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Abstract: The Internet of Things (IoT) is a recent trend that extends the boundary of the Internet to
include a wide variety of computing devices. Connecting many stand-alone IoT systems through
the Internet introduces many challenges, with security being front-and-center since much of the
collected information will be exposed to a wide and often unknown audience. Unfortunately,
due to the intrinsic capability limits of low-end IoT devices, which account for a majority of the
IoT end hosts, many traditional security methods cannot be applied to secure IoT systems, which
open a door for attacks and exploits directed both against IoT services and the broader Internet.
This paper addresses this issue by introducing a unified IoT framework based on the MobilityFirst
future Internet architecture that explicitly focuses on supporting security for the IoT. Our design
integrates local IoT systems into the global Internet without losing usability, interoperability and
security protection. Specifically, we introduced an IoT middleware layer that connects heterogeneous
hardware in local IoT systems to the global MobilityFirst network. We propose an IoT name resolution
service (IoT-NRS) as a core component of the middleware layer, and develop a lightweight keying
protocol that establishes trust between an IoT device and the IoT-NRS.
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1. Introduction

The initial concept and implementation of the Internet of Things (IoT) appeared as early as
the 1980s and became popular in late 1990s [1]. Recent developments in many relevant areas,
including automation, wireless sensor networks, embedded systems and micro-electromechanical
systems (MEMS), has accelerated the evolution of the Internet of Things (IoT) [2,3]. Currently,
IoT applications exist in nearly every field and are playing an increasingly important role in our
daily life [4] (e.g., healthcare systems, building and home automation, environmental monitoring,
infrastructure management, energy management and transportation systems), which has led to the
recent proliferation of IoT systems. According to the Federal Trade Commission (FTC), the number of
IoT devices has already outnumbered the number of people in the workplace [5], and the number of
wireless devices connected to the Internet of Things will be about 26 billion by 2020 and will greatly
outnumber hub devices (smartphones, tablets and PCs) [6].

As a result of the recent trend of extending the boundary of the Internet to include a wide variety
of non-traditional computing devices, the Internet of Things makes the connection between the real
world and the virtual world tighter than ever before. However, connecting various stand-alone IoT
systems through the Internet brings many challenges, such as scalability, naming, resource constraints,
mobility, inter-operability, security and privacy. To address these challenges, new IoT solutions have

Future Internet 2017, 9, 27; doi:10.3390/fi9030027 www.mdpi.com/journal/futureinternet

http://www.mdpi.com/journal/futureinternet
http://www.mdpi.com
http://www.mdpi.com/journal/futureinternet


Future Internet 2017, 9, 27 2 of 28

been proposed that utilize clean slate future Internet architectures, such as MobilityFirst [7], XIA [8],
NDN [9], and Nebula [10]. These approaches rely on the new features provided by future Internet
architectures and solve important problems such as mobility, robustness and evolvability. However,
one major hurdle facing IoT is security and privacy. As defined in [5], “IoT" refers to the connectivity
between everyday objects and the Internet and the ability to exchange data between them. As a result, potential
security and privacy risks exist in a broad scope, ranging from the physical world to the Internet,
and can be exploited to harm people. For example, a compromised IoT device may facilitate attacks on
other systems. Unauthorized access may result in the leakage and misuse of personal information.
A breach in the Internet may feed back to the physical world and create risks and threats to people’s
physical safety.

Although conventional security will address many problems, there are unique aspects associated
with IoT security that necessitate a broad and holistic approach to secure the IoT. IoT devices
are typically deployed in an unattended manner, which facilitates the possibility of physical
attacks. Low-end IoT devices are incapable of performing heavier, conventional cryptographic
algorithms due to their constrained resources. A large quantity of IoT devices adopt wireless as
a means to communicate, which is open to eavesdropping and jamming. To improve IoT security,
this paper investigates how to securely integrate the IoT into the Internet, and provides several major
contributions: (1) we present a unified IoT architecture based on a future Internet infrastructure with
the focus on a newly introduced component, IoT middleware, which smoothly integrates local IoT
systems to the global Internet; (2) we investigate the vulnerabilities of the existing IoT systems and
provide security measures to protect against attacks and exploits through our unified IoT solution.
Notably, we introduce a secure name resolution framework at the IoT middleware to enable seamless
name translation and services as well as facilitate security; (3) lastly, we propose a delegation-based
three-party key management protocol to establish symmetric keys within local IoT systems for secure
operations, which completes the last piece of key management for the whole IoT architecture and
hence enables security coverage from local IoT systems to the global future Internet.

The rest of the paper is organized as follows: we first investigate current IoT solutions in Section 2
and examine their security and privacy threats in Section 3. Then, in Section 4, we present a design
for an IoT platform based on a representative future Internet architecture, MobilityFirst. Specifically,
we introduce an IoT middleware to manage IoT devices and data in Section 5. Based upon our security
and privacy analysis, security countermeasures are proposed to protect against those challenges.
In particular, to cope with the capability limitations of low end IoT devices, we develop a key
provisioning protocol to enable secure communication in local IoT systems in Section 6.

2. Survey of the Evolution of IoT Architectures

Many current IoT designs do not support applications seamlessly. Historically, stand-alone IoT
systems were proprietary implementations, such as DF-1 [11], MelsecNet [12], Smart Distributed
System (SDS) [13], and BACnet [14]. These fragmented solutions were typically integrated vertically
and characterized as “silo” solutions, as shown in Figure 1a. A large number of independent legacy
IoT systems co-exist across the Internet. However, their “silo” nature conflicts with the open spirit of
the Internet and hence introduces problems of inter-operability and service-level interaction, which
limits the benefits of IoT systems and could impede large-scale IoT deployment.

As the traditional approach has many fundamental issues, overlay-based IoT architectures were
proposed in an attempt to unify IoT solutions. Figure 1b shows this approach, where an overlay IoT
forms a network on top of the current Internet. Standard control and data APIs were adopted to
connect IoT devices and the Internet. Data from various devices in different IoT deployments is pushed
to central IoT servers through IoT gateways across the Internet. IoT applications then directly subscribe
to the IoT server. Low Throughput Networks (LTN) [15], Global Sensor Networks (GSN) [16,17] and
Constrained RESTful Environments (CORE) [18,19] are representatives of the standardization efforts
involving the overlay-based IoT approach. This overlay approach, however, has several weaknesses
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that makes it not ideal for wide deployment. First, the merging of control and data forwarding at
the central server is a bottleneck and causes scalability concerns. Second, the central IoT server is
a single point failure and represents an ideal point of attack. Further, this solution does not seamlessly
support mobility, which is a major requirement of the future Internet and a desirable characteristic for
IoT applications.

Figure 1. Legacy Internet of Things (IoT) architectures: (a) Silo architecture of standalone IoT systems.
(b) The overlay-based IoT architecture connects standalone IoT systems with the IoT server through
standardized APIs on the IoT gateways.

Recently, several works [20–25] focus on establishing an authorization framework for IoT,
and enable access control in the IoT. However, these piece-wise solutions do not provide a complete
framework to address many practical issues facing IoT systems, such as identification, addressing,
mobility, interoperability and scalability. Another trend to enhance IoT systems is the introduction
of an abstract middleware layer to enable object virtualization, such as FI-WARE [26] and ETSI
oneM2M [27]. The ETSI oneM2M introduces a Service Capability Layer as the virtualization layer,
through which heterogeneous IoT devices and applications may exchange information. FI-WARE is
based on ETSI oneM2M and integrates the Open Mobile Alliance Next Generation Services Interface
to manage and exchange context information.

Because of the IoT’s increasing importance, future Internet designs need to design for the IoT.
IoT systems can also benefit from many of the new features and protection mechanisms being proposed
for the future Internet infrastructure. In particular, NDN-based IoT and MobilityFirst-based IoT are two
representatives of future Internet based IoT systems as they support the key features of IoT as well as
follow the current trends of evolving the Internet. As data plays a pivotal role in the IoT, the NDN-based
IoT was proposed to support content retrieval. On the other side, MobilityFirst-based IoT builds upon
the MobilityFirst network [28,29], whose major goal is to support large scale mobility, and therefore
is strategically designed to handle scenarios where IoT devices are moving. One typical mobile IoT
application scenario is vehicular networks, where sensors installed in the moving vehicles collect data
and provide the data to the relevant applications through the underlying IoT infrastructure. In this
paper, we use the MobilityFirst future Internet architecture as the basis for our IoT design in Section 4.
We note, though, that some of our security mechanisms are general and can be applied to other future
Internet based IoT systems.

3. General Security Analysis of IoT Systems

The IoT extends the Internet to the physical world and thus poses many new security and privacy
challenges. Some of the problems are due to the intrinsic characteristics of the IoT and its differences
compared to traditional networks, while others arise as a result of the integration of the IoT and the
Internet. As shown in Figure 2, various adversaries may come in at different points to attack IoT
systems. To protect against those attacks, it is important to examine the security problems according to
the information flows and potential adversarial points of control. Below, we outline four security and
privacy problems:
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• Authentication and physical threats: highly distributed deployments of a large number of IoT
devices, such as RFID tags and wireless sensors, will generally be deployed in public areas without
any protection, which makes the devices difficult to manage and vulnerable to physical attacks.
For example, an illegitimate sensor may register itself claiming that it is at one location while it is
actually at a different location. Or a sensor installed in a room monitoring the room temperature
is moved to another room by a malicious person. This introduces the challenge of authenticating
IoT devices, which involves recognizing the device and verifying its association with a correct
topological address.

• Integrity: the unattended environment for IoT devices also makes data integrity a concern.
Once deployed, most of these devices will operate in a self-supported manner. As with very
limited maintenance or even no maintenance, tampering data is a much easier task than in
a supervised wired network. Further, as a result of a natural loss of calibration or a deliberate
perturbation of the measurement environment by an attacker, the data collected by IoT devices
is quite likely to have low quality and might be corrupted at the environmental level. In short,
IoT data may be noisy and easy to spoof and forge.

• Confidentiality: the communication method between devices and the gateway is primarily
wireless, which results in confidentiality risks. For example, eavesdropping is a major concern in
wireless networks. Unfortunately, unlike many other wireless environments, such as cellular and
Wi-Fi networks, it is difficult for IoT networks to provide confidentiality for data transmission
due to the resource-constrained nature of low-end devices, which are a large fraction of IoT
devices [30]. Different from typical devices in traditional wired and wireless networks, such as
smartphones, tablets, PCs and routers, most of the devices in future IoT networks are active
sensors or passive RFID tags, which have very limited resources and capabilities. Constraints
on power, computational capability, storage and other aspects of an IoT device introduce a high
barrier for it to perform the necessary operations to achieve data confidentiality, such as through
encryption and key management.

• Privacy: as an existing public concern for monitoring and interacting with the real world,
the consequence of information leakage in local IoT networks becomes exacerbated when
integrated into the global Internet. By connecting real world objects and information through the
Internet, data may become accessible to various organizations and domains across the Internet,
instead of only being revealed to a small group, which makes it more likely to be exposed
to sophisticated malicious parties and therefore increases the probability of being exploited
and attacked.

Figure 2. Potential threats for the IoT systems.



Future Internet 2017, 9, 27 5 of 28

Conventional security and privacy techniques are not necessarily appropriate for the IoT due
to the special characteristics of the IoT. The attractive prospect of IoT applications, as well as the
strong needs of increasing public confidence about security and privacy issues, requires new and
comprehensive solutions to not only protect local IoT devices but also the broader Internet aspect of
the IoT. In the following sections, we will examine the problems aforementioned and explore security
and privacy techniques to support the IoT infrastructure based on the MobilityFirst network, one of
the representatives of future Internet architectures.

4. MobilityFirst-Based IoT Architecture

4.1. Overview of the MobilityFirst Infrastructure

MobilityFirst is a future Internet architecture that aims at providing fundamental solutions to the
challenges facing the current Internet. The primary design goals that drive MobilityFirst are mobility
and trustworthiness, two major trends of the Internet. In order to achieve these two design goals,
MobilityFirst breaks targeted specific design goals, including seamless host and mobility, no single
root of trust, intentional data receipt, proportional robustness, content addressability and evolvability.
These design goals come together to solve the challenges faced by the current Internet.

Figure 3 shows that MobilityFirst introduces a new protocol stack and replaces the original
“narrow waist” of the current Internet (i.e., TCP/IP) with a new name-based service layer, which
consists of the Name Certificate & Resolution Service (NCRS) and the Global Name Resolution Service
(GNRS). This new service layer is centered on the concept of “flat” security-based GUIDs for network
objects, a single abstraction that serves as both the network object’s identity and the public key. Various
types of network entities, e.g., a smartphone, a person, a group of IoT devices, a piece of content
or context, can obtain their globally unique identifiers from the NCRS, which provides translation
services between human readable names and public-key based globally unique identifiers. The GNRS
provides a clean separation of the identifiers and the dynamic network address locators and supports
on-the-fly binding of names to network addresses as needed for dynamic mobility. Therefore, the use
of the GUID at the name-based service layer enables mobility-centric services at scale and provides the
foundation of a trustworthy network.

Figure 3. The protocol stack of the MobilityFirst architecture.

With the name-based service layer, the MobilityFirst architecture is able to relieve or at least
mitigate many pains in today’s Internet. In the MobilityFirst network, due to the separation of the name
and the network locator, users may request content by the content name directly, without bothering
with the current network address. The routers handle the content request by querying the GNRS for
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a list of the up-to-date content storage locations in a timely fashion and then fetching the content
from the nearest storage location [31]. This approach also handles content mobility well with support
from the on-the-fly/late binding of names to addresses and the hop-by-hop storage-aware transport
protocol MFTP [32]. The GUID, which is a public key, allows MobilityFirst to integrate trustworthiness
as one of the basic properties of the architecture. Deriving the identifiers in a cryptographic manner
makes many security measures, e.g., authentication, accountability and encryption, intrinsic to the
MobilityFirst network thus facilitating further protection against various attacks.

4.2. MobilityFirst-Based IoT Architecture Design

As a robust and trustworthy mobility-centric architecture with abundant in-network services,
MobilityFirst can address many challenges that today’s IoT is facing, such as scalability, mobility,
content retrieval, inter-operability, and security/privacy. Therefore, we propose a unified solution to
support IoT based on the MobilityFirst network architecture [33]. Our IoT platform consists of four
basic components as shown in Figure 4. Though this IoT architecture is designed in the context of the
MobilityFirst network, it is general and can be applied to other similar network infrastructures, which
adopts the separation of identifiers from network locators, such as [8,34–36].

Figure 4. The four basic components of the IoT MobilityFirst architecture: devices, IoT middleware,
MobilityFirst network and applications.

• Devices: a wide variety of devices, e.g., sensors, actuators and tags, that use embedded techniques
to sense, communicate and/or interact with the external environments.

• MobilityFirst network: MobilityFirst provides connectivity for different distributed IoT devices
and applications. Due to the seamless mobility support of MobilityFirst, besides well-established
IoT system, more dynamic IoT applications/systems can be developed on top of it.

• IoT middleware: MobilityFirst-based IoT middleware integrates three functional layers—
Aggregator, Local Service Gateway (LSG), and the IoT server. The aggregator supports sensor
abstraction to hide the hardware specifics for sensors and presents a single interface to query
and subscribe to the sensor data. LSG connects the local IoT system to the global Internet and
provides necessary management, including naming resolution, key management and context
processing services. The IoT server is a logically centralized server in the control plane that
manages subscription memberships as well as provides a lookup service so that subscribers may
query for the IoT data/services.

• Applications: end users who consume the IoT data and may feed back to the external environment
through actuators.

Figure 5 explains how the IoT architecture works with the support of the MobilityFirst
infrastructure. The aggregator collects data and then the LSG sends the aggregated data to the storage
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location. The raw data might be processed by the LSG for context refining/aggregating purposes.
Meanwhile, the LSG publishes the data information, which contains a data GUID, the access control
policy and the storage location information (e.g., human readable names or network address), to the
IoT server so that end users may query the IoT server about where to fetch the data. The IoT server
may decide how to enforce the access control policy: either at itself or push it to the NCRS/GNRS.
The data consumer, typically an application, first makes a query at the IoT server for data information
through its edge router and then fetches the data from the storage location or the aggregator directly.

Figure 5. MobilityFirst-based unified IoT architecture.

4.3. Protect IoT through Existing MobilityFirst Network Services

As shown in Figure 4, the MobilityFirst-based IoT architecture consists of four basic building blocks:
Devices, IoT middleware, MobilityFirst network and Applications. Our goal is to provide clean and secure
data to various applications/services in the upper layer and make their development/management easy.
Thus, as illustrated in Figure 6, we integrate the security/privacy mechanisms into the network, the IoT
middleware and the lower layer “devices", but not the application layer.

Figure 6. Security/privacy mechanisms are introduced into devices, IoT middleware and MobilityFirst
network.

The rich in-network services of MobilityFirst enable many powerful functionalities to protect
against a wide variety of attacks. For example, the NCRS serves the role of a certificate registration
center that associates human-readable names to certificates. This enables various security methods,
such as encryption and authentication, to secure the data transmission above the IoT device layer.
Together with the security schemes at the device level, which provide secure communication channels
between IoT devices and the Internet, the confidentiality of the data flow from the bottom (IoT devices)
to the top (applications) can be achieved.
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The security mechanisms enabled by network services, i.e. the GNRS and the NCRS, build
a shield against many attacks, such as false registration attacks and device misplacement attacks.
False registration attack refers to an adversary registering a device with a fake location. Misplacement
attack is another form of attack involving manipulating device location by moving a device to another
location without updating the new location. The common characteristic of these two attacks is location
forgery and is similar to GNRS false announcement attack, which is defined as a network object with
identifier GUID1 in network N A1 inserting or updating a GNRS mapping < GUID1, N A2 > with wrong
network address to the GNRS. Therefore, we can apply the same philosophy of preventing GNRS false
announcement attacks to location forgery attacks in the context of the IoT. These protection mechanisms
are presented in [37] and hence we will not discuss them in this paper due to the space limitation.

Another significant contribution provided by network services is privacy protection, such as
GNRS access control discussed in [38]. The access control in the GNRS protects the data privacy,
and also increases the difficulty of launching attacks by restricting adversarial access to information
that is essential for launching an attack, whatever that attack might be. Access control enforced at the
GNRS query is a powerful tool as it can provide the GNRS mapping owner, who is typically the data
owner or a surrogate in the context of IoT, the ability of choosing who it is willing to communicate
with. With the support of access control in the GNRS, IoT devices or data owners can protect the
IoT data’s location information contained in the GNRS mappings against unauthorized disclosure,
while at the same time ensure the mapping’s accessibility to legitimate subscribers or applications.
In addition, GNRS access control can support advanced services, such as allowing the mapping owner
to decide when and where it is reachable. These fine-grained functionalities provided by GNRS access
control make it possible to specify detailed policies/regulations while distributing the data collected
by the IoT devices.

Our MobilityFirst-based IoT architecture provides a unified solution to solve issues of
inter-operability as well as support mobility. Our design also can benefit from many built-in security
features of the MobilityFirst network infrastructure. However, this architecture still has some unique
security concerns that arise and are related to general security concerns mentioned in Section 3.
Specifically, most of the security properties and advanced services are based on the concept of a GUID,
which is essentially a public key. Unfortunately, low-end IoT devices, which account for a majority
of IoT devices, cannot afford to perform expensive asymmetric crypto operations. This leads to key
management challenges for our IoT solution. Therefore, the following sections will address these
unique security concerns with the focus on key management.

5. IoT Middleware Security

The IoT platform in MobilityFirst introduces a new essential component, IoT middleware, to handle
data processing and distribution in the data plane as well as system management in the control plane.
The IoT middleware consists of three layers, aggregator, local service gateway (LSG) and IoT server,
so that it can support a variety of functionalities, including managing IoT devices, processing the
raw data collected by the devices and then distributing the processed data through the MobilityFirst
network. This approach allows a clean separation of IoT systems from the underlying network so
that the network is only responsible for transmitting the IoT data, just as it handles other network
traffic. Therefore, integrating our IoT solution into MobilityFirst architecture has a lightweight
touch that is easy to deploy. Further, decoupling the IoT middleware from the underlying network
infrastructure makes our IoT solution more general and is easily ported to other network designs
that share similar features with MobilityFirst. For example, the middleware layer is independent of
the network infrastructure and supports object virtualization that enables interoperability between
heterogeneous devices regardless of the underlying networking medium. In particular, we note that
the separation of our middleware from the network allows for our IoT security solutions to be easily
deployed on the existing Internet infrastructure, as well as other clean slate architectures, such as
NDN [9] and XIA [8]. Further, the security mechanisms adopted in our middleware provide secure
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communication and key management functions that are generally both necessary and applicable to
other styles of IoT deployments.

In the IoT middleware architecture described in Figures 4 and 5, the aggregator sitting at the
bottom level is usually located near or at the gateway of the local network. This is the first stage of data
processing as the aggregator collects raw data directly from a variety of heterogeneous IoT devices and
filters out the redundant data. The introduction of the aggregator hides the complex heterogeneous
hardware from upper layer applications and facilitates application development. The LSG level
contains one IoT Name Resolution Service (IoT-NRS) and several other functional components depending
on the system and application requirements. The top level is the IoT server, which is essentially
a logically centralized but physical distributed database that provides lookup service for data
consumers. The aggregator, the LSG and the IoT server form the middleware of MobilityFirst-based
IoT and connect the various IoT devices with the upper layer applications.

Our security measures are primarily integrated in the LSG layer, while the access control policy is
enforced at the IoT server, who might push it further to the GNRS. From the perspective of the data
consumer, which is typically an application, to either fetch the processed data from the data storage
location or get the raw data from the aggregator directly, it needs to know where to fetch the data.
Therefore, the data consumer looks up the data storage location at the IoT server with its identity.
On the other side, the IoT server evaluates the request with the access control policy defined by the IoT
data owner. If the decision is “approve”, it returns the data location to the data consumer (possibly
with a token depending on the specific access control policy). Then the consumer may be able to fetch
the data or setup a subscription. In the case where the IoT server pushes the enforcement of the access
control policy to the GNRS, the GNRS will grant a token to the data consumer if the access decision is
“approve”. Then the data consumer can present the token to the IoT server to request data information.

At the data producer side, efficient and secure IoT device and data management is not
only necessary but crucial for providing accurate and fresh IoT data. Particularly, key and
identifier management plays an essential role in identifying/verifying IoT devices as well as
establishing/maintaining confidential communication channels in the local IoT systems. However,
due to the intrinsic characteristics of IoT devices, especially low-end devices, there are key management
challenges unique to IoT systems. To cope with those challenges, we developed an IoT Name Resolution
Service at the LSG to enhance the security, efficiency and inter-operability.

5.1. Overview of the Name Resolution Framework in MobilityFirst-Based IoT

As discussed in Section 4.1, the GNRS and the NCRS center on the concept of the GUID, which
serves as the identifier and the public key. Within the scope of the IoT, however, the identifier
application/assignment operation and relevant cryptographic computations may be beyond the
capability of most IoT devices. For the remainder of the paper, we are not worried about devices
with strong computational capability and sufficient resources, such as smartphones, laptops and
tablets. Instead, we focus on low-end IoT devices, such as small sensors and actuators, which will
account for the majority of IoT devices. These low-end devices, unfortunately, have very limited
computational capabilities and strict resource constraints in terms of storage, power, and bandwidth.
Hence, they are unable to perform many heavy duty tasks, including the computation operations of
public/private cryptography. To enable secure communication, we propose a lightweight approach
by using symmetric keys to replace the GUID in the scope of local IoT systems. In other words,
an IoT device’s identification associated with membership within a local IoT system is associated with
a symmetric membership key shared between the device and the local group authority, i.e., the LSG.
Symmetric cryptography is chosen to make the membership key because it is lightweight and has
much less computational requirements.

On the other side, in order to smoothly integrate the local IoT system into the global MobilityFirst
network and take advantage of the rich network services provided by MobilityFirst, it is necessary
to maintain use of the GUID in the scope of the broader global network so that data consumers can
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contact IoT devices or retrieve/subscribe IoT data with the corresponding GUIDs. In order to reconcile
the conflicts of the two different cryptographic schemes (used in two different scopes), integrating
an IoT name resolution service (shown in Figure 7) in the middleware to handle naming-related issues
is the best solution as it keeps a clean separation between the underlying network infrastructure
and the IoT system. The IoT name resolution service (IoT-NRS) bridges the gap between different
cryptographic schemes used in the local IoT network and the global Internet. This design makes IoT
systems flexible, extensible and easy to manage.

Figure 7. Three-tier name resolution framework of the MobilityFirst-based IoT architecture: Name
Certificate & Resolution Service (NCRS), Global Name Resolution Service (GNRS) and IoT Name
Resolution Service (IoT-NRS). The IoT-NRS connects the GUID used in global MobilityFirst network
and the symmetric membership key used in the local IoT system.

5.2. Major Functionalities of IoT Name Resolution Service

Our IoT Name Resolution Service (IoT-NRS) can be considered as a simplified embodiment of the
MobilityFirst name-based service layer in the context of the local IoT systems. It assigns identifiers,
establishes long-term keys (i.e., membership keys) and provides key/identifier related management.
In the following sections, we envision the major functionalities the IoT-NRS should have.

• GUID Assignment: IoT-NRS serves as a surrogate and works together with the NCRS to assign
GUIDs to network objects, such as IoT data, certain devices or a group of IoT devices, to assist
advanced network services in the global Internet. The relation between the GUID and the
device/data might be one-to-one, one-to-many and many-to-one. From the application point of
view, generally the data is of interest and one piece of data has one GUID, which is associated
with a list of attributes describing the data object. With respect to devices, it is more often than
not that a group of devices map to a single GUID. As an example, it is reasonable to assign one
GUID to all of the temperature sensors in a particular room. However, sometimes one device may
obtain a GUID if necessary. For example, if the device is the only device in its category or it is
important for the application. Also, sometimes one sensor may associate with two or more GUIDs.
For example, a multi-function sensor attached to Tom’s mug may have GUID1 with attributes of
location information and GUID2 associated with the mug’s temperature.

• Membership Credential Establishment: IoT-NRS at the LSG may act as a group authority to
establish membership credentials associated with the IoT device in the scope of the local IoT
system. This long-term membership credential identifies the device in the local group. A proper
symmetric cryptographic algorithm is chosen to generate such a credential (i.e., a symmetric
key) so that low-end devices can afford to perform security operations. After establishing
the membership credential, short-term keys (for example, session keys) and functional keys
(for example, attestation key) may be derived from the membership key.

• Name Translation between GUID and Membership Key: Two directional name mapping
between the GUID and the membership key connects the local IoT system to the global network
so that IoT-related operations can be performed seamlessly.

• Membership Management: IoT-NRS should also provide membership management, where the
membership is represented by the GUID and/or the membership key. Such management includes
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renewal and revocation operations. Both the GUID and the membership key have expiration times
to guarantee key freshness and security strength. Therefore, renewing in a timely and efficient
fashion is essential to keep the device/data “alive" in the system. On the other hand, revocation is
needed to remove compromised/dysfunctional devices so that potential security/privacy threats
can be reduced.

Figure 7 illustrates the flow of IoT-NRS’s major functions. The most important function of the
IoT-NRS is to serve as a registrar. During device discovery, when a new IoT device joins a local
group, the IoT-NRS acts as the group authority and registers this new device. The registration
establishes a long-term membership key with the new device using a proper key provisioning protocol,
which depends on the device’s capability, as well as associates the membership key with the device’s
attributes/identity, such as manufacturer, model, serial number, function, etc. In the global context,
the IoT-NRS serves as a surrogate to apply and manage GUIDs for the low end IoT devices within the
local group and the data they generated because these devices and data do not have the ability to run
asymmetric cryptographic algorithms. After initial device discovery and registration, the IoT-NRS
manages the identifiers and keys, and performs tasks that include renewal, verification and revocation.

6. Delegation-Based Key Provisioning Protocol

6.1. Overview

In the scope of local IoT systems, it is critical to discover edge devices and establish long-term
membership credentials between those devices and a group management authority (i.e., the IoT-NRS in
our IoT architecture) in a lightweight fashion. In the device discovery process, enrolling a new device
and establishing a secure membership credential between edge devices such as sensors and actuators
can be difficult, as such devices can have heterogeneous and potentially limited computational
capabilities. This property can limit interactions for certain protocols and further limit management of
membership keys/credentials.

Therefore, we propose a delegation-based key provisioning protocol in this section to facilitate
the device discovery process and establish the membership key for the newly added edge device.
Specifically, in the context of our MobilityFirst-based IoT architecture, this protocol can serve as:
(1) a grouping tool in the initial stage of setting up a local IoT network; (2) registration tool in the
device discovery process when a new IoT device wants to join an existing IoT system. Our key
provisioning protocol, though, is general and can have broad application. Other use cases will be
explored in Section 6.9.

Problem Description

To generalize our goal, we would like to establish lightweight symmetric key(s) between one
or more edge IoT devices (referred to as a Child device), such as sensors, RFID tags and actuators,
and a computing device (referred to as a Guardian device) within an IoT network. Here, we emphasize
the lightweight nature of the output key and involved cryptographic operations associated with the
Child device because of the intrinsic characteristics of the IoT systems as discussed in previous sections.

Trust does not come from nowhere. To build a mutual trust between the Child and the Guardian,
we need to extract the new trust relationship from an existing trust relationship. With that being said,
we start from a pre-established trust relationship, with which we can attest the identity and integrity of
the target Child. As a result of this reasoning, a third party is introduced into our protocol, known as
the Parent device. The Parent, for example, can be the owner of the Child device or the manufacturer of
the Child. Essentially, the Child and the Parent may have a pre-established trust relationship, in which
the Child device stores therein a parent key that indicates the Parent’s privilege on the Child.

Now the challenge rests with how to leverage a device’s Parent key and Parent trust establishment
to delegate certain privileges to a new party, referred to herein as a Guardian, to enable the IoT edge
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device (Child) to establish a shared key securely with the new party, which thus acts as the edge
device’s Guardian. In other words, taking advantage of a pre-existing trust relationship between
a Parent device and a Child device, we would like to yield a lightweight symmetric key shared between
the Child device and the Guardian device.

6.2. System Model

Figure 8 describes the system model for the delegation-based key provisioning protocol, which
consists of three participants: Child, Guardian and Parent. A local IoT network may include a Child
device and a Guardian device. A Parent device, can be either within or outside this IoT network.
This Parent may be, but not necessarily, a (relatively) more capable computing device, such as a server
computer, gateway device, personal computer, smartphone, or any other type of computing device.
For example, the Parent may be a computing system of a manufacturer, such as the manufacturer of
the Child device. The importance of the Parent arises from its existing trust relationship with the Child,
from where we can extract and establish a new trust relationship.

Figure 8. The block diagram illustrates the framework of the delegation-based key provisioning
protocol: Child device is an edge IoT device who wants to join the IoT system and establish a
membership key with the Guardian device; Guardian device is the group authority of the local IoT
network, who contacts Parent device to verify Child device and obtains authorization; Parent device
has a pre-existing trust relationship with Child device in terms of the Parent key, and provides
verification/delegation to the Guardian device so that Guardian device and Child device can reach a
resultant key agreement: membership key.

The Child is an edge IoT device, e.g., sensor, actuator, etc. To indicate its trust relationship and
parenthood status with regard to the Child, the Parent may provision a parent key into a non-volatile
storage of the Child device. This non-volatile storage may be a secure storage, accessible only in
a trusted execution environment (TEE) [39,40] of the Child device. In some cases, this TEE may be
implemented using separate hardware circuitry, such as a separate micro-controller from a main
processor of the child device, e.g., a central processing unit (CPU).

A Guardian device is also present in the network. In our MobilityFirst-based IoT architecture,
the Guardian is the IoT-NRS of the local IoT network. In other embodiments, the Guardian may
take the form of a gateway, smartphone, or consumer computer with an installed delegation protocol
package. As an example, the Guardian may be a central authority for a domain (such as an entire IoT
network or a portion thereof). The symmetric membership key shared only between the Child and the
Guardian is the local long term membership credential established by our key provisioning protocol.

Thus, in the context of Figure 8, the two parties to establish a trust relationship represented by
a key are the Child and the Guardian. A third party Parent has an existing parent key provisioned
to the Child, though the Child and the Parent may or may not have a direct communication channel
at this point. The only available communication channels are the one between the Child and the
Guardian and the one between the Guardian and the Parent through out a protocol session. With the
delegation provided herein, key provisioning between the Child and the Guardian can occur, given
that the Parent is a trusted third party to provide authentication and authorization of the Guardian to
the Child.
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6.3. Security Requirements

The delegation from the Parent to the Guardian with respect to the Child can occur to address
a variety of concerns. First, IoT edge devices have highly heterogeneous capabilities. The protocol for
establishing mutual trust and keys described in Section 6.6 can support capable devices as well as highly
resource-constrained devices. Second, establishment of the IoT device keys may be user-friendly, which
conventionally requires the protocol to either leverage a trusted public key infrastructure (PKI) that
is transparent to the user, or to remove dependency on trusted servers but minimize dependency on
manual interaction by users. Traditional PKI or Kerberos services [41] can be challenging to establish
on a global scale, and may require substantial IT professional expertise as well as computational
resources for cryptographic processing. On the other hand, solutions for key provisioning without a
server are often insecure, such as pre-shared key approaches, lacking resilience by working directly
with fixed manufacture/device keys, or involving cumbersome and critical manual interaction such as
pairing. We try to address these issues in our delegation-based key provisioning protocol.

Particularly, when developing the key provisioning protocol, the following properties and
requirements should be taken into consideration:

• Scalability : As many IoT systems are large scale deployments, it would be extremely difficult
to establish a secure credential for each device if human intervention is required. To enhance
usability and chance of practical deployment, it is important and necessary to remove manual
operations by the user on an out-of-band (OOB) channel, such as secure pairing. Instead, a trusted
third party is introduced to facilitate automatic trust establishment as well as reduce human error.

• Consistency: All the three protocol participants should have a consistent view of the protocol
session. Namely, the three participants involved know who the peers are with respect to the
specific session.

• Dynamic mutual trust and delegation: With the success of the protocol, each pair of the involved
participants can reach a mutual trust at the end of the procedure. Further, the Guardian establishes
the mutual trust dynamically with the Parent and obtains delegation before executing the privilege
with respect to the Child.

• Secrecy and forward secrecy: The principle of least privilege should be followed, implying that
any resultant secret key should only be shared between the involved two parties. No third party
should be able to distinguish the resultant key from a random key. Also, the forward secrecy should
be conserved so that the compromise of a long-term secret key will not affect the confidentiality of
past communication sessions [42].

• Lightweight: As we focus on those resource limited devices, efficiency is a priority. When designing
the protocol, the Child, which is typically, though not necessarily, a resource-constrained device,
should be protected by shifting work load to the Guardian and the Parent as much as possible.

• Average administration requirements: The protocol should require as little professional
knowledge as possible. The configurations are automatic and user-friendly so that people do not
need to be IT experts to operate the protocol.

6.4. Adversarial Model

A key exchange protocol without a well-defined adversarial model cannot be considered
secure. Hence, here we summarize the assumptions regarding potential adversaries. We assume
an active network adversary, who may take full control of all the communication channels (namely,
the communication channel between the Guardian and the Child as well as the one between the
Guardian and the Parent). This attacker can eavesdrop on messages, modify them at will, inject its own
message, delete messages, delay message delivery, duplicate any message and/or replay it later. It may
even be able to initiate new protocol sessions and interleave messages from different sessions [43,44].

To facilitate the dynamic establishment of the mutual trust between the Guardian and the Parent,
we assume a trusted certification authority, e.g., a Public Key Infrastructure (PKI), is available so that



Future Internet 2017, 9, 27 14 of 28

the more capable parties (i.e., the Guardian and the Parent in our context) can use their long-term
private information, such as private keys and certificates, to authenticate their identities with the
assistance of the trusted certification authority. With respect to the Guardian and the Parent, if its
long-term private information that is used to authenticate itself is leaked and is accessible to attackers,
then we consider it to be corrupted.

As for the Child, we assume it is a resource-constrained device with necessary hardware
protections. That means the adversary is at most a weak software adversary but it is not a hardware
adversary. The attacker can only access and/or overwrite regular applications or the operating
system, but not non-volatile secure storage, such as a Trusted Execution Environment (TEE) [39,40].
Also, we assume the adversary cannot modify the hardware circuitry. With that being said, the “Parent”
key (shown in Figure 8) representing the pre-existing trust relationship between the Parent and the
Child should be protected properly, e.g., in a TEE or implemented using separate hardware circuitry.
If the “Parent” key on the Child is leaked or modified, we consider the Child to be compromised.

6.5. Protocol Design Choices and Considerations

In order to develop a delegation-based key provisioning protocol that satisfies the requirements
mentioned in Section 6.3 in the presence of attackers that were described in Section 6.4, we first
investigate several existing key exchange protocols and authentication protocols. Based upon the
protocol analysis, we incorporate and customize Choo’s three-party key distribution protocol (3PKD)
and the SIGMA protocol to accommodate our needs. In the rest of this section, we will discuss the
design choices and considerations.

6.5.1. Investigation of Three Party Key Exchange Protocols

There are several existing three party key exchange protocols. Particularly, we examine two
representatives: Choo’s 3PKD [45] protocol and Needham-Schroeder protocol [46]. One of the major
differences between these two protocol is that Needham-Schroeder protocol is good for establishing
a one-time use shared key (e.g., session key), while Choo’s 3PKD protocol can generate a long-lived
shared key. In the Needham-Schroeder protocol, the Parent, which serves as the key distribution
center (KDC), generates the secret key and sends it to the one of the two peer parties (the Child and
the Guardian) directly. Then the party, who receives the key from the Parent, shares the key with the
other peer party with proper challenge-response verification. With the Needham-Schroeder protocol,
all three protocol participants know the shared key that will be used between the two peer parties.
However, the Parent does not necessarily need to know this shared key. This fact increases the risk of
secret leakage and requires the generated key to be used and discarded as soon as possible because
once the Parent is comprised, the shared key generated with the assistance of the Parent will be subject
to leakage.

In Choo’s 3PKD, the Parent provides a “session key” to the Child and the Guardian directly at the
same time, and thus this “session key” may be used as a seed, with which the Child and the Guardian
can compute a shared key by themselves without being known by the Parent. This strategy follows the
least privilege principle and is preferred for generating a long-term key. Even if the server is comprised
later, the shared key derived from the seed will not be comprised.

Another problem with Needham-Schroeder protocol is its vulnerability regarding a replay
attack [47], which is fixed in the Kerberos protocol [41] by the adding a timestamp. Kerberos is
another widely used key distribution protocol based on the Needham-Schroeder protocol. However,
Kerberos is not suitable for our purposes for the following reasons: (1) it suffers from the single point
of failure; (2) the centralized KDC model is not flexible and scalable enough to support heterogeneous
Parent devices on a global scale. Different edge IoT devices (Child devices) may have different Parent
devices, which have pre-existing trust relationships and can provide verification and/or delegation
regarding to the corresponding Child devices. Due to the vast type and quantity of the Child devices,
the Parent devices are also heterogeneous and numerous. As a result, extending Kerberos to our
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context (e.g., a global-wised MobilityFirst-based IoT architecture) is not feasible. (3) Kerberos has
a strict time requirement, which means the clocks of the involved devices must be synchronized within
configured limits. However, accurate clock synchronization might be too expensive for many low end
IoT devices. Hence, in this protocol, we prefer to use nonces instead of timestamps.

On the other hand, Choo’s 3PKD protocol has a solid security proof and no attack against it has
been identified yet. Therefore, based upon the analysis above, we chose Choo’s 3PKD protocol as
the blueprint for the delegation-based key provisioning protocol. However, Choo’s 3PKD protocol
alone cannot satisfy our requirements and achieve our goal. There is an assumption in Choo’s
3PKD protocol that the Parent is trusted by both the Child and the Guardian before the protocol
execution. Unfortunately, this is not necessarily always true in our setting. If the Guardian and
the Parent have already established a secure communication channel, then they may leverage such
an advantage to facilitate the Parent to delegate the Guardian the privilege to establish a key with
the Child. Alternatively, if the Guardian does not know the Parent previously and/or there is no
secure communication channel between the Guardian and the Parent, these two parties need to
build mutual trust on the fly during the on-going protocol session. This requires incorporating an
authentication and delegation process between the Guardian and the Parent, which will be discussed
in the following section.

6.5.2. SIGMA Protocol

The Diffie-Hellman (DH) key exchange protocol [48,49] is one of the most fundamental two-party
key exchange protocols. Though itself is not an authenticated key agreement protocol, it is the basis for
many popular authenticated protocols. One serious vulnerability of the Diffie-Hellman key exchange is
the man-in-the-middle-attack [50]. To address the weaknesses of the Diffie-Hellman protocol, a variety
of variant two-party key exchange protocols have been proposed, including the STS protocol [51],
Photuris protocol [52] and SIGMA [44] protocol.

Unfortunately, many of those variants have flaws that were identified later on. To the best of our
knowledge, SIGMA is still a secure two-party authenticated key exchange protocol that has no effective
attack against it. SIGMA takes advantage of the public key infrastructure and adopts “SIGn-and-MAc"
approach to authenticated Diffie-Hellman with digital signatures. It serves as the cryptographic
basis for the Internet Key Exchange (IKE) standard (version 1 and version 2) [44,53,54]. In our key
provisioning protocol, SIGMA is chosen as a building block and is overlaid with the 3PKD protocol to
enable the Guardian and the Parent to authenticate each other on demand. This choice also brings
other benefits, such as forward secrecy.

6.6. Protocol Specifications

As illustrated in Figure 8, there are three participants in the protocol: the Child, Guardian and
Parent. The Child and the Parent share a symmetric key kek representing their pre-established trust
relationship, but they can not communicate directly. The Guardian has direct communication channels
with both the Child and the Parent. The output of the delegation-based key provisioning protocol is
a symmetric key sk shared only between Child and Guardian.

Figure 9 presents the format and the flow of nine messages in the “full fledge" delegation-based
key provisioning protocol. Table 1 lists the notations used in Figure 9. For simplicity, the Child,
the Guardian and the Parent are denoted by C, G and P respectively in the following discussion.
Below we present the delegation-based key provisioning protocol specifications:

1. G→ C : {N1, IDG }

G sends Message 1 to C to initiate a protocol session. The goal is to establish a trust relationship
and a corresponding symmetric key to represent such trust. To construct Message 1, G generates
a random nonce N1 and sends it together with its identifier IDG to C in plaintext.
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2. C → G : {N1, IDG , N2, IDC , IDP }

Currently, C has no knowledge regrading G, but sends back Message 2 to direct G to P for further
authentication and delegation. Message 2 contains identity information for all three parties,
and initial random nonces from C and G for a protocol session.

3. G→ P : {N1, IDG , N2, IDC , IDP }

Upon receiving Message 2 from C, G first verifies N1 and IDG are from Message 1 as well as
no duplicate identifiers, i.e., IDC , IDG and IDP , IDG and IDC , IDP . If all the verifications
succeed, G then forwards Message 2 as Message 3 to C’s parent party P;

4. P→ G : {N1, IDG , N2, IDC , IDP , N3, gx }

Upon receiving Message 3 from G, P should validate the following:

(a) All the identity information are correct.
(b) G can be authenticated.
(c) C is indeed its child entity.
(d) Requested privilege on C can be authorized to G.
(e) Authorization decision could be based on G’s identity and an additional data structure for

the authorization. In different embodiments, various information may be included in the
authorization data structure. Such data structure may be sent and verified by P and G in
protocol exchange with Messages 4–6.

Then P generates its own nonce N3, the Diffie-Hellman private exponent x and public value gx

to construct Message 4, which corresponds to the first message of SIGMA protocol. Message 4
includes all three nonces so as to enhance the three-party context. This works as a challenge to G
to reduce the chance of a denial of service (DoS) attack on P.

5. G→ P : {N1, N2, N3, gy , sigG (gx | |gy ), [IDC , certG ]ak }

Now G and P engage in a mutual authentication from Message 4 to Message 6. G first verifies that
N1, IDG , IDP , N2 and IDC are from Message 3 as well as gx is an element of the Diffie-Hellman
group. Then G sends Message 5, which corresponds to the second message of the SIGMA
protocol, with the enhanced protocol context (e.g., matching identifiers and all three nonces) and
its own Diffie-Hellman public value gy . G signs Diffie-Hellman public values with its public key
certificate certG , and then computes a Message Authentication Code (MAC) on G’s own identity,
further bound with C’s identity using the derived key from both parties Diffie-Hellman values.
Note that the key ak used to compute the MAC is derived by Equations (1) and (2).

dk = pr f (hash(N1 | |N2 | |N3), gxy ) (1)

ak = pr f (dk, 1) (2)

6. P→ G : {α, β, sigP (gy | |gx ), [certP ]ak }

P parses and validates the following in Message 5:

(a) Verify N1, N2, N3, certG and IDC (IDC , IDG) are from Message 4.
(b) Verify certG and G is authorized to receive a key for C.
(c) User the public key contained in certG to verify the signature sigG (gx | |gy ).
(d) Verify gy is an element of the Diffie-Hellman group.
(e) Use ak derived as in Equations (1) and (2) to verify the MAC tag on [IDC , certG ]ak .
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Then P sends back Message 6, which corresponds to the third message of the SIGMA protocol,
with matching protocol context, signing Diffie-Hellman public values in reverse order (to protect
against reflection attacks) with its own public key certificate certG , and computes the MAC on
P’s own identity, using the same derived key ak. Note that Message 6 introduces additional
data structures as part of the 3PKD protocol, namely two key provisioning tokens, upon making
delegation decision to G:

(a) P as the key provisioning server, generates a random key material k, which will be used
later by G and C to compute shared secret key sk, to be delivered to both G and C.

(b) P generates token α for G using Equation (4), which includes authenticated data for this
protocol instance (all identifiers and nonces) and encrypts the key k using ek, which is
derived by Equation (3).

(c) P generates an associated token β for C using Equation (5), which includes the same
authenticated data for this protocol instance (all identifiers and nonces) and encrypts the
key k using kek, which is the existing parent key that P has established with C, prior to
this protocol execution.

(d) As the key material k is securely encapsulated into α and β, P sends both tokens to G in
Message 6, in addition to SIGMA authentication data structures.

ek = pr f (dk, 2) (3)

α = [N1 | |IDG | |N2 | |IDP | |IDC | |N3 | |{k}]ek (4)

β = [N1 | |IDG | |N2 | |IDP | |IDC | |N3 | |{k}]kek (5)

7. G→ C : {β}

Upon receiving Message 6, G first validates as the following:

(a) Verify N1, IDG , N2, IDP , IDC and N3 are from Message 5.
(b) Parse [certP ]ak as certP and tag′.
(c) User ak to verify tag′.
(d) Verify certP .
(e) Verify signature sigP (gy | |gx ).

If all the validations succeed, at this point, G and P have completed mutual authentication and
established a fresh secret symmetric key ek derived from the Diffie-Hellman handshake and the
current session information as in Equation (3). Then G uses ek to decrypt token α and extract
the secret k, which implies G receives an authorization from P. Then G directly extracts β from
Message 6, and forwards it to C as Message 7 to further confirm with C whether they can reach
the agreement that P has granted authorization to this delegation bounding to the same session.

8. C → G : {[sid, IDC ]ck }

C validates the token β with matching session information (namely, N1, IDG , N2, IDP and IDC

are from Message 2), then recovers the same key material k with kek. To construct Message
8, C computes session ID sid as in Equation (6) and uses key ck derived by Equation (7) to
authenticate the message. As an option, G and C could further engage in an additional exchange
locally to establish a pair secret ps (ps could be null). This pair secret may be used as a contribution
to the session information and further derivation, so that P has no knowledge of the established
key between G and C;

sid = hash(N1 | |IDG | |N2 | |IDP | |IDC | |N3 | |ps) (6)
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ck = pr f (k, 1| |sid) (7)

9. G→ C : {[sid, IDG ]ck }

G parses Message 8 as sid, IDC and MAC tag. G first verifies IDC is from Message 2 and then
verifies sid derived by Equation (6). G computes ck with Equation (7) and uses it to verify the tag.
At last, G constructs Message 9 and sends it to C as an acknowledgement. Locally, G computes
key sk with Equation (8) as the final outcome of the protocol.

sk = pr f (k, 2| |sid) (8)

10. C: validate Message 9 and compute sk

C parses Message 9 as sid, IDG and MAC tag. C verifies IDG is from Message 1, validates sid
and then use ck to verify tag. C also computes the shared secret key sk with Equation (8).

Message 8 and Message 9 are created by C and G, respectively and validated by G and C,
respectively, to complete the 3PKD protocol to confirm the matching session information, and
consistency in the provided key material from P. Therefore, all three parties reach an agreement
that the delegation has been properly granted and confirmed by C, P and G, and derive sk as the
final outcome of the protocol.

Figure 9. Message flow of key provisioning protocol.
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Table 1. Protocol Notations.

Symbol Notation

rng Random Number Generator

| | Concatenation

Ni ith nonce generated in the protocol session

IDX Identifier of the protocol participant X

g Generator of Diffie-Hellman group

x Parent’s Diffie-Hellman private component

y Guardian’s Diffie-Hellman private component

pr f (k, s) Pseudo random function with k as the key and s as the seed

hash(M) One way hash function on material M

sigX (M) Signature on material M using the private key of X

[M ]k Message Authentication Code of M using key k

[A| |{B}]k Authenticated encryption: B is encrypted and A| |B is authenticated using key k

certX Certificate of the protocol participant X

α Token generated by Parent and granted to Guardian

β Token generated by Parent and granted to Child

kek Parent key shared between Parent and Child

k Random key generated by Parent for Guardian and Child

dk Intermediate component derived from Diffie-Hellman

ak Symmetric key derived from dk and used for computing message authentication code

ek Symmetric key derived from dk and used for protecting token α

sid Session identifier

ck Symmetric key derived from sid and k and shared between Guardian and Child

sk Membership key shared between Guardian and Child

ps Local secret shared only between Guardian and Child (could be null)

At this point, the protocol concludes with the successful establishment of a secret key between
G and C to represent their trust relationship delegated by P. Stated another way, at completion of
the protocol, all three parties confirm they reached a three-party agreement on the delegation. This is
typically referred to as a matching conversation. For the agreement on the delegation, the result of the
protocol is that:

(a) C agrees: P and G are corresponding parties in the delegation as P and G; and P and G know
that C agrees;

(b) P agrees: G can be authorized to receive the delegation on C; and both C and G know that
P agrees;

(c) G agrees: P has successfully authorized the delegation to C, and C is indeed P’s child; C and P
know that G agrees.

6.7. Discussions and Security Analysis

The delegation-based key provisioning protocol specified in Section 6.6 involves three parties
and contains nine messages. However, in the context of the MobilityFirst-based IoT architecture,
there is another round of message exchange before the execution of this key provisioning protocol.
When grouping a set of IoT devices to form an IoT network or when a device is joining an existing
IoT network, the IoT-NRS initiates the device discovery process by sending out registration beacons
periodically. An IoT device responds to the beacon with its intention to join the network. After the
beacon and the response message exchange, to register the new device and establish a long-term
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membership credential, the IoT-NRS initiates a new session of our key provisioning protocol by
sending Message 1 of the protocol with its identifier and a fresh nonce. We do not explicitly include
the first round of message exchange into the key provisioning protocol specification because: (1) the
beacon and the response message exchange is sent over an open channel and is irrelevant to the
security operations; and (2) the context of MobilityFirst IoT architecture does not limit the applicability
of our key provisioning protocol. This protocol is general and can be applied to other scenarios, which
will be discussed in Section 6.9.

Both Choo’s 3PKD protocol and SIGMA protocol are proven to be secure individually. However,
combining them together and customizing them to be applicable for resource-limited devices does
not necessarily imply the result is secure. One of our major contributions includes providing security
guarantees for overlaying Choo’s 3PKD protocol and SIGMA protocol as well as adopting lightweight
measures to reduce overhead. Below, we will discuss our contributions to the key provisioning protocol
in detail and show that all the security requirements listed in Section 6.3 are achieved.

6.7.1. Protocol Security Analysis

The key provisioning protocol provides strong security on provisioned keys by leveraging two
different protocols, namely a three-party key distribution protocol (3PKD) and a two-party SIGMA
protocol, for parent-guardian authentication. These two protocols are overlaid with enhanced protocol
session context (all identifiers and nonces) so that all protocol participants have consistent and a correct view
of the protocol session. Upon the successful completion of the key provisioning protocol, each party
needs to confirm its commitment to the fact that they agree on, and contribute (e.g., contribute a nonce)
to the shared secret(e.g., a shared key or a seed used to generate a shared key).

Introducing enhanced protocol session context into the protocol design excludes the possibility
of an identity misbinding attack, where an attacker successfully convinces the peers that the key
exchange succeeded, yet the key agreement is bound by each of the participants to a wrong
“peer” [44]. One of the measures adopted in the key provisioning protocol to prevent identity-related
attacks, e.g., a misbinding attack, is adding identifiers in the corresponding messages when necessary.
We assume the identifiers of Child C, Guardian G and Parent P are IDC , IDG and IDP respectively.
In the context of the MobilityFirst-IoT, there are two types of identifiers : the globally-used GUID
and the locally-used membership credential. Thus, IDG and IDP should be the GUIDs of G and P
respectively. However, as C is typically a low-end IoT edge device, it does not necessarily have a GUID.
Further, before the completion of the key provisioning protocol, as C has not successfully finished the
device registration yet, C does not hold a local membership credential of G’s network. In fact, IDC

should be a “local” identifier recognizable by P and used to facilitate the establishment of a long-term
membership key shared with G. To summarize, IDC is neither a GUID nor a local membership key.
Instead, IDC is only a local identifier that uniquely identifies C at P. For example, assuming P is
a device manufacturer and C is a product device from P, then IDC could be the model and serial
number that is stored in P’s database. In other application scenarios of the key provisioning protocol,
IDG and IDP are not necessarily GUIDs, which is specific to the design of the MobilityFirst network.
Alternatively, IDG and IDP could be any other forms of identifier that allow G and P to identify and
further authenticate each other.

The first stage of our protocol contains the first three messages and corresponds to the first
stage of Choo’s 3PKD protocol, in which each of the two peer parties contributes a nonce to the new
protocol session. Also, as the “server” P is unknown to G at this point, C explicitly specifies its Parent
P by providing IDP . This design provides flexibility, which many other existing server-based key
distribution protocols, such as Kerberos, lack. In Message 2, the identity of the Parent is specified by
the Child, and hence the Guardian knows who to contact for delegation from the Child. In practice,
as a Child may have several pre-existing trust relationships that can be leveraged, the Child has the
freedom to direct the Guardian to any of the Parents sharing an established trust. In case one Parent is
unreachable by the Guardian or the mutual trust establishment between the Guardian and the Parent
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fails, the Guardian may inform the Child of the delegation failure. Then the Child can in turn provide
another Parent as the new referee.

In the second stage (Message 4–6), which corresponds to the SIGMA protocol, a Parent-Guardian
authentication is completed using the Diffie-Hellman exchange. This authentication process, facilitated
by a PKI, is essential to exclude the possible collusion of the Child and the Parent. As this authentication
request is initiated by G in Message 3, P sends its Diffie-Hellman value, which can be pre-generated,
as a challenge to G to reduce the chance of a denial of service (DoS) attack on P as the Diffie-Hellman
algorithm requires a lot of computing resource and G has to pay the price first.

The last stage of our protocol (Message 7–9) corresponds to the second stage of the 3PKD protocol.
In this stage, the key material k provided by P is delivered to C, and then G and C reach a key
agreement based upon k. The protocol is concluded by a handshake between G and C so that both of
them confirm that the other party has computed the correct shared secret with respect to the correct
protocol session. In our embodiment, we introduced the session context in terms of session identifier
sid, which is derived from the complete session information (all identifiers, nonces and optional local
secret between G and C), and use it as a glue to combine SIGMA protocol between the first stage and
the second stage of 3PKD protocol. With the approach of repeating the session information through
the protocol, each of the parties has a fresh and consistent view of the current protocol session, which
significantly increases the difficulty of launching attacks targeting the context of a protocol instance,
such as replay attacks and misbinding attacks. At the end of the third stage, dynamic mutual trust
between the Child and the Guardian and the Parent-to-Guardian delegation are achieved. Secrecy and
forward secrecy are also satisfied through handling key materials properly.

The key provisioning protocol may further realize stronger security on provisioned keys as
compared with existing pairing protocols. In contrast to pairing protocols that do not have a security
proof (which causes them to be troublesome due to possible man-in-the-middle attacks and frequent
human errors in any manual operations), the protocol as described may be performed with no
manual intervention from the user for key provisioning. Compared with traditional key provisioning
protocols that do not rely on a server or key infrastructure, such as secure pairing, there is no manual
operation by a user on an out-of-band (OOB) channel. Instead, the device Parent party is leveraged
as the trusted third party to facilitate trust establishment. Such design reduces human error, hence
satisfying average administration requirements and increasing usability. Further, it removes the
requirement of close proximity for key provisioning, as required by most OOB channels involving
manual operations by human, and hence increases the chance of practical deployment and satisfies the
scalability requirement.

6.7.2. Lightweight Approach

This key provisioning protocol is carefully designed for IoT networks as a light key solution.
As one of the most important features, the protocol design favours the resource-limited Child device C
in all possible means. The strategy is to minimize the number of messages C needs to process and shift
the work load to those more capable devices, namely G and P, as much as possible. Consequently,
the key provisioning complexity is transferred to the edge device’s Parent party and the Guardian
device, making it possible for minimally complex IoT edge devices to operate with secure interactions.

Compared with public key certificates, our protocol implements only lightweight symmetric key
operations and secure storage for at least a single symmetric key and protected key operations with
the stored key. Specifically, all of the security operations on the Child are symmetric cryptographic
computations, which makes the protocol feasible for low-end IoT edge devices.

Timestamps and nonces are two typical security measures to guarantee the freshness of a protocol
instance and to prevent replay attacks. Timestamps require strict time synchronization, and
consequently increases the hardware cost as an oscillator with high accuracy is not necessarily cheap.
On the other hand, nonces require a (pseudo) random generator and some form of database to retrieve
if a nonce appeared before. As a comparison, nonces are relatively cheaper, and hence we chose to use
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nonces to protect against replay attack. Unlike a Kerberos system, the Child device is not required to
have secure clock synchronization.

Furthermore, the protocol can be implemented with a minimal number of protocol messages
handled by the child device. The protocol can thus minimize the computation and power costs
to a Child device, such that lightweight devices like sensors, actuators, and microcontroller units
(MCUs) can be provisioned with secret keys securely. In addition, the first four messages are sent as
plaintext in open channels to reduce overhead. Modifying and/or replaying the messages in the first
stage will result in protocol abortion later as each piece of session information will be verified in the
following stage.

6.8. Proof of Concept

In order to validate the proposed protocol, we implemented a prototype of the delegation-based
key provisioning protocol. The discussion includes the framework design, implementations choices as
well example results from the implementation demonstration.

6.8.1. Modularized Prototype Framework

Figure 10 shows the modularized prototype framework design. Each party’s protocol package
includes three major components: Instance Manager, Protocol Manager and Utility Functions. Each party
should be able to work independently to perform tasks, such as receive messages, parse messages,
perform designated computations, construct messages and send messages. In the protocol system
model, there are two client/server based communication channels. For the channel between the
Guardian and the Child, the Guardian serves as the “server", while the Child is the “client”. On the
other channel between the Parent and the Guardian, the Parent serves as the “sever" while the Guardian
is the “client”.

Modularized design allows easy adjustment if the protocol design changes or the parameters
change. The instance manager creates an instance of the corresponding party at the device, and then
performs configurations, e.g., setting up a port number.

The protocol manager manages all of the sessions of the protocol instance on the device.
The protocol manager consists of four modules: Session Manager, Finite State Machine, Networking
and Message. As one party may open more than one protocol session related to different peer parties,
the Session Manager is introduced to coordinate different sessions and handle related operations,
including initiating a new protocol session, terminating an active protocol session, update and query
local session database. For example, the Guardian as a local group authority may receive several
registration requests from different edge IoT devices so that it needs to open multiple protocol sessions
(one for each requesting IoT device), which requires a session manager to coordinate. This module is
also necessary even for edge IoT devices as one edge device as a Child might join two or more different
IoT networks at the same time. The Networking module is responsible for receiving and transmitting
encoded messages through the network interface. The Message module parses and constructs messages
as well as performs related cryptographic computations. The Finite State Machine (FSM) is the core
module that handles protocol state transitions. We incorporate an event-driven FSM to take actions
upon input events, including a message being constructed and sent successfully, successfully receiving
a message, time out, result of parsing and verifying a message, etc.

Utility Functions component provides two categories of utility functions: Message Encoding/Decoding,
which provide API for the Message module to parse and construct messages, and Crypto Library Wrapper,
which wraps the underlying cryptography library and provides cryptographic computation APIs for the
Message module.
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Figure 10. Modularized prototype framework design: the framework includes three major modules
(instance manager, protocol manager and utility functions) for three protocol participants.

6.8.2. Implementation Choices and Considerations

As for the underlying crypto library, we mainly investigated two lightweight crypto libraries:
wolfSSL (previously known as CyaSSL) [55] and mbed SSL (formerly known as PolarSSL) [56].
Both of them are lightweight embedded SSL libraries, providing cryptographic and SSL/TLS/DTLS
capabilities for IoT devices with minimal coding overhead. We implemented two suites of crypto
library wrappers, one for wolfSSL and one for mbed SSL. At the point of implementing the protocol
prototype, to the best of our knowledge, mbed SSL is more stable and easier to use with respect to the
cryptographic algorithms used in our protocol. In the final protocol prototype, we adopted mbed SSL
as the underlying crypto library and its wrapper as crypto/networking APIs to facilitate the crypto
and networking operations.

In the protocol specifications, authenticated encryption is used to protect two tokens carrying the
secret key material k as well as the session information. The prototype adopts AES Galois/Counter
Mode (GCM) [57] as the authenticated encryption algorithm, which is a block cipher with both
encryption and authentication functionalities. With AES-GCM, the key material k is first encrypted
and then authenticated together with the session information to generate an authentication tag.
As a result, the token α and β consist of three parts: a plaintext of the session information, a ciphertext
of the key material and an authentication tag.

The session manager module has a responsibility of monitoring and checking the session
information. For example, in a new session, when a party receives the fresh session information,
namely relevant identifiers and nonces, from an incoming message, it should first validate the freshness
and the correctness of the session information. Specifically, it is important to verify whether the nonce
has appeared before. Therefore, creating and maintaining a local database to store and retrieve all the
past session information is necessary. Currently, we simply use a database file to store all the previous
session data. The session manager looks up and updates the database file upon receiving the session
data from a fresh protocol session.

Major implementation choices for the cryptography algorithms is listed in Table 2 and parameter
settings are listed in Table 3.

Table 2. Cryptograhpy Algorithm Choices.

Cryptography Operation Algorithm Choice

hash SHA-256

pseudo random function (prf) HMAC-SHA256

Diffie-Hellman Groups 2048-bit MODP Group [58]

asymmetric crypto 2048 bits RSA

Message Authentication Code (MAC) HMAC-SHA256

Certificate standard X.509
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Table 3. Cryptograhpic Parameter Settings.

Cryptographic Parameter Settings

symmetric key size 32 bytes

key identifier size 32 bytes

identifier size 32 bytes

MAC tag size 32 bytes

AES-GCM tag size 16 bytes

SHA-256 digest size 32 bytes

RSA key size 2048 bits

Diffie-Hellman key size 2048 bits

6.8.3. Demo of the Prototype

In this section, we present the demo output (shown in Figure 11) at Child, Guardian and Parent
respectively. The demo was run on a single Linux machine so that we used different port number to
differentiate the different communication channels. In practice, IP addresses and port numbers are
usually used instead of purely port numbers.

Figure 11. A demonstration example illustrating the message flow and the session information printout
at the Guardian, the Child and the Parent.

At the beginning, the Parent P configured itself as a server and opened a listening socket waiting
for the Guardian G. G played a dual role and thus configured itself as a server for the Child C and
as a client of P. C was configured as a client of G. In the demo, we used the TCP socket provided by
the mbed SSL library as the networking socket. In a practical IoT network deployment, this can be
replaced by other networking sockets customized for IoT environments, e.g., DTLS [59]. Also, there is
an additional Message 0 before the first message of the protocol to initiate the connection from the
client (Child) to the server (Guardian).

Below we briefly illustrates the message exchange flows shown in Figure 11.

• Step 1: G initiates the protocol and sends the first message < Guardian Request > to C.
• Step 2: C replies to G with < Child Response > indicating the identity of P.
• Step 3: G sends < Delegation Request > to P.
• Step 4: P performs SIGMA protocol and sends < Authentication Challenge > to G.
• Step 5: G replies P’s challenge with < Authentication Challenge Response >.
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• Step 6: P grants two tokens to G in < Contract (TK1, TK2) >. P close the socket.
• Step 7: G forwards < Contract (TK2) > to C.
• Step 8: C starts the final handshake to confirm the key agreement in < Signed Contract > with G.
• Step 9: G finishes the handshake with < Contract Review > to confirm the key agreement with C.
• Step 10: C confirms the success of the handshake and key agreement.

At the end, we can see the key ID, which is derived from the session data, and the key material
are consistent at both the Child and the Guardian.

6.9. Use Cases

The delegation-based key provisioning protocol is not only a lightweight membership enrolment
protocol specified for the MobilityFirst-based IoT architecture, but can also serve as the cryptographic
core of general-purpose key provisioning, where established keys may represent various trust
relationships with different scope, semantics and criticality/impact.

Delegation of key provisioning in accordance with our protocol assumptions can be applied
to a wide variety of use cases. As an example, the delegation techniques can also be used for a
special function delegation. For instance, a symmetric attestation scheme may involve the Parent
as an established Verifier to delegate the capability for the Guardian (a new Verifier) to challenge
and verify the Prover (Child) using a symmetric attestation key. Embodiments may further support
provisioning an additional Verifier (Guardian) for the same Prover. In such cases, a fresh and unique key
may be established between the Prover and the new Verifier, with the original Verifier’s authorization
and delegation. A device provisioning function that establishes a new root of trust key for a device
could also use the above protocol.

Another example can be applied to an ownership transfer protocol, which allows the original
owner (Parent) to transfer all its privileges on the target device (Child) to the new owner (Guardian).
In this case, a new ownership key is established on the Child, and replaces the old ownership key as
the root of trust.

To summarize, with respect to key management, different keys have different usage purposes and
thus key semantics are essential to clarifying any ambiguity. Our delegation-based key provisioning
protocol can work with various key semantics and provide a lightweight approach to establish key
material for IoT systems.

7. Conclusions

In this paper, we first investigated existing IoT solutions and analyzed their disadvantages.
We focused in depth on security aspects of the various IoT architectures. Starting with a general
security analysis, we identified security and privacy concerns unique to IoT systems. Then we proposed
a unified IoT architecture design based on the MobilityFirst network that addresses security concerns
and increases confidence about the assurable operation of the Internet of Things. We introduced
a new layer in the architecture, which we refer to as the IoT middleware, that connects heterogeneous
hardware in local IoT systems to the global MobilityFirst network. One of the core components of the
IoT middleware is the IoT-NRS (IoT name resolution service), which is a device registration service that
provides naming and key management. Further, we developed a delegation-based key provisioning
protocol that establishes a long-term membership key between an IoT device and the IoT-NRS, with the
assistance of a trusted third party. The protocol is specifically designed to be trustworthy while also
being lightweight. Moreover, this protocol can support many functions that might be expected in IoT
systems, such as ownership transfer, or establishment of an attestation key. Our efforts extend the
Internet to include the real world objects and therefore facilitates the formation of a large and new
network inclusive of embedded devices.
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