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Abstract: This research combines between two different manufacturing concepts. On the one hand,
flow shop scheduling is a well-known problem in production systems. The problem appears when
a group of jobs shares the same processing sequence on two or more machines sequentially. Flow
shop scheduling tries to find the appropriate solution to optimize the sequence order of this group
of jobs over the existing machines. The goal of flow shop scheduling is to obtain the continuity of
the flow of the jobs over the machines. This can be obtained by minimizing the delays between two
consequent jobs, therefore the overall makespan can be minimized. On the other hand, collaborative
robotics is a relatively recent approach in production where a collaborative robot (cobot) is capable
of a close proximity cooperation with the human worker to increase the manufacturing agility and
flexibility. The simplest case-study of a collaborative workcell is one cobot in cooperation with one
worker. This collaborative workcell can be seen as a special case of the shop flow scheduling problem,
where the required time from the worker to perform a specific job is unknown and variable. Therefore,
during this research, we implement an intelligent control solution which can optimize the flow shop
scheduling problem over the previously mentioned case-study.

Keywords: flow shop scheduling; collaborative robotics; holonic control solution; multi-agent system;
rule management system

1. Introduction and Related Research

Collaborative robotics is a novel successful trend in manufacturing which involves a safe cobot.
The idea of the collaborative robotics is to gather the advantages of the industrial robot and the human
worker together in the same work environment [1]. Since the manufacturing system is a matter of
a continuous fluctuation in production demands such as the customization level and quantity [2],
the presence of the human worker can be considered a very big advantage. This advantage stems from
the fact that the worker can use his natural senses intuitively to form very complicated yet instant
solutions. In contrast, the robot needs to be preprogramed to solve a specific problem.

A very simple example can be seen in an assembly scenario where the production customization
level and volume is changing all the time. The worker can easily adapt his performance to assemble
a new customized product without the need to stop the production process. Yet the cobot would be
so useful if it could pick and place the exact needed parts of this customized product to the worker.
The cobot can easily adapt to the pick and place operations based on previously programmed positions
of all the product parts. In other words, it is much easier for the worker to adapt to manufacturing
operations which require human experience such as assembly. While it is much more efficient for a
cobot to adapt to much simpler operations such as pick and place. The efficiency of the cobot stems
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from the fact that it is more reliable than the worker in performing tasks that require heavy weight
lifting or speed.

Sadik, and Urban are addressing the problem of self-organization in the cooperative workcell
in [3]. They are mainly answering the question of how the cooperative workcell can continuously
adapt to the variation in the number of workers or cobots during the cooperative manufacturing.
The researchers are offering an interesting approach by combining the privileges of both the Holonic
Control Architecture (HCA) and the International Society of Automation (ISA)-95 standard. The article
applies the solution over a case-study which starts with two cobots in coordination with two workers.
Then the number of the cobots varies from two to one and then to two again, the same variation
in the worker numbers occurs as well. The results of the article show that the proposed solution is
capable of achieving the maximum utilization of the available operational resources. Two important
comments can be stated regarding this work, the first comment is that the researchers have used the
event oriented concept to deal with the variation in the required time needed from the worker to
accomplish an assigned task. In other words, the time needed from the worker to perform a task has
never been measured or recorded during the presented case-study. The second comment is that they
have only used the First Come First Serve (FCFS) method to schedule the cooperative tasks. Therefore,
they did not test the effect of other scheduling methods on the production efficiency.

The research in [4] focuses on the cooperative workcell layout design and it extends that focus by
proposing the question of how to allocate tasks among the existing cobots and workers. The research
introduces an interesting investigation of the previous solutions to design a layout for a reconfigurable
workcell. The article proposed an offline visualization tool to assist in task planning based on
maximizing a utilization formula. One of the parameters which has been taken into consideration
during task planning is the task completion time of the worker. It is not clear how this completion
time has been obtained during the article, but it seems to be assumed in advance before deploying the
simulation. If so, this makes the solution approach a bit shaky. Two case-studies have been used to
test the research approach. During the two cases, the number of the cooperative resources is always
fixed. That means that each time the number of the resources changes, the simulation should be rebuilt
and redeployed again. In other words, the research does not put into consideration the adaption to
the fluctuation in the number of the operational resources as a new dimension of configurability in
the cooperative workcell. Moreover, the main motive of the research is to distribute the tasks among
the available operational resources, and it does not schedule the whole existing group of tasks in the
cooperative workcell.

The research in [5] addresses the physical safety problem in a cooperative workcell, the research
introduces a novel approach to achieve the safety during the worker-industrial robot cooperation.
The solution methodology suggested to estimate the worker task execution time. This estimation was
based on an offline analysis of the worker and the industrial robot tasks in a simulation environment.
From this analysis, the researchers were able to calculate the safety zone where the industrial robot
is permitted to move. From a theoretical point of view, the research approach is well-explained.
However, from the technical point of view, the article does not provide enough details to explain
how to implement the solution over a real industrial case scenario. In our research, we address the
scheduling problem which is another different subject than the physical safety in a cooperative robot.
However, the idea of analyzing the worker task execution time in a cooperative manufacturing scenario
seems to be not only useful for scheduling, but also for the physical safety.

In Section 2 of this article, we are going to explain the research case-study and formulate the
research questions. In Section 3, we are going to introduce the research fundamentals which are
needed to implement the solution. Section 4 will describe the solution implementation over the
previously mentioned case-study. Finally, Section 5 will summarize and discuss the research to derive
the conclusion and the future work.
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2. Case-Study Description and Problem Formulation

The previous section has mentioned a practical example of a collaborative workcell, where one
cobot is in cooperation with one worker in a reconfigurable manufacturing scenario. The cobot is
responsible for the pick and place operations while the worker assembles the handled products. Due to
the speed difference between the worker and the cobot, a buffer space is needed beside the worker to
store the loaded jobs by the cobot till the worker is free to process them. In this paper, we will take this
example as a case-study to show the solution approach.

In this case-study the production volume is continuously varying which leads to the fluctuation
in the required time from both the cobot and the worker to complete a job. The required time from the
cobot to pick and place the parts of an assigned job is unknown, however it can be calculated. Since
the cobot speed is reliable, thus we can assume that the required time from the cobot to pick and place
one job is a constant and equals to a Robot Time Constant (RTC). Therefore, by multiplying RTC by
the required units number, the overall time can be calculated. On the other hand, the required time
which is needed from the worker to assemble a job is varying, therefore this time cannot be calculated.
However, it can be predicated by recording the needed time from the worker to assemble the previous
jobs, then calculating the Worker Mean Time Value (WMTV), which can be used later to predict the
overall needed time for assembling the next jobs.

The research question is very easy to state, yet it is very hard to answer. When a cobot is in
coordination with a worker in the mentioned case-study. How can the control solution assign the
next production job among many standing jobs to the cobot and the worker to minimize the overall
makespan. Taking into consideration the previously mentioned uncertainty in the required time from
the worker to accomplish a production job. The difficulty of answering this question stands from
the fact that the answer is beyond an efficient scheduling algorithm only, since it needs an intelligent
information control and communication solution which can understand the overall status of the
workcell and monitor the worker time to be able to take logical decisions and therefore can apply
the scheduling algorithm. During this research, we extend the research in [3] by applying Johnson
algorithm to schedule the cooperation at the case-study. The required solution components as well as
Johnson algorithm are going to be explained in details in the next section.

3. Solution Fundamentals

3.1. Johnson Algorithm for Two Stage Flow Shop Scheduling

A typical two sequential stages flow shop scheduling problem can be solved by Johnson
algorithm [6,7], Johnson scheduling model can be seen in Figure 1. The preconditions of this scheduling
problem are that the production jobs always need to be processed by M-A first, then processed by
M-B. The production speeds of M-A and B are different. Therefore, a buffer unit has to exist between
M-A and B to recover this speed difference. Two kinds of time delay can be found, the first kind is
M-B starvation delay, this means that M-B is free but waiting M-A to finish the current job to be able
to start processing the same job. This delay must happen at least once at the first job assignment.
The second kind of the time delay is the buffer delay. This delay happens when M-A has finished a job
(Ji) while M-B is busy in processing a prior job. Therefore, Ji has to wait in the buffer till M-B is free
and Ji processing turn comes.
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Figure 1. Model of two sequential stages manufacturing workcell.

Johnson algorithm tries to minimize the previously mentioned delays. Therefore, it minimizes the
makespan of M-B which is the longest makespan of that manufacturing workcell [8]. Jonson algorithm
can be summarized by the next three steps:

• Step-1: Find the shortest processing time among all the present non-scheduled standing jobs.
If two or more jobs have the same processing time. Select one of them arbitrarily.

• Step-2: If the shortest processing time locates on M-A, schedule the corresponding job as the
soonest. If the shortest processing time locates on M-B, schedule the corresponding job as
the latest.

• Step-3: Eliminate the job that has been scheduled from the present non-scheduled standing jobs.
Repeat steps 1 and 2 till scheduling all the jobs.

The left section of Table 1 shows a group of unscheduled jobs Ji. In order to schedule those jobs
using Johnson algorithm we should find the shortest Processing Time (TP) which is J1 and equals to
5 time units, since this time locates on M-B, therefore it has to be scheduled at the end of the queue.
J2 comes after with the shortest TP on M-A, therefore it has to be scheduled at the beginning of the
queue. Then J5 is the job with the shortest TP on M-B, therefore we put it before J1. Finally, we find
that J3 and J4 are equal in the shortest TP on M-A, therefore we select one of them arbitrarily to come
after J2. In this example, we selected J4 to be scheduled first then J3. In order to prove that Johnson
scheduling is the optimum solution, we compared it with the FCFS scheduling method which can
also be seen at the middle section of Table 1 and in Figure 2a. By calculating the Operation Time (TO)
based on the given TP. We can see that the makespan of the FCFS scheduling is 54 time units. While,
by applying Johnson algorithm, the makespan is reduced to 49 time units which can be seen at the
right section of Table 1 and in Figure 2b.

Table 1. Johnson Scheduling vs. First Come First Serve Scheduling.

Unscheduled Jobs List First Come First Serve Scheduling Johnson Scheduling

Ji TPi@M-A TPi@M-B Ji TOi@M-A TOi@M-B Ji TOi@M-A TOi@M-B
J1 10 5 J1 0:10 10:15 J2 0:6 6:18
J2 6 12 J2 10:16 16:28 J4 6:14 18:28
J3 8 9 J3 16:24 28:37 J3 14:22 28:37
J4 8 10 J4 24:32 37:47 J5 22:34 37:44
J5 12 7 J5 32:44 47:54 J1 34:44 44:49
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3.2. Holonic Control Architecture and Artificial Agents

HCA is a distributed control solution architecture which has been frequently used to solve the
problem of reconfigurable manufacturing system [9,10]. The HCA defines the holon as an autonomous
and cooperative building unit of the manufacturing system, the holon is mainly responsible for
transforming, transporting, storing, and validating the information and the physical inputs. The HCA
divides the manufacturing process tasks and responsibilities over different holon categories. The most
known HCA model is the Product-Resource-Order-Staff-Architecture (PROSA), which is shown in
Figure 3a. The PROSA basic holons are:

• Product Holon (PH): is responsible for processing and storing the different production plans
which are necessary to obtain the proper manufacturing of a certain product.

• Order Holon (OH): is responsible for composing, managing the production orders. Furthermore,
in a small scale enterprise, the OH distribute the tasks assignment among the existing operating
resources and hence it monitors the execution of these assigned tasks.

• Operational Resource Holon (ORH): an entity on the shop floor which represents a physical object
such as a machine, a robot, or a worker.

The most common technology to apply the HCA concept is the software agent. An artificial
agent is a piece of code which is deployed in a particular environment and is able to accomplish
autonomous actions in this environment to achieve some criteria which are specified by the artificial
agent programmer [11]. An agent is autonomous by nature. The meaning of agent autonomy is that
the agent self-steers its actions without direct assistance of the humans, and has a high degree of
a self-directed control over its actions and its internal states. To achieve the concept of autonomy,
the agent must be responsive, pro-active, and social. ‘Responsive’ means that the agent can perceive its
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environment and respond as fast as it is needed to the different changes happen in this environment.
‘Pro-active’ means that the agent is capable of taking initiatives based on a set of goal directed
behaviors, thus it can exhibit opportunistic behavior. Finally, ‘social’ means that the agent can solve
the problems and reach its goals by being able to interact with other autonomous agents and humans
in its environment [12].
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Conceptually, an autonomous agent is an artificial software problem solver [13]. This means that
the autonomous agent must be able to select a specific set of actions and build its own plans to solve an
existing problem. The set of actions which are selected to be executed by an autonomous agent is called
a behavior. The artificial agent behaviors are coded by the agent developer. One or more behaviors can
execute by an artificial agent to achieve its goal. The choice of a specific behavior among many should
be based on a proper criterion which has been developed by the agent software creator. The agent
socialization is the method that an agent would use to collect the information from its environment,
therefore it can build an execution plan. A Multi-Agent System (MAS) is a flexible topology which
links a group of artificial agents. The idea of the MAS is to compose a team of artificial agents whom
together can solve a problem beyond the capabilities of an individual artificial agent [14].

The most famous middleware to apply the autonomous agent concept is JAVA Agent Development
Environment (JADE) [15], which can be seen in Figure 3b. An instance of JADE runtime is an
independent thread over a specific operating system. This instance is composed of a set of containers.
A container by definition is a group of autonomous agents which are deployed under the same
instance of JADE runtime. Every JADE runtime must have at least a main container, which contains
two substantial agents. Those two substantial agents are the Agent Management System (AMS) and the
Directory Facilitator (DF). AMS is responsible for giving a unique agent ID (AID) for every agent under
its platform. The AID is mainly used as the communication address for an agent. Meanwhile, the DF
is the yellow pages of JADE. This means that DF knows the services which can be provided by all the
agent under a JADE runtime. Therefore, it can announce those services to obtain the service oriented
communication policies [16]. JADE applies a standard communication protocol which is founded by
the Foundation for Intelligent Physical Agent (FIPA) specifications. FIPA is an IEEE Computer Society
standard which supports the creation of an agent-based network and guarantees interoperability
with the other available standard technologies [17]. JADE agents use FIPA-Agent Communication
Language (FIPA-ACL) in order to exchange the ACL-messages either inside or outside its operating
platform. Furthermore, JADE provides a Graphical User Interface (GUI) to help the agent programmer
to develop, deploy, and debug a MAS [18].
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3.3. Rule Management System and Drools

A Rule Management System (RMS) is a form of an expert system which usually uses an ontology
based representation to codify the information into a knowledge base that can be used for reasoning [19].
An RMS depends on two kind of memory as it is shown in Figure 4. The working memory holds
the facts which present the domain knowledge, while the production memory holds a set of rules
which are usually presented in a form of conditional statements. The reasoning engine solves a given
problem by matching the present facts with the existing rules. The reasoning engine organizes and
controls the follow of the solution route based on one of the following reasoning methods [20]:

• Forward reasoning chaining: in forward reasoning chaining, the RMS starts with a set of initial
facts then it determines new facts every time a rule matches a fact. The RMS will go through a
chain of rules firing sessions to reach its final target, which ultimately leads to find the solution
route from the initial facts to the final goal in a forward approach of reasoning.

• Backward reasoning chaining: in backward reasoning chaining, the RMS starts from the final goal,
then it finds which rules must be fired to lead to this goal, therefore the RMS can determine the
facts which are needed to reach the final goal. During the backward chaining, a consequence of
sub-goals will appear, which ultimately leads to find the solution route from the final goal to the
initial sub-goal in a backward approach of reasoning.
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Drools is a Business Rule Management System (BRMS) that has been created by jboss organization,
therefore it adds more features than a regular RMS [21]. As it provides a tool for a rule-based solution
creation, managing, deploying, and analyzing. One of the biggest advantages of Drools is its ability to
apply a hybrid chaining reasoning. A hybrid chaining reasoning is a mix between the forward and
the backward chaining which can be more efficient in some cases than both. Also, Drools extends the
Rete algorithm for pattern matching which called ReteOO. ReteOO denotes the enhancement of Rete
algorithm by combing it with other Object Oriented (OO) concepts such as abstraction, inheritance,
and encapsulation.

4. Solution Implementation

4.1. Johnson Algorithm for Two Stages Flow Shop Scheduling

Figure 5 shows the shop flow model of the previously mentioned case-study. The model is a
special case of the two sequential stages manufacturing workcell which has been described in detail in
Section 3.1. A set of jobs (Oi, ni) is assumed to be picked and placed by the cobot, where Oi denotes
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the customized pump order in the same sequence they have been received and ni denotes the required
number of units of this order. In the context of reconfigurable manufacturing, the production order is a
customized version of a specific product. In our case-study a centrifugal pump (CP) manufacturing
has been chosen as an example for a reconfigurable product. At the first stage of the cooperative
workcell, it has been assumed that the cobot will always take the same time constant (RTC) to pick and
place any pump regardless the customization level. Therefore, the required TP from the cobot to pick
and place a customized order (RTPi) equals to the RTC multiplied by ni. At the second stage of the
cooperative workcell, it has been assumed that we can continuously record the required time from the
worker to assemble a job (Oi, ni). Thus, an average time value (WMTV) can be calculated. Therefore,
a predication for the required processing time from the worker to assemble the next job (WTP(i+1)) can
be estimated as WMTV multiplied by ni+1. An example of calculating the job processing time can be
seen in Table 2.
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Table 2. Johnson Scheduling Based On RTC (Robot Time Constant) and WMTV (Worker Mean Time
Value).

Unscheduled Jobs List Johnson Scheduling Case-1:
RTC ≤ WMTV

Johnson Scheduling Case-2:
RTC ≥ WMTV

Ji = (Oi, ni) RTPi WTPi Ji RTPi WTPi Ji RTPi WTPi
J1 = (O1, n1) RTC * n1 WMTV * n1 J1 RTC * n1 WMTV * n1 J2 RTC * n2 WMTV * n2
J2 = (O2, n2) RTC * n2 WMTV * n2 J2 RTC * n2 WMTV * n2 J1 RTC * n1 WMTV * n1

≤ ≡ Less than or equal to, ≥ ≡ Greater than or equal to, * ≡ Multiplied by.

Johnson algorithm is mainly depending on finding the shortest job processing time. This makes
the algorithm simpler due to the assumption in our case-study. This is because RTPi and WTPi are
correlated to each other’s by ni, while this correlation did not exist at Table 1. Therefore, Johnson
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algorithm can be obtained by comparing RTC to WMTV as shown in Table 2. Let us assume that n1 is
less than n2. In case one, we will assume that RTC is less than or equal to WMTV, this means that RTP1

must be the shortest unscheduled processing time. Therefore, the sequence of the scheduled jobs will
be J1 then J2. In case two, we will assume that RTC is greater than or equal to WMTV, this means that
WTP1 must be the shortest unscheduled processing time. Therefore, the sequence of the scheduled jobs
will be J2 then J1. From this comparison, we can modify Johnson steps to schedule the jobs based on
the ascending sequence of ni, if RTC is less than or equal to WMTV. Otherwise, scheduling of the jobs
is based on the descending sequence of ni.

4.2. Holonic Control Architecture Implementation

Figure 6 shows the GUI for the implemented case-study. While Figure 7 shows the interaction
and the behaviors of those holons. Four holons exist in this implementation. The first holon is the PH
with a GUI shown in Figure 6a. The PH is generating the pump order by choosing the pump size and
quantity. By pressing send order button, the product agent which is shown in Figure 7a triggers a one
shot behavior which sends the job via an ACL-message to the OH. The ACL-message contains the job
details and it has an AGREE communication act as can be seen in Figure 6b. The OH GUI is shown in
Figure 6b. The order agent implements a cyclic behavior which continuously receives the jobs from the
pump agent. The AGREE-message sending/receiving operation is shown in line-1 of Figure 7b.

When the order agent receives a new job, it fires a new Drools reasoning session. The reasoning
engine will perform a FCFS or Johnson scheduling based on the overall status of the cooperative
workcell. The rules that control the scheduling decision making can be seen in details in Table 3.
IF the cobot is free, the scheduled pump job will be assigned to it as it can be seen via the Robot
Holon (RH) GUI in Figure 6c. A one shot behavior is triggered by Drools reasoning engine to send
a REQUST-message to the robot agent as it can be seen in line 2 of Figure 7b. The robot agent has a
cyclic behavior which continuously receives the job assignments.

Future Internet 2017, 9, 48 9 of 15 

 

will be J1 then J2. In case two, we will assume that RTC is greater than or equal to WMTV, this means 

that WTP1 must be the shortest unscheduled processing time. Therefore, the sequence of the 

scheduled jobs will be J2 then J1. From this comparison, we can modify Johnson steps to schedule the 

jobs based on the ascending sequence of ni, if RTC is less than or equal to WMTV. Otherwise, 

scheduling of the jobs is based on the descending sequence of ni. 

4.2. Holonic Control Architecture Implementation 

Figure 6 shows the GUI for the implemented case-study. While Figure 7 shows the interaction 

and the behaviors of those holons. Four holons exist in this implementation. The first holon is the PH 

with a GUI shown in Figure 6a. The PH is generating the pump order by choosing the pump size and 

quantity. By pressing send order button, the product agent which is shown in Figure 7a triggers a 

one shot behavior which sends the job via an ACL-message to the OH. The ACL-message contains 

the job details and it has an AGREE communication act as can be seen in Figure 6b. The OH GUI is 

shown in Figure 6b. The order agent implements a cyclic behavior which continuously receives the 

jobs from the pump agent. The AGREE-message sending/receiving operation is shown in line-1 of 

Figure 7b. 

When the order agent receives a new job, it fires a new Drools reasoning session. The reasoning 

engine will perform a FCFS or Johnson scheduling based on the overall status of the cooperative 

workcell. The rules that control the scheduling decision making can be seen in details in Table 3. IF 

the cobot is free, the scheduled pump job will be assigned to it as it can be seen via the Robot Holon 

(RH) GUI in Figure 6c. A one shot behavior is triggered by Drools reasoning engine to send a 

REQUST-message to the robot agent as it can be seen in line 2 of Figure 7b. The robot agent has a 

cyclic behavior which continuously receives the job assignments. 

 

Figure 6. (a) Product Holon Interface; (b) Order Holon Interface; (c) Robot Holon Interface; (d) Worker 

Holon Interface. Figure 6. (a) Product Holon Interface; (b) Order Holon Interface; (c) Robot Holon Interface; (d) Worker
Holon Interface.



Future Internet 2017, 9, 48 10 of 15

Future Internet 2017, 9, 48 10 of 15 

 

 

Figure 7. (a) Case-study holons interaction and behaviors; (b) Case-study communication model. 

When the robot agent receives a new job assignment, it initializes a timer with a value of ni 

multiplied by RTC. In our case-study we assumed that RTC value equals to 2.0 s. When the timer is 

elapses, the robot agent sends an INFORM message to the order agent to inform it has picked and 

placed the assigned task. This INFORM-message can be seen in line 3 of Figure 7b. When the order 

agent receives a robot done event, it fires a new Drools reasoning session. Drools will reschedule the 

existing standing jobs due to the decision table rules. Moreover, IF the worker is free, the scheduled 

jobs will be assigned to the worker as it can be seen via the Worker Holon (WH) GUI in Figure 6d. 

A one shot behavior is triggered by the Drools reasoning engine to send a REQUST-WHEN-

message to the worker agent as it can be seen in line 4 of Figure 7b. The worker agent has a cyclic 

behavior which is continuously receiving the order assignments. When the worker finishes 

assembling all the pump orders, he presses a task done button via his GUI. By pressing the worker 

task done, the worker agent triggers a one shot behavior which sends an INFORM-IF-message to the 

order agent. The INFORM-IF-message can be seen in line 5 of Figure 7b. When the order agent 

receives a worker done event, it fires a new Drools reasoning session. Drools will calculate the WMTV 

every time the OH receives a worker done event. Therefore, the rest of the scheduling will be based 

on the current WMTV. 

Figure 7. (a) Case-study holons interaction and behaviors; (b) Case-study communication model.

When the robot agent receives a new job assignment, it initializes a timer with a value of ni

multiplied by RTC. In our case-study we assumed that RTC value equals to 2.0 s. When the timer is
elapses, the robot agent sends an INFORM message to the order agent to inform it has picked and
placed the assigned task. This INFORM-message can be seen in line 3 of Figure 7b. When the order
agent receives a robot done event, it fires a new Drools reasoning session. Drools will reschedule the
existing standing jobs due to the decision table rules. Moreover, IF the worker is free, the scheduled
jobs will be assigned to the worker as it can be seen via the Worker Holon (WH) GUI in Figure 6d.

A one shot behavior is triggered by the Drools reasoning engine to send a REQUST-WHEN-message
to the worker agent as it can be seen in line 4 of Figure 7b. The worker agent has a cyclic behavior
which is continuously receiving the order assignments. When the worker finishes assembling all
the pump orders, he presses a task done button via his GUI. By pressing the worker task done,
the worker agent triggers a one shot behavior which sends an INFORM-IF-message to the order agent.
The INFORM-IF-message can be seen in line 5 of Figure 7b. When the order agent receives a worker
done event, it fires a new Drools reasoning session. Drools will calculate the WMTV every time the OH
receives a worker done event. Therefore, the rest of the scheduling will be based on the current WMTV.



Future Internet 2017, 9, 48 11 of 15

Table 3. Drools Scheduling and Order Assignment Decision Table.

Event

State Rule

Action State ExplanationStart
Flag

Stop
Flag

Worker
Done

Counter

Robot
Status

Worker
Status

Received
Orders

List

Scheduled
Orders

List

New
Order
Event

True False Equal
to 0 Free Don’t

Care
Don’t
Care

Don’t
Care

-FCFS
scheduling
-Robot order
assignment

-New order event is received at
the very beginning.
-New order event is received after
the robot is done with all the
previously assigned orders, while
the worker has not finished the
first assigned order.

New
Order
Event

True False Equal
to 0 Busy Don’t

Care
Don’t
Care

Don’t
Care

-FCFS
scheduling

-New order event is received
while the robot is executing one
previously assigned order, while
the worker has not finished the
first assigned order.

New
Order
Event

True False Greater
than 0 Free Don’t

Care
Don’t
Care

Don’t
Care

-Johnson
scheduling
-Robot order
assignment

-New order event is received after
the robot is done with all the
previously assigned order, while
the worker has finished at least
the first assigned order.

New
Order
Event

True False Greater
than 0 Busy Don’t

Care
Don’t
Care

Don’t
Care

-Johnson
scheduling

-New order event is received
while the robot is executing one
previously assigned order, while
the worker has finished at least
the first assigned order.

Robot
Done
Event

True False Equal
to 0

Don’t
Care Free Not

Empty
Don’t
Care

-FCFS
scheduling
-Worker order
assignment

-The robot finished one assigned
order while the worker is free and
has not assigned any previous
order.

Robot
Done
Event

True False Equal
to 0

Don’t
Care Busy Not

Empty
Don’t
Care

-FCFS
scheduling

-The robot finished one assigned
order while the worker is
executing the first assigned order.

Robot
Done
Event

True False Greater
than 0

Don’t
Care Free Not

Empty
Don’t
Care

-Johnson
scheduling
-Worker order
assignment

-The robot finished one assigned
order while the worker is free and
has finished at least one assigned
order.

Robot
Done
Event

True False Greater
than 0

Don’t
Care Busy Not

Empty
Don’t
Care

-Johnson
scheduling

-The robot finished one assigned
order while the worker is busy
and has finished at least one
assigned order.

Worker
Done
Event

True False Don’t
Care

Don’t
Care

Don’t
Care

Don’t
Care

Not
Empty

-Calculate the
order execution
average time
-Worker task
assignment

-The worker finished one
assigned order while still there is
at least one order in the scheduled
orders list.

Worker
Done
Event

True False Don’t
Care

Don’t
Care

Don’t
Care

Don’t
Care Empty

-Calculate the
order execution
average time

-The worker finished one
assigned order while the
scheduled orders list is empty.

Figures 8 and 9 show the scheduling results due to the calculation of the WMTV and the decision
rules which are well-explained in Table 3. There are eight received jobs in Figure 8 which start with
order-ID (CP:1) and end with order-ID (CP:8). Every pump order has a different customization level
and a specific required quantity. However, the pump customization is out of the focus of this article
(refer to [3]). The jobs scheduling is based on the previously mentioned Johnson algorithm for our
case-study. By starting the production execution, the first two jobs (CP:1, CP:2) are scheduled based on
FCFS. The reason behind selecting FCFS as a scheduling method is that the worker had not finished
assembling CP:1 till CP:2 has been scheduled.

When the cobot finished to handle CP:2, the worker was already done with CP:1, therefore the
value of WMTV could be calculated as 3.5 s which is greater than the value of RTC (i.e., 2.0 s). Therefore,
the OH started to schedule the remaining jobs based on ascending their required quantity, that is why
CP:7 (i.e., the least unscheduled quantity) was scheduled as the earliest. When the cobot has done with
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handling CP:7, the value of WMTV was 2.4 s which is still greater than the value of RTC. Therefore,
the OH kept the scheduling based on ascending the required quantity, that is why CP:3 was scheduled
as the earliest.

When the cobot was done with handling CP:3, the value of WMTV was 1.7 s which is less than
the value of RTC. Therefore, the OH started to schedule the jobs based on descending their required
quantity, that is why CP:8 (i.e., the biggest unscheduled quantity) was scheduled as the earliest. When
the cobot has done with CP:8, the value of WMTV was still the same as before, therefore the OH has
kept the scheduling based on descending the required quantity, that is why CP:6 was scheduled as
the earliest.
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When the cobot has done with handling job CP:8, the value of WMTV was 3.09 s, which is greater
than the value of RTC. Therefore, the OH started again to schedule the jobs based on ascending their
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required quantity, that is why CP:4 was scheduled as the earliest. When the cobot was done with
handling CP:4, the value of WMTV was 2.04 s which is still greater than the value of RTC. Therefore,
the OH kept the scheduling based on ascending values of the required quantity, that is why CP:5 has
been scheduled as the final scheduled job.

5. Summary, Conclusions, and Future Work

During this article, we introduced the problem of scheduling the production tasks in case of
one cobot in collaboration with one worker in a reconfigurable manufacturing scenario. Taking into
consideration the fluctuation in the required production customization level and quantity, we derived
the idea of collaboration. Since the cobot is reliable in terms of speed and weight lifting, it therefore can
be assigned to simple operations to adapt to such as pick and place operations. Meanwhile, the worker
can adapt to more complex operations such as assembly operations.

The article proposed a solution approach via an analogy between Johnson scheduling algorithm
and the case-study scenario. The analogy was based on the assumption that the required time for the
worker to finish a certain job can be always monitored and recorded, then that time value was used to
predict the worker task time for the future jobs and compare it to the required time from the cobot the
same future jobs. The HCA has been used to implement this solution via the autonomous reactive
agent and the rule management system technologies. The OH was responsible for receiving the jobs
from the PH, then scheduling them based on a comparison between RTC and WMTV. Ultimately,
the OH can assign the jobs for the cobot and the worker based on their statuses. The OH used JADE
agent messaging to comprehend the production jobs and the statuses of the cobot and the worker,
and also to calculate the WMTV. Simultaneously, the OH used Drools RMS to take a scheduling or a
job assignment decision.

The case-study implementation showed the success of the solution approach. That is because the
solution optimized the two kinds of delay which can exit in two stage cooperative workcell. The first
delay is a result of the worker starvation. This means that the worker is in free status but waiting
for the cobot to process the job. This delay must happen at least one once at the very beginning
of the case-study implementation. Otherwise, the worker was always busy during the rest of the
implementation. The worker starving delay was minimized even when the WMTV was less than the
RTC (i.e., the worker is faster than the cobot). The second source of delay which was optimized by
the solution is the buffer delay. This delay can be so obvious when the cobot is done with handing
all the scheduled jobs while the worker is still operating. To minimize this delay, the shortest jobs
of the worker should be held to the end of the scheduling. However, the solution does not aim to
only minimize that delay as it also tries to adapt to the current situation to optimize the two kinds
of delay in the workcell. Therefore, we could see at the case-study implementation that the first two
jobs have been scheduled as FCFS, then the solution started to schedule based on Johnson algorithm
and the time has been taken from the worker to finish the previous jobs. Thus, when the cobot was
done with handing all the scheduled jobs, the worker was done with the first scheduled five jobs
and assembling the sixth job. This can be derived by counting the number of changes in the value of
WMTV in Figure 8. This means that CP:4 and CP:5 were still in the buffer when the cobot was done
with all the scheduled jobs. The sum of the required units in CP:4 and CP:5 is 11 units. This number
was not the minimum quantity of the two jobs, but it was the optimal due to the previously explained
scenario of the case-study.

During this research, we tried to simplify Johnson algorithm by using RTC, WMTV, and ni.
The main reason behind that was to facilitate the illustration of the whole solution idea. However, the
same solution approach can be accomplished by using the original steps of Johnson algorithm. This can
fit other operations which have no specific number of units but still the time of the operation is variable.
However, finding a correlation between the cobot and the worker processing times will always simplify
Johnson scheduling steps. The same approach of measuring the worker time of executing a task can be
used as well if the cobot task time is variable. Then predicting the next jobs processing time based
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on those measurements to achieve Johnson scheduling at the next job assignment. Even though the
case-study was a very specific scenario, the same solution approach can be followed to extend the
number of collaborated operational resources, or the nature of the manufacturing scenario. Therefore,
in our future research, we will study more generic case-studies and add more collaborative resources
to the study.
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