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Abstract: As Augmented Reality (AR) applications become commonplace, the determination
of a device operator’s subjective Quality of Experience (QoE) in addition to objective Quality
of Service (QoS) metrics gains importance. Human subject experimentation is common for
QoE relationship determinations due to the subjective nature of the QoE. In AR scenarios,
the overlay of displayed content with the real world adds to the complexity. We employ
Electroencephalography (EEG) measurements as the solution to the inherent subjectivity and
situationality of AR content display overlaid with the real world. Specifically, we evaluate prediction
performance for traditional image display (AR) and spherical/immersive image display (SAR) for the
QoE and underlying QoS levels. Our approach utilizing a four-position EEG wearable achieves high
levels of accuracy. Our detailed evaluation of the available data indicates that less sensors would
perform almost as well and could be integrated into future wearable devices. Additionally, we make
our Visual Interface Evaluation for Wearables (VIEW) datasets from human subject experimentation
publicly available and describe their utilization.

Keywords: augmented reality; quality of experience; quality of service; electroencephalography;
image quality

1. Introduction

Increasingly, wearable media display devices, such as for Virtual Reality (VR) and Augmented
Reality (AR) services, become sources for media consumption in industrial and consumer scenarios.
Typically, these devices perform binocular vision augmentation and content presentation, and initial
interest is emerging for directly comparing the two approaches in immersive contexts [1]. For AR
applications in particular, content is commonly displayed to provide context-dependent information.
The goal is to positively modify human performance, e.g., for driving tasks [2], in the context of medical
procedures [3,4] or for educational purposes [5]. The delivery of context-dependent network-delivered
content to devices in near real time, however, represents a challenge and requires new paradigm
considerations [6]. Facilitating the content distribution to these device types can follow multiple
approaches, such as direct wired or wireless connectivity or proxification with cellular connected
mobile phones [7]. In either scenario, a trade-off exists between the amount of compressed media data
and the possible quality that can be attained for presentation. While past research and implementation
efforts were generally directed at objective metrics, typically summarized as Quality of Service (QoS),
the subjective Quality of Experience (QoE) has become popular in the determination of overall service
quality [8]. In turn, network and service providers have an interest in optimizing the quality-data
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relationship for their offerings by taking the user’s experience as QoE into account. This approach to
the valuation of predominantly mobile services is beginning to attract interest in AR scenarios [9].

The QoE, however, is commonly derived from human subject experimentations, whereby
participants rate their experience on a Likert-type scale from worst to best. The individual ratings
are subsequently aggregated and expressed in terms of Mean Opinion Scores (MOS); see, e.g., [10,11].
This subjective rating approach, in turn, is based on cognitive and emotional states at the time of
experimentation and combines with the actual delivery of the service under evaluation. Human subject
experimentation, however, is not easily undertaken and commonly requires approved procedures and
more experimental effort than computer-driven experiments or simulations [12]. The MOS approach
furthermore averages the individual dependencies to derive an overall applicable relationship between
the underlying service delivery and user experiences in general. An additional downside to this
approach is, thus, the loss of the finer-grained subjective dependencies.

The subjective nature of quality considerations has led to several objective image quality metrics
that approximate the QoE through various features; see, e.g., [13]. Strides were made that combine
the QoS and the QoE in a generalized quantitative relationship to facilitate their determination; see,
e.g., [14,15]. The main goal of these efforts is to exploit the underlying common media compression
and impairment metrics (QoS) that are readily obtainable in order to closely approximate the subjective
experience (QoE). This approach enables easier experiment replication and practical implementation.

1.1. Related Works

The shift to wearable content consumption in AR scenarios requires new considerations of
environmental factors, as well as the equipment under consideration; see, e.g., [16]. Common device
types perform either monocular [17] or binocular [18] vision augmentation by presenting content
to the device operator; see, e.g., [19] for an overview. As operator performance augmentation is
typically the goal behind AR content display, evaluations such as in [20–22] showcase issues for
the various system types. Perceptual issues for these content presentation approaches have been
evaluated in the past, as well, such as for item segmentation [23], depth perception [24], contrast
and color perception [25] or the field-of-view [26]. In our own prior research, we investigated the
differences between the traditional opaque and transparent augmented reality scenarios for media
presentation [27]. Employing neural models to aid in image quality assessment has attracted recent
research efforts, as well; see, e.g., [28].

The combination of the perceptual nature of real-world overlaid content display in AR scenarios
with considerations for the QoE of device operators points to the importance of underlying
psycho-physiological aspects. In past research efforts, media quality was evaluated in the context of
cognitive processes [29]. Electroencephalography (EEG) measurements, in turn, could be exploited for
the determination or prediction of the QoE. The potential for a direct measurement [30] has successfully
been exploited in traditional settings; see, e.g., [29,31,32]. Typically, EEG measurements at 300–500 ms
after the stimulus, such as media display or quality changes, are utilized, with potential drawbacks [33].
In typical Brain-Computer Interface (BCI) research approaches, larger numbers of wet electrodes are
utilized in human subject experimentation within clinical settings. For more practical considerations,
commercially-available consumer-grade hardware can be employed in the experimentation and data
gathering. However, other physiological signals could be employed, as well, as examples for skin
conductivity or heart rate show promise [34].

The consumer-grade devices that have emerged in recent years typically employ dry EEG
electrodes at a limited number of placements on a subject’s head to gather information. Our initial
investigations [35,36] point towards the opportunity to exploit this setup to perform individual QoE
determinations and predictions. Jointly with the commonly head-worn binocular vision-augmenting
devices, a new opportunity in determining the QoE of device operators emerges. Specifically, small
modifications of current AR devices could provide real-time or close to real-time EEG measurements
that provide service providers with feedback for service improvement.
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1.2. Contribution and Article Structure

Throughout this paper, we employ commercially-available off-the-shelf equipment in a
non-clinical setting to determine the user-specific QoE in binocular vision augmentation scenarios.
Our approach resembles a practical conceptualization towards real-world implementations. The main
contributions we describe in this paper are:

1. A performance evaluation of predicting the QoE of individual human subjects in overall vision
augmentation (augmented reality) settings based on EEG measurements,

2. An evaluation of how these data can be employed in future wearable device iterations through
evaluations of potential complexity reductions and

3. A publicly-available dataset of human subject quality ratings at different media impairment levels
with accompanying EEG measurements.

The remainder of this paper is structured as follows. In the succeeding section, we review
our general approach and methodology before presenting the underlying datasets in Section 3.
We subsequently discuss the utilization of the datasets in an exemplary evaluation in Section 4
and describe the obtained results in Section 5 before we conclude in Section 6.

2. Methodology

In this section, we highlight the generation of the dataset through experimentation before
describing it in greater detail in Section 3. The general configuration for our experiments was previously
described in [16,27,35,36]. Overall, we follow the generation to evaluation process illustrated in
Figure 1, noting that the prediction performance evaluation results are presented last for readability.

Presentation and 
rating

EEG measurement

VIEW data sets Data preparation Prediction

Regression

Evaluation
(R2, MAE)

Result
(R2, MAE)

Sec. 2: Methods Sec. 3: VIEW Sec. 4: Evaluation Sec. 5: Results

Figure 1. Overview of the methodology for creating and evaluating the Visual Interface Evaluation for
Wearables (VIEW) datasets, including relevant sections in this paper; R2: Coefficient of determination;
MAE: Mean Absolute Errors.

Human subjects were initially introduced to the experiment and overall system utilization.
All subjects gave their informed consent for inclusion before they participated in the experiments.
The study was conducted in accordance with the Declaration of Helsinki, and the protocol was
approved by the Institutional Review Board of Central Michigan University (Central Michigan
University Institutional Review Board #568993).

The participants wore a commercial-grade head-mounted binocular vision augmentation device
and a commercial-grade EEG headband, both available off-the-shelf. Specifically, we employ the
Epson Moverio BT-200 mobile viewer, which consists of a wearable head-mounted display unit and
a processing unit that utilizes the Android Operating System. The display is wired to receive the
video signals and power from the processing unit and has a resolution of 960 by 540 pixels with Light
Emitting Diode (LED) light sources and a 23-degree Field Of View (FOV). The display reproduces colors
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at 24-bit depth at 60 Hz with 70% transparency. The real-world backdrop is a small meeting/classroom
with participants facing a whiteboard initially. The room was dim, with the main light source coming
from shaded windows to the side, as in prior works.

The subjects (or users) u had 15 s of media viewing time ranging from ts
u(i, l) to te

u(i, l), whereby we
denote the image as i and the impairment level as l. The presentation was followed by an unrestricted
quality rating period. During the rating period, subjects were asked to rate the previously-observed
media quality on a five-point Likert scale. After a short gray screen period, the next image was
presented. Overall, our approach follows the Absolute Category Rating with Hidden Reference
(ACR-HR) approach according to the International Telecommunication Union -Telecommunication
Standardization Sector (ITU-T) P.910 [37], i.e., we include the original image in the evaluation as
additional reference. The result is the subject’s quality of experience for this particular presentation,
denoted as qr

u(i, l).
We currently consider two different content scenarios, namely (i) traditional image display ( which

we denote as AR) and (ii) spherical (immersive) image display ( which we denote as SAR). The images
selected for the traditional image display condition were obtained from the Tampere Image Database
from 2013 (TID2013) for reference [38], and initial findings were described in [27,36]. Specifically, we
included the JPEG compression distortion in our evaluations and the resultant dataset for the AR
condition, with the reference images illustrated in Figure 2.

Figure 2. Overview of the Tampere Image Database from 2013 (TID2013) images employed in the
Augmented Reality (AR) scenario.

Images selected for the spherical image display (SAR) condition were derived by applying
different levels of JPEG compression to the source images, mimicking the impairments of the regular
images. The selected spherical source images are from the Adobe Stock images library, which represent
studio-quality images as a baseline. We illustrate these spherical images for reference in Figure 3.

(a) Bamboo (b) Beach House (c) Garden

(d) Golf (e) Mosque (f) Ocean

Figure 3. Overview of the spherical images employed in the SAR scenario; (a): a Bamboo hut; (b): a view
of rocks and a Beach House; (c): a backyard Garden; (d): a Golf course; (e): a Mosque and the plaza in
front; (f): an underwater Ocean scene.
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The simultaneously-captured EEG data for TP9, Fp1, Fp2 and TP10 positions (denoted as positions
p, p ∈ {1, 2, 3, 4}, respectively) were at 10 Hz and provided several EEG band data points:

• Low ιp at 2.5–6.1 Hz,
• Delta δp at 1–4 Hz,
• Theta θp at 4–8 Hz,
• Alpha αp at 7.5–13 Hz,
• Beta βp at 13–30 Hz, and
• Gamma γp at 30–44 Hz.

We employ the Interaxon MUSE EEG head band, obtaining the EEG data directly through the
device’s software development kit (SDK). For each of the subjects, we captured the data during the
entire experimentation session time t, Ts

u ≤ t ≤ Te
u, which included time before and after the actual

media presentation. The EEG headband was connected via Bluetooth to a laptop where the data were
stored. Similarly, the viewer device was connected to the laptop, as well, and communicated using a
dedicated wireless network to send images and commands to the device and obtain subject ratings.
The introduced communications delay is minimal and provides a more realistic environment for
real-world implementation considerations. We make our gathered data publicly available as described
in the following section.

3. Visual Interface Evaluation for Wearables Datasets

We employ the overall approach described in Section 2 to generate two Visual Interface
Evaluation for Wearables (VIEW) datasets for traditional (AR-VIEW) and spherical (SAR-VIEW)
content presentation, respectively. Each dataset contains the outcomes of 15 IRB-approved human
subject experiments employing consumer-grade off-the-shelf equipment. The AR-VIEW dataset covers
the illustrated seven images and contains 42 individual ratings (one for each QoS level) for each of
the 15 subjects. The SAR-VIEW dataset contains the six evaluated spherical images at each QoS level,
for a total of 36 individual subject ratings. Accompanying these individual QoS/QoE data are the
time-stamped EEG measurements for the individual subjects’ session. We make these datasets publicly
available at [39,40] as a reference source and to aid research in this domain. Each dataset is stored as
the widely-supported SQLite [41] database file for convenience and portability purposes.

3.1. Dataset Description

The data contained in the individual AR-VIEW and SAR-VIEW databases are structured as
follows. For each participating anonymized subject, we provide two tables in the database file that
contain the data gathered for that specific user u, separated into QoS levels and QoE ratings, as well
as EEG data. The AR-VIEW database contains subjects u = 0, . . . , 14, while the SAR-VIEW database
contains subjects u = 16, . . . , 30. The ratings table (with the schema overview in Table 1) for each
subject contains (i) the timestamps for media presentation start and end; (ii) the images and file names;
(iii) the impairment levels l, ranging from 0 (original source image) to 5 (highest impairment); and
(iv) the subject’s Likert-type scale rating ranging from 1 (lowest) to 5 (highest). We note that the
impairment level is inversely related to the alternatively utilized image quality level q, which can
readily be converted as q = |l − 6| (where 6 would represent the original image quality level).
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Table 1. Database table schema for subject u media presentation and ratings; Text: SQLite
variable-length string data type; Integer: SQLite integer number data type; Real: SQLite floating
point number data type.

Subject_{u}_ratings

Field Type Description

file name Text Name of the image file shown
image i Text Description/image name
level l Integer Impairment level

start time ts
u(i, l) Real Presentation start timestamp for image i with impairment l

end time te
u(i, l) Real Presentation end timestamp for image i with impairment l

rating qr
u(i, l) Integer User rating for the presentation

The EEG table (with the schema provided in Table 2) for each subject contains the timestamp
of EEG measurements and the values for the individual EEG bands measured at the four positions
(in order TP9, Fp1, Fp2, TP10).

Table 2. Database table schema for subject u EEG (electroencephalography) values measured (in order
TP9, Fp1, Fp2, TP10).

Subject_{u}_eeg

Field Type Description

time t Real Measurement timestamp
low{1 . . . 4}, ι{1...4} Real Low bands (2.5–6.1 Hz)

alpha{1 . . . 4}, α{1...4} Real Alpha bands (7.5–13 Hz)
beta{1 . . . 4}, β{1...4} Real Beta bands (13–30 Hz)
delta{1 . . . 4}, δ{1...4} Real Delta bands (1–4 Hz)

gamma{1 . . . 4}, γ{1...4} Real Gamma bands (30–44 Hz)
theta{1 . . . 4}, θ{1...4} Real Theta bands (4–8 Hz)

The original EEG values v? represent the logarithm of the sum of the power spectral density of
the EEG data and are provided by the device’s SDK (software development kit). We converted the log

scale values back to regular values as v = 10
v?
20 before storing them in the dataset.

3.2. Dataset Utilization

For a comparison of the ratings between the user-specific QoE ratings in dependence of the
QoS level, one can derive the ratings data for each user as a direct query in SQL as SELECT
image,level,rating FROM Subject_{u }_ratings and the EEG data in a similar fashion. We provide
an example using Python in Listing 1 that showcases the interface to the database to extract the
information for Subject 0 into a data frame (employing the popular Pandas package).

The separate table column names are directly mapped to the individual frequency bands as
described in Table 2 and demonstrated in Listing 1. Employing this approach allows one to immediately
interface with the data contained in the dataset for further analysis.
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1 import s q l i t e 3
import pandas as pd

3

# Connection to the database and reading i n t o data frame
5 conn = s q l i t e 3 . connect ( ’AR−VIEW. db ’ )

subjectRat ings_DF = pd . read_sql_query ( " SELECT ∗ FROM S u b j e c t _ 0 _ r a t i n g s " , conn )
7 subjectEEG_DF = pd . read_sql_query ( " SELECT ∗ FROM Subjec t_0_eeg " , conn )

9 # Sess ion mean f o r low channel in p o s i t i o n 1 , inc luding time outs ide viewing
p r i n t ( subjectEEG_DF . low1 . mean ( ) )

11

f o r image in subjectRat ings_DF . f i l e name . unique ( ) :
13 s t a r t = f l o a t ( subjectRat ings_DF [ ( subjectRat ings_DF . f i l e name==image ) ] . s t a r t time )

end = f l o a t ( subjectRat ings_DF [ ( subjectRat ings_DF . f i l e name==image ) ] . end time )
15 EEGslice_DF = subjectEEG_DF [ ( subjectEEG_DF . time >= s t a r t ) & ( subjectEEG_DF . time <=end ) ]

# Mean f o r low channel in p o s i t i o n 1 f o r indiv idua l images
17 p r i n t ( EEGslice_DF . low1 . mean ( ) )

Listing 1. Python3 code example for interfacing with the database to extract Subject 0 information.

4. Data Preparation and Evaluation

We now employ the VIEW datasets in an exemplary evaluation, following the general process
illustrated in Figure 1. We utilize machine learning approaches to predict the individual subject QoE
ratings for different impairment levels in AR and SAR configurations. Similarly, we employ the same
mechanisms to predict the QoS (compression) level. In our prior works (see [35]), we found that a
direct assessment of EEG potentials yielded low correlations between predictions based on machine
learning approaches and actual subject ratings for image quality levels. In turn, we initially perform a
normalization of the complete captured EEG session data based on z-scores for each EEG band and
position. The z-score expresses the individual measurement points as divergences from the overall
session average in multiples of the overall session standard deviation. Let v̄, σ(v) denote an individual
position’s single EEG channel (e.g., ι1) average and standard deviation value, respectively. The z-score
vz(t) for a measurement value v(t) at time t is determined as:

vz(t) =
v(t)− v̄

σ(v)
. (1)

Following the findings outlined in, e.g., [29], the image display as the stimulus evokes EEG
potentials. These potentials commonly trail the stimulus between 300 and 500 ms and can be utilized
in the determination of the QoE for an individual subject. In our evaluations, we employ a slightly
different approach, considering the averaged EEG readings from the time of the stimulus to 500 ms
afterwards, i.e., we consider t = ts

u(i, l), . . . , ts
u(i, l) + 500 ms. We are motivated to utilize this approach

within our general non-clinical configuration, which is in contrast to most other conducted studies and
more aligned with practical implementation considerations. In turn, we consider in our evaluation the
averaged EEG position’s channel z-scores during the first 500 ms of a media presentation for a subject
v̄z

u(i, l), determined as:

v̄z
u(i, l) =

∑
ts
u(i,l)+500ms

t=ts
u(i,l)

vz(t)

∑
ts
u(i,l)+500ms

t=ts
u(i,l)

1
. (2)

We employ this pre-processed data in the modeling and prediction of individual user ratings
(to predict QoE) and set the image impairment level (to relate to QoS) as follows. Due to the categorical
nature of the Likert-type scale, logistic regression is employed on either all or a subset of EEG sensor
position data. Additionally, we consider a practical approach that evaluates the possibility of reducing
the four EEG sensor positions to the sides, center or individual sensor placements on one of the four
positions p for which the dataset contains measurements. Specifically, we employ ιp, αp, βp, δp, γp, and
θp in these scenarios as follows:
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• All: p ∈ {1, 2, 3, 4}
• Outside: p ∈ {1, 4}
• Inside: p ∈ {2, 3}
• Left: p ∈ {1, 2}
• Right: p ∈ {3, 4}
• Individual: p ∈ {1},p ∈ {2},p ∈ {3} and p ∈ {4}

In turn, we denote the combination of all of the individual channels at the respective scenario
positions for a specific user’s presentation as Vz

u,p(i, l). We additionally note that we consider the
second degree (d = 2) polynomial extension of the original values throughout our prediction efforts,
based on our prior findings in [35].

The logistic regression is performed on a random training and subset of data points (80/20 split),
whereby we denote the total number of samples constituting the testing subset as s. Each data
point represents a specific user’s rating for a specific impairment level combined with the averaged
z-score for the 500-ms time period cut-off we consider throughout, i.e., represents

{
qr

u(i, l), Vz
u,p(i, l)

}
.

The regression-determined coefficients Cn
u are subsequently applied to the remaining test subset of data

points to predict the ratings q̂u(i, l) based on the corresponding EEG values. The differences between
the predicted and original values are determined as the Mean Absolute Error (MAE). The MAE for
this particular n-th randomized prediction run is defined as:

MAEn
u (q

r
u(i, l), q̂r

u(i, l)) =
1
s ∑ |qr

u(i, l)− q̂r
u(i, l)| . (3)

We repeat this prediction process n, 200 ≤ n times, interrupting when a 95% confidence interval
width [42] below 5 percent of the overall average MAE value is reached. The determined coefficients
Cn

u for these runs are averaged themselves to Cu and employed in the prediction of the complete
dataset, i.e., without separation of training and testing data. This approach mimics the availability of a
user-dependent profile that is employed to predict close to real time how users experience the media
presentation (QoE). This last prediction is utilized to determine the coefficient of determination (R2)
score and the MAE for the final prediction based on the averaged coefficients in comparison with a
subject’s actual ratings. The R2 value is commonly employed to evaluate the performance of regression
models with respect to explaining the variance of a target variable through the model with R2 = 1.0
indicating the best performance [42].

5. Results

We now present the results obtained from our VIEW dataset application for QoE/QoS prediction
in a high level overview for both regular images (AR) and spherical images (SAR). Specifically,
we provide the averages of the individual subject prediction performances, as well as their standard
deviations for the QoE and QoS.

5.1. Results for Regular Images

We initially illustrate the results for the mean absolute error as the result of the logistic regression
and subsequent prediction efforts in Figure 4.
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Figure 4. Mean Absolute Errors (MAE) for the regular image (AR) condition averages and standard
deviations for subject ratings (QoE) and impairment level (QoS) prediction performance analysis of
individual subjects.

We immediately observe that employing all EEG channels at all measurement points (All) results
in a fairly low MAE value on average. Additionally, we only note little differences amongst subjects as
indicated by the illustrated standard deviation. A closer inspection reveals that the introduced error
is slightly higher for the prediction of the user ratings (QoE) than for the set level (QoS). An attempt
at reducing the number of required EEG electrodes to the two outside or center ones (e.g., to reduce
the complexity of future devices and/or systems employing this approach) results in an increase of
the error and prediction outcome variability between subjects. Following this initial observation, the
effect is amplified for the subject-dependent QoE in comparison to the QoS. Interestingly, a reduction
to either left or right electrode pairs (Left, Right) yields smaller increases of the error, with the left
electrodes resulting in the smallest increase overall. These increases, however, remain relatively low
in their impact. Attempts at further complexity reduction to individual electrodes does increase the
error more significantly, commonly to over one half of the user ratings or QoS levels. Approaches that
would employ a single electrode in the utilized placement configuration, thus, would result in more
deviation from the real values.

Shifting the view to the R2 scores for the employed logistic model and prediction outcomes, we
present our high-level results in Figure 5.

All Outside Center Left Right FP-1 FP-2 FP-3 FP-4
0.2

0.0

0.2

0.4

0.6

0.8

1.0

Av
g.

 R
2

QoE
QoS

Figure 5. R2 scores for the regular image (AR) condition averages and standard deviations for subject
ratings (QoE) and impairment level (QoS) prediction performance analysis of individual subjects.

Following the trend visible for the MAE values, we initially observe that the application of all
electrodes results in the highest attainable R2 scores, on average close to one. Inverse to the MAE,
the R2 scores subsequently are higher for the QoS prediction, but only trailed by a small margin by the



Future Internet 2017, 9, 40 10 of 13

QoE scores. Again, we notice that an attempt in the system complexity reduction results in a decrease
of prediction performance, both on the general average and variability amongst participating subjects.
A further reduction of individual electrodes decreases the model performance even further.

5.2. Results for Spherical Images

We now shift the presentation of results to the spherical image scenario, where participating
subjects were viewing images in an immersive fashion. The MAE results are illustrated in Figure 6.

All Outside Center Left Right FP-1 FP-2 FP-3 FP-4
0.0

0.2

0.4

0.6

0.8

1.0

1.2

Av
g.

 M
AE

QoE
QoS

Figure 6. Mean Absolute Errors (MAE) for the spherical image (SAR) condition averages and standard
deviations for subject ratings (QoE) and impairment level (QoS) prediction performance analysis of
individual subjects.

We initially note that the application of all electrodes and channels results in a fairly low overall
error, about 0.1, with noticeable differences between subjects. Corroborating our earlier observations
in the AR scenario, we additionally note a slightly higher level of error and variability for the QoE case
compared to the QoS case. Comparing the results to those presented for the regular image scenario, we
notice an increase in the prediction error. Specifically, we observe that this baseline for prediction in the
spherical case performs approximately as the two-electrode scenario for regular images. A decrease
of the available EEG sensor data to sensor pairs immediately catapults the error to about over 0.5 on
average with significant variability amongst subjects. A comparison with the regular image scenario
results yields again a level of error that is more comparable to the single electrode scenario for those.
Relying on the feedback of single electrodes increases the overall error to almost one, paired with high
inter-subject variability. In turn, any predictions could result in significant differences from the true
underlying values and render systematic exploitation of EEG signals difficult.

The corresponding R2 scores attained from the model application are illustrated in Figure 7.

All Outside Center Left Right FP-1 FP-2 FP-3 FP-4
0.75
0.50
0.25
0.00
0.25
0.50
0.75
1.00

Av
g.

 R
2

QoE
QoS

Figure 7. R2 scores for the spherical image (SAR) condition averages and standard deviations for subject
ratings (QoE) and impairment level (QoS) prediction performance analysis of individual subjects.
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Similar to prior results, we attain the best model performance for the inclusion of all four electrodes
in the modeling effort. While not as high as for the regular image scenario, the R2 scores are fairly high
and can be considered excellent for prediction efforts. Attempts at system complexity reduction
yield almost a halving of the coefficient of determination accompanied by increased variability.
Further reduction to single electrode inputs yields an even worse outcome, whereby negative R2

scores are attained for the overall average. Given the nature of the R2 score, this refers to the model not
only being unable to capture the underlying variability and explain it, but the modeling approaches
for single electrodes introduce even more undesired outcome variability.

6. Conclusions

We performed human subject experimentation to determine the QoE and QoS in augmented
reality settings. Our prediction performance analysis employing the datasets with machine learning
approaches for QoE and QoS predictions showcases that QoE/QoS predictions are feasible on an
individual subject basis. Utilizing the mean absolute prediction error, we found that in the current
configuration, all four available electrodes’ data can be employed in fairly accurate predictions of
QoE and QoS levels. Considering future wearable devices, a reduction of the number of electrodes
is possible with only small penalties on prediction accuracies. Such a reduction would allow the
generation of wearable devices with reduced complexity paired with good real-time QoE/QoS
prediction performance overall, as long as at least two electrodes remain in the configuration.

Throughout this paper, we describe the generation and utilization of the Visual Interface
Evaluation for Wearables (VIEW) datasets. The VIEW datasets contain anonymous human subject
ratings and EEG band information gathered during experimental sessions with commercially-available
off-the-shelf equipment. We make them publicly available and describe their utilization to help the
research community in furthering their inquiries in the domain of QoE in augmented reality scenarios.

Several interesting avenues for additional evaluations exist, such as evaluations of more devices
and types, with subsequent cross-performance analyses. Additional evaluations based on the VIEW
dataset exist, as well, such as new approaches to data processing and prediction. In our ongoing
research, we are investigating other wearables and actual system implementations in the context of the
tactile Internet and edge computing.
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