the framework of P-PIR [32],
but aims to improve the data access delay. Based on the observation that the access delay in P-PIR
is mainly caused by the expensive homomorphic operations, TSBT-ORAM replaces the homomorphic
encryptions with XOR operations on the server. The rest of this section presents TSBT-ORAM in terms
of storage organization, the data query process and the data eviction process.

4.1. Storage Organization

Storage is organized at both the server and client sides.

4.1.1. Server-Side Storage

Two servers denoted as S0 and S1 are needed. Since the servers are almost identical to each other,
we only describe how storage is organized in S0 and call S0 the “server”. Later, we will show the
differences between S0 and S1.

The server storage is organized as a binary tree with L = log N + 1 layers. Each node stores
3c log N blocks, where c is a system parameter related to the security parameter λ. Within a node,
each block has a unique position offset ranging from zero to 3c log N − 1.

Future Internet 2017, 9, 57 5 of 22

Recall that the total number of exported data blocks is assumed to be N, but the capacity of the
storage is larger than N blocks. Hence, dummy blocks, each a block of random bits, are introduced
in order to fill up the storage. Hereafter, we call the aforementioned N blocks real blocks to differentiate
them from the dummy ones. Before being stored in the server storage, each real data block is encrypted
with a probabilistic symmetric encryption scheme; that is, each data block di is stored as Di ← E(di),
where E denotes the encryption function. To initialize the server storage, all the real blocks are
randomly distributed to the leaf nodes while the dummy blocks are distributed to the rest of the
storage space. Note that the blocks distributed to each node are randomly permuted before uploading,
which hides the distribution of real blocks from the server.

Each node also contains a symmetrically-encrypted index block that records the IDs of the data
blocks stored at each position of the node; as the index block is also encrypted, the index information
is not known to the server.

Figure 1 shows an example, where N = 32 data blocks are exported and stored in a binary
tree-based storage with six layers. Starting from the top layer, i.e., Layer 0, each node is denoted as vl,i,
where l is the layer index and i is the node index on the layer.

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

0,0
v

0,1
v

1,2
v

2,3
v

10,5
v

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

1,1
v

0,2
v

2,2
v

3,2
v

0,3
v

1,3
v

3,3
v

4,3
v

5,3
v 6,3

v

0,4
v

7,3
v

1,4
v 4,4

v
5,4

v 14,4
v

15,4
v

0,5
v

1,5
v

11,5
v 30,5

v
31,5

v

Figure 1. TSBT-oblivious RAM (ORAM)’s server-side storage structure. Circled nodes represent the
ones accessed by the client during a query process when the target data block is mapped to leaf node
v5,10.

4.1.2. Client-Side Storage

TSBT-ORAM requires the client to maintain an index table with N entries, where each entry
i (i ∈ {0, . . . , N − 1}) records the ID of a leaf node on the tree such that data block Di is stored at some
node on the path from the root to this leaf node. As in T-ORAM [22] and P-PIR [32], the index table
can be exported to the server, as well; this way, the client-side storage can be of constant size and only
needs to store at most two data blocks, as well as some secret information such as encryption keys.

Future Internet 2017, 9, 57 6 of 22

4.2. Data Query Process

A data query process is launched by a client, and responded by the two servers.

4.2.1. Client’s Launching of Query

To query a certain data block Dt, the client first checks its index table to find out the leaf node
vL−1, f to which Dt is mapped. Hence, a path from the root to vL−1, f is identified. To facilitate the
presentation, we denote the selected path as follows:

−→v = (v0, . . . , vL−1). (1)

For each node vl (0 ≤ l ≤ L− 1) on −→v , the client retrieves the encrypted index block from the
server and checks if Dt is in the node. Then, it generates two query vectors

−→
Q l

0 and
−→
Q l

1, where each
vector is a binary stream of 3c log N bits and each bit corresponds to one block in the node. The contents
of the vectors are determined as follows:

1.
−→
Q l

0 is generated randomly.

2.
−→
Q l

1 is first made as a copy of
−→
Q l

0. Further, if the query target Dt is in node vl (supposing the
offset of Dt in the block is m), bit m of

−→
Q l

1 is flipped.

Note that, if vl contains Dt,
−→
Q l

0 and
−→
Q l

1 differ only at one bit, which corresponds to Dt; if vl

does not contain Dt, the two query vectors are the same. Then, the client sends
−→
Q l

i to server Si for
i = 0, 1, respectively.

4.2.2. Servers’ Response to Query

Upon receiving query vectors {−→Q l
i |l = 0, . . . , L− 1} for i ∈ {0, 1}, server Si needs to conduct

bit-wise XOR operations on some data blocks and return the resulting block. Before elaborating the
operations, let us introduce the bit-wise XOR operator on blocks as follows.

Definition 2. Let
⊕

denote a bit-wise XOR operator on blocks. More specifically, assume:

bD,0 bD,1 . . . bD,|D|−1, (2)

where each bD,... ∈ {0, 1}, is a bit-stream representation of block D. The bit-wise XOR of a set of blocks denoted
as D, i.e.,

D̂ =
⊕
D, (3)

is a block whose bit-stream representation is:

b′D̂,0b′D̂,1 . . . b′D̂,|D|−1, (4)

where each b′
D̂,i

= ⊕{bD,i|D ∈ D}, i.e., the XOR of the bits with offset i in every block of set D.

Responding to the query, server Si first conducts the following computations for each layer
l ∈ {0, . . . , L− 1}. Recall that vl is the node queried by the client from layer l, and the node contains
3c log N blocks. Let:

Dl = {Dl
i,j|j = 0, . . . , 3c log N − 1} (5)

denote the set of all blocks in vl and:

Dl
i = {Dl

i,j ∈ Dl |−→Q l
i [j] = 1} (6)

Future Internet 2017, 9, 57 7 of 22

denote the subset of blocks that are selected by query vector
−→
Q l

i . The server computes:

D̂l
i =

⊕
Dl

i . (7)

Once D̂l
i has been computed for each layer l ∈ {0, . . . , L− 1}, the server further computes:

D̂i =
⊕
{D̂l

i |l = 0, . . . , L− 1}, (8)

and then sends D̂i back to the client.

4.2.3. Client’s Computation of the Query Result

Upon receiving D̂0 and D̂1 from the servers, the client computes
⊕{D̂0, D̂1} and decrypts it to get

the query target data block. After the target block has been accessed, the client re-encrypts it, assigns
a path randomly for the block and uploads it to the root node of each server.

An example of the query process is illustrated in Figure 1, where the query target Dt is mapped
to leaf node v5,10. Hence, each node on the path v0,0 → v1,0 → v2,1 → v3,2 → v4,5 → v5,10 is involved
in the data query. Finally, data block Dt is found at node v5,10. After being accessed, it is re-encrypted
and added to root node v0,0.

4.3. Data Eviction Process

To prevent any node on the tree from overflowing, the client launches an eviction process after
each query process.

4.3.1. Basic Idea

The basic idea of data eviction is as follows. For each non-leaf layer l, up to two evicting nodes
vl,x and vl,y are randomly selected (note that the top layer has only one node, and thus, only one
node is selected); one data block is evicted from each selected node to one of its two child nodes,
while a dummy block is evicted to the other child node. In the following, we focus on the eviction
operations involving vl,x, as the operations involved vl,y are similar. Note that, vl+1,2x and vl+1,2x+1
are the child nodes of vl,x.

Figure 2 shows an example of the eviction process, where circled nodes are selected to evict data
blocks to their child nodes. Let us consider how node v2,2 evicts its data block. The index block in
the node is first retrieved to check if the node contains any real data block. If there is a real block De

in v2,2 and De is mapped to leaf node v5,20, De will be obliviously evicted to v3,5, which is v2,2’s child
and is on the path from v2,2 to v5,20, while a dummy eviction is performed on another child node v3,4.
Otherwise, two dummy evictions will be performed on nodes v3,4 and v3,5.

For obliviousness, the eviction process should further meet the following requirements:

• which real data block is evicted from an evicting node should be hidden;
• which one of two child nodes of an evicting node that receives the evicted real data block should

be hidden.

To meet these requirements, the design of TSBT-ORAM involves the following two aspects:

• For each evicting node (e.g., vl,x), the position where the evicted data block resides should
be hidden from any server.

• For each receiving node (e.g., vl+1,2x), each position that can be used to receive the evicted data
block should be selected with an equal probability. In other words, each position of the receiving
node should have an equal probability to be written during data eviction. This way, the behavior
of a receiving node is independent of whether it receives a real or dummy block.

Future Internet 2017, 9, 57 8 of 22

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

0,0
v

0,1
v 1,1

v

1,2
v

0,2
v

2,2
v

3,2
v

2,3
v

0,3
v 1,3

v
3,3

v
4,3

v
5,3

v 6,3
v

7,3
v

...

...

...

...

...

...

...

...

...

...

...

0,4
v

1,4
v

10,4
v 12,4

v
13,4

v

20,5
v 21,5

v
26,5

v
27,5

v

Figure 2. An example of the eviction process in TSBT-ORAM.

4.3.2. Oblivious Retrieval of Evicted Data Block

In the eviction process, the client first obliviously retrieves an evicting data block D from each
evicting node vl,x. If there is at least one real data block in this node, D is a randomly selected real data
block; otherwise, D is a dummy data block.

MSTK-ORAM accomplishes the obliviousness in data block retrieval via an approach similar
to the query process. In a nutshell, the process is as follows. Suppose the offset of D at vl,x is m.
The client composes an eviction vector

−→
Q 0, which also has 3c log N bits, and sends it to server S0.

Another eviction vector
−→
Q 1 is composed to differ from

−→
Q 0 in only one bit m, and is then sent to server

S1. On receiving
−→
Q i for i ∈ {0, 1}, server Si conducts the bit-wise XOR operation on the blocks

selected by
−→
Q i and returns the resulting block. The client then conducts bit-wise XOR operation on

the returned blocks to obtain D.

4.3.3. Oblivious Receiving of Evicted Data Block

After the client has retrieved D, the block should be re-encrypted and then evicted to a child
of the evicting node vl,x. On the high level, there are the following two cases:

• Case I: D is a real data block.Without loss of generality, suppose D needs to be evicted to vl+1,2x;
meanwhile, a dummy block D′ needs to be evicted to vl+1,2x+1 to achieve obliviousness. To reduce
the communication cost, D is treated also as the dummy data block D′ when evicted to vl+1,2x+1.

• Case II: D is a dummy data block. In this case, D is evicted to both vl+1,2x and vl+1,2x+1 as a
dummy data block.

Next, we explain the details of the above process.

Future Internet 2017, 9, 57 9 of 22

The storage space of each node on the server storage tree is logically partitioned into three
equally-sized parts, denoted as P1, P2 and P3, and each part can store c log N data blocks.

• P1: This part is used by the node to store the latest c log N evicted data blocks, which could
be dummy or real, from its parent.

• P2: This part is used to store each real data block that still remains in the node after more than
c log N (dummy or real) blocks have been evicted to the node since the arrival of this real block.
Since the number of real data blocks stored in any node is at most c log N, this part may contain
dummy blocks.

• P3: This is the storage space other than P1 and P2 in the node. This part contains only dummy
data blocks.

Note that the servers only know P1 and the union of P2 and P3; the partitioning between P2 and
P3 is known only to the client. A node uses only P2 or P3 to receive data blocks evicted from its parent.
Furthermore, P1, P2 and P3 are only logical partitions, and they could change from time to time. For
example, when one position in P2 or P3 is used to accept a data block evicted from the parent node,
this position is transferred to P1; meanwhile, the oldest position in P1 is automatically transferred from
P1 to P2 or P3.

Based on the above logical partitioning, the client evicts the data block D from vl,x to vl+1,2x
or vl+1,2x+1 as follows. First, if D is a real data block, there are the following two cases:

• If D should be evicted to vl+1,2x (i.e., D is assigned to the path passing vl+1,2x), one position
in partition P3 of node vl+1,2x is randomly picked to receive D, and meanwhile, one position
in partition P2 or P3 of node vl+1,2x+1 is randomly picked to receive a dummy block.

• Otherwise (i.e., D should be evicted to vl+1,2x+1), one position in partition P3 of vl+1,2x+1
is randomly picked to receive D, while one position in partition P2 or P3 of vl+1,2x is randomly
picked to receive a dummy block.

Second, if D is a dummy data block (i.e., vl,x has no real block to evict), for vl+1,2x (and vl+1,2x+1
respectively), the client randomly picks a position from partitions P2 and P3 of vl+1,2x (and vl+1,2x+1,
respectively) to receive a dummy block. After the reception, the positions of nodes vl+1,2x and vl+1,2x+1
join partition P1 of the two nodes, respectively, and the least-recently receiving position in each of the
two nodes joins partition P1.

As will be proven in Section 6, each position in P2 ∪ P3 has the same probability to be selected
to receive a data block evicted from the parent; thus, the eviction process is oblivious and is independent
of the data access pattern.

5. Final Construction: TSKT-ORAM

To improve the communication efficiency and further reduce the access delay, we propose
TSKT-ORAM, which replaces the binary tree in TSBT-ORAM with a k-ary tree to reduce the height
of the tree. As the tree height is decreased, the communication cost for each query can be reduced and
so for the access delay. Replacing the binary tree by the k-ary tree requires the data eviction process
to change accordingly. Hence, we also design a new data eviction algorithm. Next, we present the
scheme in detail.

5.1. Storage Organization

The data storage of each server is organized as a k-ary tree, with height Hk = d log N+1
log k e,

where k is a power of two. As shown in Figure 3, each node on the k-ary tree, called a k-node,
can be mapped to a binary subtree with k− 1 nodes called b-nodes; also, each k-node contains the
following data structures:

• Data array (DA): a data container that stores 3c(k− 1) data blocks, where c is a system parameter.
As c gets larger, the failure probability of the scheme gets smaller, and meanwhile, more storage

Future Internet 2017, 9, 57 10 of 22

space gets consumed; hence, an appropriate value should be picked for c. As demonstrated by the
security analysis presented later, when c = 4, the failure probability can be upper-bounded by 2−λ.
Therefore, we use four as the default value of c.

• Encrypted index table (EI): a table of 3c(k− 1) entries recording the information for each block
stored in the DA. Specifically, each entry is a tuple of format (ID, l ID, bnID), which records the
following information of each block:

– ID: ID of the block;
– l ID: ID of the leaf k-node to which the block is mapped;
– bnID: ID of the b-node (within ul,i) to which the block logically belongs.

In addition, the EI has a ts field, which stores a time stamp indicating when this k-node was
accessed the last time.

20,3
u

21,3u

����

�
�
�

�
�
�

�

DA

EI

(ID, lID, bnID)

���

���

���

���

������

�
�
�

�
�
�

�
�
�

�
�
�

����
�

�
�
�

�
�
�

�
�
�

���

��� ���

0,0u

0,1u
3,1u1,1u

2,1u

5,2u4,2u

�
�
�

(ID, lID, bnID)

�
�
�

ts

(a)

Figure 3. Cont.

Future Internet 2017, 9, 57 11 of 22

...

...

...

...

...

...

...

...

...

...

...

...

6,3
v

...

...

...

...

...

1,2
v

0,2
v

2,2
v

3,2
v

0,3
v

1,3
v

2,3
v

5,3
v 7,3

v
4,3

v3,3
v

...

...

...

...

...

...

...0,0
v

0,1
v

1,1
v

...

...

...

...4,4
v

8,5
v

9,5
v

...

...

...5,4
v

10,5
v

11,5
v

20,3
u 21,3

u

0,0
u

0,1
u

3,1
u1,1

u
2,1

u

5,2
u4,2

u

...

...

...20,6
v

40,7
v

41,7
v

...

...

...

21,6
v

42,7
v

43,7
v

(b)

Figure 3. An example TSKT-ORAM scheme with a quaternary-tree storage structure. Each k-node
in the physical view (a) corresponds to a two-tier binary subtree shown in the logical view (b).
Bold boxes represent the k-nodes accessed when a client queries a target data block stored at k-node
u3,21; that is, nodes u0,0, u1,1, u2,5 and u3,21 need to be accessed. (a) Quaternary tree: physical view
of the server storage; (b) binary tree: logical view of the server storage.

For example, k-node u0,0 in Figure 3a is mapped to the binary subtree with v0,0 as the root, and
v1,0 and v1,1 as leaves in Figure 3b. This way, the physical k-ary tree can be treated as a logical binary
tree. Note that all the b-nodes within the same k-node share the storage space (i.e., DA).

5.2. Client-Side Storage

Similar to TSBT-ORAM, the client maintains an index table that records the mapping between
data block IDs and the paths assigned to the blocks, some buffer space that temporarily stores data
blocks downloaded from the server and a small permanent storage for secrets. In addition, the client
maintains a counter C that keeps track of the number of queries issued by the client.

5.3. System Initialization

To initialize the system, the client acts as follows. It first encrypts each real data block di to Di,
as in TSBT-ORAM, and then randomly assigns it to a leaf k-node on the k-ary tree maintained at each
server. The rest of the DA spaces on the tree shall all be filled with dummy blocks.

For each k-node, its EI entries are initialized to record the information of blocks stored
in the node. Specifically, the entry for a real data block shall record the block ID to the ID field,
the ID of the assigned leaf k-node to the l ID field and the ID of an arbitrary leaf b-node within
the k-node to the bnID field. In an entry for a dummy data block, the block ID is marked as “−1”

Future Internet 2017, 9, 57 12 of 22

while the l ID and bnID fields are filled with arbitrary values. The ts field of the EI shall be initialized
to zero.

For the client-side storage, the index table I is initialized to record the mapping from real data
blocks to leaf k-nodes, and the keys for data and index table encryption are also recorded to a permanent
storage space. Finally, the client initializes its counter C to zero.

5.4. Data Query

To query a data block Dt with ID t, the client increments the counter C and searches the index
table I to find out the leaf k-node that Dt is mapped to, and then, for each k-node u on the path from
the root k-node to this leaf node, the XOR operations similar to those in TSBT-ORAM are performed
to retrieve Dt. The only difference is that the query bit vector size of TSKT-ORAM is 3c(k− 1) bits
per vector. As shown in Figure 3a, to query a data block Dt stored at k-node u3,21, the EIs at u0,0, u1,1,
u2,5 and u3,21 are accessed, as these k-nodes are on the path from the root to the leaf node to which Dt

is mapped. A dummy data block is retrieved obliviously from u0,0, u1,1, and u2,5, respectively, while Dt

is retrieved obliviously from u3,21.

5.5. Data Eviction

The same as in TSBT-ORAM, each server launches a data eviction process after each query.

5.5.1. Overview

The purpose of data eviction in TSKT-ORAM is essentially the same as in TSBT-ORAM. Thus,
it could be conducted as follows: Over the logical binary tree view of the k-ary tree, the eviction
process requires the root b-node and two randomly selected b-nodes from each non-leaf layer to each
evict a data block to its child nodes. The evicted data block is ideally a real data block; but a dummy
block is evicted if a selected node does not have a real data block. The eviction process is ensured
to be oblivious with the same techniques used in TSBT-ORAM.

Adopting the above approach, however, would not take advantage of the k-ary tree structure and
would incur a client-server communication cost of O(log N) blocks per query, which is similar to the
eviction cost incurred by existing binary tree-based ORAM constructions. In order to leverage the
k-ary tree structure to reduce the eviction cost, we propose to opportunistically delay and aggregate
evictions that occur within a k-node. We call such kinds of evictions as intra k-node evictions, while
call other evictions as inter k-node evictions. Next, we use the examples in Figure 4 to explain the idea.

In the figure, b-node v2,2 is selected to evict a data block to its child nodes, and this node and
its child nodes all belong to the same k-node u1,2. Hence, the eviction from v2,2 is an intra k-node
eviction. Because b-nodes belonging to the same k-node share one DA space to store their data blocks,
an intra k-node eviction can be conducted by only updating the EI of the k-node to reflect the change
of the bnID field of the evicted block, without physically moving the block. That is, an intra k-node
eviction can be conducted more efficiently. On the other hand, evicting a data block from b-node v3,2

to its child nodes is an inter k-node eviction, because this b-node and its child nodes belong to three
different k-nodes. These b-nodes do not share DA space, and thus, the eviction has to be conducted
by moving blocks across k-nodes. This is less efficient than an intra k-node eviction.

Furthermore, we find that it is not always necessary to immediately conduct intra k-node eviction.
Instead, such evictions can be delayed and aggregated opportunistically. More specifically, we may
find that a k-node is not involved in any inter k-node eviction during an eviction process; that is, its
root b-node is not a child of any node selected to evict data block, and meanwhile, its leaf b-nodes do
not evict data blocks. For example, k-node u2,3 and u2,11 are such k-nodes in Figure 4. For intra-k-node
evictions occurring within such k-nodes (e.g., the evictions from v4,3 and v4,11 to their child nodes), we
do not have to conduct them immediately; rather, they can be conducted (i.e., updating the EIs of the
k-nodes) later when the k-node is next accessed in a query process or an inter-k-node eviction. Note
that such a delay does not affect the correctness of the eviction process, because the EIs will not be

Future Internet 2017, 9, 57 13 of 22

accessed before the updates are made; moreover, the delay could allow more intra k-node evictions
to be conducted at once, i.e., intra-k-node evictions could be aggregated, which could further reduce
the cost.

0,0
u

0,1
u

3,1
u

6,3
v

1,1
u

2,1
u

0,0
v

0,1
v

1,2
v

1,1
v

0,2
v

2,2
v

3,2
v

0,3
v

1,3
v 2,3

v
5,3

v
7,3

v4,3
v3,3

v

28,3
u

29,3
u 52,3

u
53,3

u

5,2
u

0,2
u

4,2
u

1,2
u

3,2
u 7,2

u
11,2

u 13,2
u

......

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

0,4
v

0,5
v

1,5
v

...

...

... 1,4
v

2,5
v

3,5
v

...

...

... 3,4
v

6,5
v 7,5

v

...

...

...

4,4
v

8,5
v

9,5
v

...

...

... 5,4
v

10,5
v

11,5
v

...

...

... 7,4
v

14,5
v

15,5
v

...

...

...

11,4
v

22,5
v

23,5
v

...

...

...

13,4
v

26,5
v

27,5
v

...

...

...

28,6
v

56,7
v 57,7

v

...

...

...

29,6
v

58,7
v

59,7
v

...

...

...

52,6
v

104,7
v

105,7
v

...

...

...

53,6
v

106,7
v

107,7
v

...

...

...

...

...

Figure 4. An example data eviction process in TSKT-ORAM with a quaternary-tree storage structure.
In the logical view (i.e., binary-tree view) of the tree, the root b-node and two b-nodes from each layer,
which are circled in the figure, are selected to evict data blocks to their child nodes; thus, the k-nodes
that contain these selected b-nodes or their child nodes are also involved in the eviction. With the delay
eviction mechanism, not all of these evictions have to be performed immediately. Instead, the evictions
that occur within the same k-node, for example, the evictions from v4,3 to its child nodes and from
v4,11 to its child nodes, occur in k-nodes u2,3 and u2,11, respectively, which are highlighted with bold
boundaries, can be delayed to reduce the eviction overhead.

5.5.2. The Algorithm

Based on the previously-explained idea, the eviction algorithm is designed to include the following
three phases.

• Phase I, selecting b-nodes for inter-k-node eviction: In this phase, the client randomly selects
two b-nodes from each layer l′ ∈ {log k − 1, 2 log k − 1, . . . , (d log N+1

log k e − 1) · log k − 1} on the
binary tree; that is, each selected b-node must be on the bottom layer of the binary subtree within
a certain non-leaf k-node. Each selected b-node needs to evict a data block to its child nodes,
which are in other k-nodes. Hence, the eviction has to be an inter k-node eviction and should
be conducted immediately.

• Phase II, conducting delayed intra-k-node evictions: Each inter-k-node eviction planned in the
previous phase involves three k-nodes: the k-node that contains the evicting b-node and the
two other k-nodes that contain the child b-nodes of the evicting b-node. Before the inter-k-node
eviction is executed, we need to make sure that the three involved k-nodes have completed all
delayed evictions within them, and this is the purpose of this phase.

Future Internet 2017, 9, 57 14 of 22

More specifically, the following three steps should be taken for each k-node, denoted as ul,j, which
is involved in an inter-k-node eviction planned in the previous phase. Note that, here, l denotes
the layer of the k-node on the k-ary tree.

1. The client downloads the EI of ul,i, decrypts it and extracts the value of field ts.
2. The client computes r = C − ts. Note that, C counts the number of queries issued by the

client, which is also the number of eviction processes that have been launched, and ts is the
discrete timestamp for the latest access of ui,j. Hence, r is the number of eviction processes
for which ul,i may have delayed its intra-k-node evictions.

3. The client simulates the r eviction processes to find out and execute the delayed intra-k-node
evictions. In particular, for each of the eviction processes:

(a) The client randomly selects two b-nodes from each binary-tree layer l′ ∈ {l · log k, l ·
log k + 1, . . . , (l + 1) · log k− 2}. Note that layer l′ is not a leaf binary-tree layer within
a k-node, and therefore, any b-node selecting from the layer only has child nodes
within the same k-node; in other words, the eviction from the selected b-node must
be an intra-k-node eviction.

(b) For each previously selected b-node that is within k-node ul,i, one data block is
picked from it, and the lbID field of the block is updated to one of its child nodes that
the block can be evicted to; this way, the delayed eviction from the selected b-node
is executed.

4. After the previous step completes, all the delayed evictions within k-node ul,i have been
executed. Therefore, the ts field in the EI of ul,j is updated to C.

• Phase III, conducting inter-k-node evictions: For each inter-k-node eviction planned in the first
phase, its involved k-nodes should have conducted all of their delayed evictions in the second
phase. Hence, the planned inter-k-node eviction can be conducted now. Essentially, each selected
evicting b-node should evict one of its data blocks from the DA space of its k-node to the DA
space of the k-node containing the child b-node that accepts the block, and the eviction should
be oblivious. The detail is similar to the oblivious data eviction process in TSBT-ORAM that
is elaborated in Section 4.3 and therefore is skipped here.

6. Security Analysis

In this section, we first study the failure probability of TSKT-ORAM, which is followed by the
study of its obliviousness. These studies finally lead to the main theorem.

Lemma 1. The probability for a DA in any k-node to overflow is no greater than 2−λ, as long as the parameters
of TSKT-ORAM meet the following conditions:

• 3c(k− 1) data blocks are stored in each DA;
• k ≥ 1.36λ + 6.44;
• c = 4; and
• λ > log N + 10.

Proof. The proof considers non-leaf and leaf k-nodes separately.
Non-leaf k-nodes:

The proof for non-leaf k-node proceeds in the following two steps.
In the first step, we consider the binary tree that a k-ary tree in TSKT-ORAM is logically mapped

to and study the number of real data blocks (denoted as a random variable Xv) logically belonging
to an arbitrary b-node v on an arbitrary level l of the binary tree.

As the eviction process of TSKT-ORAM completely simulates the eviction process of T-ORAM
and P-PIR over the logical binary tree, the results of [22] of the theoretical study on the number of real

Future Internet 2017, 9, 57 15 of 22

data blocks in a binary tree node can still apply. Specifically, Xv can be modeled as a Markov chain
denoted as Q(αl , βl). In the chain, the initial one is Xv = 0, The transition from Xv = i to Xv = i + 1
occurs with probability αl , and the transition from Xv = i + 1 to Xv = i occurs with probability βl , for
every non-negative integer i. Here, αl = 1/2l and βl = 2/2l for any level l. Furthermore, for any l ≥ 2,
a unique stationary distribution exists for the chain; that is,

πl(i) = ρi
l(1− ρl), (9)

where:

ρl =
αl(1− βl)

βl(1− αl)
=

2l − 2
2(2l − 1)

∈
[

1
3

,
1
2

)
. (10)

In the second step, we consider an arbitrary k-node u on the k-ary tree and study the number
of real data blocks stored at the DA of u, which is denoted as a random variable Yu.

The binary subtree that u is logically mapped to contains k− 1 b-nodes, which are denoted as
v1, . . . , vk−1 for simplicity. Then Yu = ∑k−1

i=1 Xvi . Furthermore, as k should be greater than two to make
TSKT-ORAM nontrivial, any of the b-nodes v1, . . . , vk−1 should be on a level greater than or equal
to one on the logical binary tree (those b-nodes on Levels 0 and 1 never overflow).

Now, we compute the probability:

Pr [Yu = t] = Pr [Xv1 + · · ·+ Xvk−1 = t]. (11)

Note that there are
(

t + k− 2
k− 2

)
different combinations of Xi = ti (i = 1, . . . , k − 1) such that

t1 + · · ·+ tk−1 = t. Hence, we have:

Pr [Yu = t] ≤
(

t + k− 2
k− 2

) k−1

∏
i=1

[(
1
2

)ti
(

2
3

)]
(12)

≤
(
(t + k− 2) · e

k− 2

)k−2 (1
2

)t (2
3

)k−1

<

(
(t + k− 2) · e

k− 2

)k−1 (1
2

)t (2
3

)k−1
(13)

≤
(

2(t + k− 2) · e
3(k− 2)

)k−1 (1
2

)t
.

Here, Equation (12) is due to πl(i) = ρi
l(1− ρl) ≤ ρi

l ·
2
3 <

(
1
2

)i
· 2

3 , which is due to Equation (9).

Inequality (13) is due to (n
k) ≤

(n·e
k
)k for all 1 ≤ k ≤ n. Hence, we have:

Pr[Yu = t] ≤ [
2
3
· e · (c + 1 +

c
k− 2

) · (1
2
)c]k−1 (14)

< (
3
5
)k−1 = (

3
5
)t/4. (15)

Here, Inequality (14) is due to t = c(k− 1) in the scheme, Inequality (15) is due to k = 1.36λ +

6.44 > log N and c = 4.

Future Internet 2017, 9, 57 16 of 22

Then, the following inequalities follow:

Pr [Yu ≥ t] =
∞

∑
i=0

Pr [Yu = t + i] <
∞

∑
i=0

[(
3
5
)1/4]t+i

=
(3

5)
t/4

1− (3
5)

1/4
< 9 · 2−0.74(k−1) < 2−λ.

(16)

Leaf k-nodes:
At any time, all the leaf k-nodes contain at most N real blocks, and each of the blocks is randomly

placed into one of the leaf k-nodes. Thus, we can apply the standard balls and bins model to analyze
the overflow probability. In this model, N balls (real blocks) are thrown into 2N/k bins (i.e., leaf
k-nodes) in a uniformly random manner.

We study one arbitrary bin and let X1, . . . , XN be N random variables such that:

Xi =

{
1 the i-th ball is thrown into this bin,
0 otherwise.

(17)

Note that X1, . . . , XN are independent of each other, and hence, for each Xi, Pr [Xi = 1] = 1
2N/k =

k
2N . Let X = ∑N

i=1 Xi. The expectation of X is:

E[X] = E

[
N

∑
i=1

Xi

]
=

N

∑
i=1

E[Xi] = N · k
2N

=
k
2

. (18)

According to the Chernoff bound, when δ = 2j/k− 1 ≥ 2e− 1, it holds that:

Pr [at least j balls in this bin]

= Pr [X ≥ j] <
(

eδ

(1 + δ)(1+δ)

)k/2

<

(
eδ

(2e)δ

)k/2

= 2−kδ/2.

(19)

Hence, letting j = 4(k− 1), we have:

Pr [at least 4(k− 1) balls in this bin] < 2−1.5k. (20)

Finally, we have the following equation:

Pr [∃ a bin with at least 4(k− 1) balls]

<

2N
k −1

∑
i=0

Pr [bin i has at least 4(k− 1) balls]

<
2N
k
· 2−1.5k =

2N
k
· 2−1.5(1.36λ+6.44)

=
2N
k
· 2−2.04λ+9.66 < 2−λ.

(21)

The first inequality is due to the union bound. The second inequality is due to the fact that
λ ≥ log N + 10.

According to the above two parts, we have proven that the overflow probability is 2−λ.

Lemma 2. Any query process in TSKT-ORAM accesses k-nodes from each layer of the k-ary tree, uniformly
at random.

Future Internet 2017, 9, 57 17 of 22

Proof. (Sketch) In TSKT-ORAM, each real data block is initially mapped to a leaf k-node uniformly
at random; and after a real data block is queried, it is re-mapped to a leaf k-node also uniformly
at random. When a real data block is queried, all k-nodes on the path from the root to the leaf k-node
that the real data block is currently mapped to are accessed. Due to the uniform randomness of the
mapping from real data blocks to leaf k-nodes, the set of k-nodes accessed during a query process is
also uniformly at random.

Lemma 3. Any eviction process in TSKT-ORAM accesses a sequence of k-nodes independently of the client’s
private data request.

Proof. (Sketch) During an eviction process, the accessed sequence of k-nodes is independent of the
client’s private data request due to: (i) the selection of b-nodes for eviction (i.e., Phase I of the eviction
process) is uniformly random on the fixed set of layers of the logical binary tree and thus is independent
of the client’s private data request; and (ii) the rules determining which evictions should be executed
immediately (and hence, the involved k-nodes should be accessed) and which can be delayed are also
independent of the client’s private data requests.

Lemma 4. For any k-node ni with k-node np as its parent, each position in P2
⋃

P3 of ni has the equal
probability of 1

2c log N to be selected to access.

Proof. During an eviction process, np may evict a real or dummy block to one of its child nodes (i.e., ni
or n1−i). In the following, we consider these two cases respectively.

Case I: np evicts a real block to a child node. There are two subcases as follows.
Case I-1: the real block is evicted to ni; this subcase occurs with the probability of 0.5. In this

subcase, according to the previously described eviction policy, a position is randomly selected from
P3 to accept the evicted block.

Case I-2: the real block is evicted to n1−i, i.e., a dummy block is evicted to ni; this occurs with the
probability of 0.5. In this subcase, according to the eviction policy, a position is randomly selected from
P2 to access.

Case II: np does not evict any real block to its child nodes. That is, both ni and n1−i are evicted with
dummy blocks. In this case, according to the eviction policy, a position is randomly selected from
P2
⋃

P3 to access.
Furthermore, because P2 and P3 have the same size, each position in P2

⋃
P3 has equal probability

to be selected to access.

Theorem 1. TSKT-ORAM is secure under Definition 1, if k ≥ 1.36λ + 6.44 and c = 4.

Proof. Given any two equal-length sequence ~x and ~y of the client’s private data requests, their
corresponding observable access sequences A(~x) and A(~y) are computationally indistinguishable,
because both of the observable sequences are independent of the client’s private data request sequences.
This is due to the following reasons:

• According to the query and eviction algorithms, sequences A(~x) and A(~y) should have the
same format; that is, they contain the same number of observable accesses, and each pair
of corresponding accesses has the same access type.

• According to Lemma 2, the sequence of locations (i.e., k-nodes) accessed by each query process is
uniformly random and thus independent of the client’s private data request.

• According to Lemma 3, the sequence of locations (i.e., k-nodes) accessed by each eviction process
after a query process is also independent of the client’s private data request.

Moreover, according to Lemma 1, the TSKT-ORAM construction fails with a probability of 2−λ,
when k ≥ 1.36λ + 6.44 and c = 4.

Future Internet 2017, 9, 57 18 of 22

7. Comparisons

In this section, we present detailed performance comparisons between TSKT-ORAM and
several state-of-the-art ORAMs including T-ORAM [22], path ORAM [23], P-PIR [32], C-ORAM [29],
MSS-ORAM [27] and CNE-ORAM [30].

7.1. Asymptotic Comparisons

Table 1 shows the asymptotic comparison between TSKT-ORAM and some existing ORAM
schemes. First, we compare TSKT-ORAM with single-server ORAMs, which include T-ORAM,
path ORAM, P-PIR and C-ORAM. As we can see, the communication costs of T-ORAM, path ORAM
and P-PIR are not constant, while TSKT-ORAM is in practice. Though C-ORAM incurs constant
communication cost, it requires expensive homomorphic encryptions, which incurs a huge amount of
computations at the server side and results in long data access delay. For example, with C-ORAM,
each data access has to incur a delay as long as seven minutes.

Table 1. Asymptotic comparisons in terms of client-server communication cost, server-server
communication cost, client storage cost, server storage cost and the minimum number of non-colluding
servers required. N is the total number of data blocks and B is the size of each block in the unit of bits.
B = O(Nε) for some 0 < ε < 1. For TSKT-ORAM, k = O(Nε) where 0 < ε < 1 and c = 4. For all tree
structure ORAMs, the index table is outsourced to the server with O(1) recursion depth. A scheme
marked with the asterisk symbol requires homomorphic encryption.

ORAM C-SComm.Cost S-SComm. Cost Client Stor.Cost Server Stor. Cost # of Servers

T-ORAM [22] O(log2 N · B) N.A. O(B) O(N log N · B) 1
Path ORAM [23] O(log N · B) N.A. O(log N · B) ·ω(1) O(N · B) 1
∗ P-PIR [32] O(log N · B) N.A. O(B) O(N log N · B) 1
∗ C-ORAM [29] O(B) N.A. O(B) O(N · B) 1

MS-ORAM [33] O(log N · B) O(log3 N · B) O(B) O(N log N · B) 2
MSS-ORAM [27] O(B) O(log N · B) O(

√
N · B) O(N · B) 2

CNE-ORAM [30] O(B) N.A. O(B) O(N · B) 4

TSKT-ORAM O(B) N.A. O(B) O(N · B) 2

Second, we compare TSKT-ORAM with other multi-server ORAMs, which include MS-ORAM,
MSS-ORAM and CNE-ORAM. MS-ORAM and MSS-ORAM both require server-server communication;
additionally, MSS-ORAM incurs high storage cost at the client side, while TSKT-ORAM does not require
server-server communication and incurs only constant cost at the client. Compared to CNE-ORAM,
which requires at least four non-colluding servers, TSKT-ORAM requires only two; also, TSKT-ORAM
incurs lower computational costs (which is translated to lower data access delay) and smaller server
storage costs, as will be discussed next.

7.2. Practical Comparisons

Among all the ORAMs that are considered in the above asymptotical comparisons, CNE-ORAM
is the one most comparable to TSKT-ORAM. Thus, we make a more detailed comparison between
TSKT-ORAM and CNE-ORAM in practical scenarios. The comparisons are conducted in terms
of communication cost, storage cost and access delay. The access delay comparison includes
all non-implementation factors that result in the access delay. In the comparison, we consider
the following parameter settings: (1) N ranges from 216–234; (2) B is set to 1 MB for both schemes;
(3) security parameter λ is set to 80; (4) system parameter k in TSKT-ORAM is set to 128. Table 2 shows
the communication and computation costs of these schemes.

Future Internet 2017, 9, 57 19 of 22

Table 2. Practical comparisons (216 ≤ N ≤ 234, B = 1 MB). The communication cost in the table is the
client-server communication cost per query. The computational cost is the number of XOR operations
needed on the server side.

CNE-ORAM TSKT-ORAM

Communication Cost > 40 · B 22 · B~46 · B
Computational Cost > 10(λ− 10) · log N 18(d log N+1

log k e − 1)(k− 1)

7.2.1. Communication Cost

CNE-ORAM reports a communication cost of more than 40 · B per query. TSKT-ORAM incurs
a lower or comparable communication cost with k = 128. Specifically, when 216 ≤ N ≤ 220,
the communication cost of TSKT-ORAM is about 22 · B per query; when 221 ≤ N ≤ 227, the cost is less
than 34 · B per query; when 228 ≤ N ≤ 234, the cost is less than < 46 · B per query.

7.2.2. Computational Cost

Because the bit-wise XOR operations on data blocks are the major contributors of computational
cost for both TSKT-ORAM and CNE-ORAM, we here only compare the amount of such operations
with both schemes.

In TSKT-ORAM, the server needs to conduct 18(d log N+1
log k e − 1)(k − 1) such operations.

Due to 216 ≤ N ≤ 234 and k = 128, 3 ≤ d log N+1
log k e ≤ 5. Therefore, the total number of XOR

operations ranges from 4572–9144.
In CNE-ORAM, the XOR operations are determined by the binary tree height log N and the

node size denoted as θ. θ is related to the security parameter. From the regression evaluation in the
CNE-ORAM work, θ = 20(λ− 10). Furthermore, the XOR operations need to be performed on half
of these blocks. Hence, the total number of such operations is 10(λ− 10) · log N. For fairness, we
set security parameter λ in CNE-ORAM to 80. Then, the total number of operations ranges from
11,200–23,800.

Therefore, we can see that TSKT-ORAM incurs a computational cost less than half of that incurred
by CNE-ORAM.

7.2.3. Access Delay Comparison

The access delay for both TSKT-ORAM and CNE-ORAM is mainly contributed by the
communication and computation delays.

Suppose the network bandwidth between the client and each of the servers is 10 MB/s and the
data block size B = 1 MB. For each query, CNE-ORAM needs at least four seconds to transfer the data
blocks needed, while TSKT-ORAM needs about 2.2~4.6 s.

To estimate the delay caused by computation, the authors of CNE-ORAM [30] measure the delay
of an XOR operation to be about one millisecond using a 2012 MacBook Pro with a 2.4-GHz Intel
i7 processor. For fairness, we adopt the same hardware to compare the computation delays of both
schemes. The delay for TSKT-ORAM is about 4.5~9 s, while the delay for CNE-ORAM ranges from
11.2~23.8 s.

Therefore, we can see that TSKT-ORAM incurs a delay that is less than half of that caused
by CNE-ORAM.

Note that, for comparison fairness, we assume the above values of network bandwidth
and computational power, which may be very different from the practical settings. Particularly,
a client with high-level security concerns could use a much better network service to have much higher
communication bandwidth with the servers, and the servers typically have much more powerful
computational capacity than a MacBook.

Future Internet 2017, 9, 57 20 of 22

7.2.4. Storage Cost

The storage cost of CNE-ORAM depends on the size θ of each node on the binary tree and the
number of tree nodes, which can be computed as follows:

NumNode = 1 + 21 + 22 + ·+ 2L, (22)

where L is the tree height, N ≤ χ · 2L−1 and χ = θ
10 . Hence, the number of tree nodes is greater than

or equal to 4N
χ − 1. Therefore, the storage cost per server in CNE-ORAM is:

NumNode · θ ≥ 40N · B. (23)

Since there are four servers in CNE-ORAM, the storage cost in total is 160N · B.
As for TSKT-ORAM, each server stores a k-ary tree that can be logically mapped to a binary

tree, where each k-ary tree node is equivalent to k− 1 binary tree nodes. The size of each k-ary tree
node is 3c · (k− 1) · B, which means each binary tree node has a size of 3c · B. The total number of
binary tree nodes is 2N − 1. Hence, the storage cost at each server is 3c · (2N − 1) · B; further, since
c = 4 as required for security, the cost is less than 24N · B. Considering there are two servers required,
the total storage cost for TSKT-ORAM is less than 48N · B.

Therefore, we can see that the storage cost of TSKT-ORAM is only about one fourth of that
of CNE-ORAM.

8. Conclusions

This paper proposes a new multi-server ORAM construction named TSKT-ORAM, which
organizes the server storage as a k-ary tree with each node acting as a fully-functional XOR-based
PIR storage. It also adopts a novel delayed eviction technique to optimize the eviction process.
TSKT-ORAM is proven to protect the data access pattern privacy at a failure probability of 2−80

(N is the number of exported data blocks), when k ≥ 128. the communication cost of TSKT-ORAM
is only 22–46 data blocks, when N (i.e., the total number of outsourced data blocks) ranges from 216–234.
Detailed asymptotic and practical comparisons are conducted to show that TSKT-ORAM achieves
better communication, storage and computational efficiency in practical scenarios than the compared
state-of-the-art ORAM schemes.

TSKT-ORAM, however, requires each of the two servers to allocate a storage space of 24 N
blocks, in order to store only N real data blocks. In the future work, we plan to develop new ORAM
constructions that are not only communication-efficient, but also storage-efficient.

Author Contributions: All authors made roughly equal contributions to the design of the schemes and the writing
of the paper. J.Z. developed the proofs. J.Z. and Q.M. performed the cost analysis and comparisons.

Conflicts of Interest: The authors declare no conflicts of interest.

References

1. Islam, M.S.; Kuzu, M.; Kantarcioglu, M.K. Access pattern disclosure on searchable encryption: Ramification,
attack and mitigation. In Proceedings of the NDSS Symposium, San Diego, CA, USA, 5–8 February 2012.

2. Chor, B.; Goldreich, O.; Kushilevitz, E.; Sudan, M. Private information retrieval. In Proceedings of the 36th
FOCS 1995, Milwaukee, WI, USA, 23–25 October 1995.

3. Beimel, A.; Ishai, Y.; Kushilevitz, E.; Raymond, J.F. Breaking the O(n
1

2k−1) barrier for information-theoretic private
information retrieval. In Proceedings of the 43rd FOCS 2002, Vancouver, BC, Canada, 16–19 November 2002.

4. Chor, B.; Gilboa, N. Computationally private information retrieval. In Proceedings of the Twenty-Ninth
Annual ACM Symposium on Theory of Computing, El Paso, TX, USA, 4–6 May 1997.

5. Gertner, Y.; Ishai, Y.; Kushilevitz, E.; Malkin, T. Protecting data privacy in private information retrieval
schemes. In Proceedings of the 30th Annual ACM Symposium on Theory of Computing, Dallas, TX, USA,
24–26 May 1998.

Future Internet 2017, 9, 57 21 of 22

6. Goldberg, I. Improving the robustness of private information retrieval. In Proceedings of the IEEE
Symposium on Security and Privacy, Berkeley, CA, USA, 20–23 May 2007.

7. Kushilevitz, E.; Ostrovsky, R. Replication is not needed: Single database, computationally-private
information retrieval (extended abstract). In Proceedings of the FOCS 1997, Miami, FL, USA, 19–22 October
1997.

8. Cachin, C.; Micali, S.; Stadler, M. Computationally private information retrieval with polylogarithmic
communication. In Proceedings of the Eurocrypt 1999, Prague, Czech Republic, 2–6 May 1999.

9. Lipmaa, H. An oblivious transfer protocol with log-squared communication. In Proceedings of the ISC 2005,
Berlin, Germany, 9–11 June 2005.

10. Trostle, J.; Parrish, A. Efficient computationally private information retrieval from anonymity or trapdoor
groups. In Information Security; Springer: Heidelberg, Germany, 2011; Volume 6531, pp. 114–128.

11. Hoffstein, J.; Pipher, J.; Silverman, J.H. NTRU: A ring-based public key cryptosystem. In Algorithmic
Number Theory; Springer: Heidelberg, Germany 1998; Volume 1423, pp. 267–288.

12. Goldreich, O.; Ostrovsky, R. Software protection and simulation on oblivious RAM. J. ACM 1996, 43,
431–473.

13. Goodrich, M.T.; Mitzenmacher, M. Mapreduce parallel cuckoo hashing and oblivious RAM simulations.
arXiv 2010, arXiv:1007.1259.

14. Goodrich, M.T.; Mitzenmacher, M.; Ohrimenko, O.; Tamassia, R. Privacy-preserving group data access via
stateless oblivious RAM simulation. In Proceedings of the SODA 2012, Kyoto, Japan, 17–19 January 2012.

15. Goodrich, M.T.; Mitzenmacher, M. Privacy-preserving access of outsourced data via oblivious RAM
simulation. In Proceedings of the ICALP 2011, Zurich, Switzerland, 4–8 July 2011.

16. Goodrich, M.T.; Mitzenmacher, M.; Ohrimenko, O.; Tamassia, R. Oblivious RAM simulation with efficient
worst-case access overhead. In Proceedings of the CCSW 2011, Chicago, IL, USA, 21 October 2011.

17. Kushilevitz, E.; Lu, S.; Ostrovsky, R. On the (in)security of hash-based oblivious RAM and a new balancing
scheme. In Proceedings of the Twenty-Third Annual ACM-SIAM Symposium on Discrete Algorithms, Kyoto,
Japan, 17–19 January 2012.

18. Pinkas, B.; Reinman, T. Oblivious RAM revisited. In Proceedings of the CRYPTO 2010, Santa Barbara, CA,
USA, 15–19 August 2010.

19. Williams, P.; Sion, R. Building castles out of mud: Practical access pattern privacy and correctness on
untrusted storage. In Proceedings of the CCS 2008, Alexandria, VA, USA, 27–31 October 2008.

20. Williams, P.; Sion, R.; Tomescu, A. PrivateFS: A parallel oblivious file system. In Proceedings of the CCS
2012, Releigh, NC, USA, 16–18 October 2012.

21. Williams, P.; Sion, R.; Tomescu, A. Single round access privacy on outsourced storage. In Proceedings of the
CCS 2012, Releigh, NC, USA, 16–18 October 2012.

22. Shi, E.; Chan, T.H.H.; Stefanov, E.; Li, M. Oblivious RAM with O((log N)3) worst-case cost. In Proceedings
of the ASIACRYPT 2011, Seoul, Korea, 4–8 December 2011.

23. Stefanov, E.; van Dijk, M.; Shi, E.; Fletcher, C.; Ren, L.; Yu, X.; Devadas, S. Path ORAM: An extremely simple
oblivious RAM protocol. In Proceedings of the CCS 2013, Berlin, Germany, 4–8 November 2013.

24. Stefanov, E.; Shi, E. ObliviStore: High performance oblivious cloud storage. In Proceedings of the IEEE
Symposium on Security and Privacy, San Francisco, CA, USA, 19–23 May 2013.

25. Stefanov, E.; Shi, E.; Song, D. Towards practical oblivious RAM. In Proceedings of the NDSS 2011, San Diego,
CA, USA, 6–9 February 2011.

26. Gentry, C.; Goldman, K.; Halevi, S.; Julta, C.; Raykova, M.; Wichs, D. Optimizing ORAM and using
it efficiently for secure computation. In Proceedings of the PETS 2013, Bloomington, IN, USA, 10–23 July 2013.

27. Stefanov, E.; Shi, E. Multi-Cloud Oblivious Storage. In Proceedings of the CCS 2013, Berlin, Germany,
4–8 November 2013.

28. Wang, X.; Huang, Y.; Chan, T.H.H.; Shelat, A.; Shi, E. SCORAM: Oblivious RAM for secure computations.
In Proceedings of the CCS 2014, Scotsdale, AZ, USA, 3–7 November 2014.

29. Moataz, T.; Mayberry, T.; Blass, E.O. Constant communication ORAM with small blocksize. In Proceedings
of the CCS 2015, Denver, CO, USA, 12–16 October 2015.

30. Moataz, T.; Blass, E.O.; Mayberry, T. Constant Communication ORAM without Encryption. In IACR
Cryptology ePrint Archive; International Association for Cryptologic Research: Rüschlikon, Switzerland, 2015.

Future Internet 2017, 9, 57 22 of 22

31. Lipmaa, H.; Zhang, B. Two new efficient PIR-writing protocols. In Proceedings of the ACNS 2010, Beijing,
China, 22–25 June 2010.

32. Mayberry, T.; Blass, E.O.; Chan, A.H. Efficient private file retrieval by combining ORAM and PIR.
In Proceedings of the NDSS 2014, San Diego, CA, USA, 23–26 February 2014.

33. Lu, S.; Ostrovsky, R. Distributed Oblivious RAM for Secure Two-Party Computation. In IACR Cryptology
ePrint Archive 2011/384; International Association for Cryptologic Research: Rüschlikon, Switzerland, 2011.

34. Freier, A.; Karlton, P.; Kocher, P. The Secure Sockets Layer (SSL) Protocol Version 3.0; RFC 6101; Internet
Engineering Task Force (IETF): Fremont, CA, USA, 2011.

c© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related Work
	Oblivious RAM
	Private Information Retrieval
	Hybrid ORAM-PIR Designs
	Multi-Server ORAMs

	Problem Definition
	Preliminary Construction: TSBT-ORAM
	Storage Organization
	Server-Side Storage
	Client-Side Storage

	Data Query Process
	Client's Launching of Query
	Servers' Response to Query
	Client's Computation of the Query Result

	Data Eviction Process
	Basic Idea
	Oblivious Retrieval of Evicted Data Block
	Oblivious Receiving of Evicted Data Block

	Final Construction: TSKT-ORAM
	Storage Organization
	Client-Side Storage
	System Initialization
	Data Query
	Data Eviction
	Overview
	The Algorithm

	Security Analysis
	Comparisons
	Asymptotic Comparisons
	Practical Comparisons
	Communication Cost
	Computational Cost
	Access Delay Comparison
	Storage Cost

	Conclusions

