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Abstract:



As the Internet becomes larger in scale, more complex in structure and more diversified in traffic, the number of crimes that utilize computer technologies is also increasing at a phenomenal rate. To react to the increasing number of computer crimes, the field of computer and network forensics has emerged. The general purpose of network forensics is to find malicious users or activities by gathering and dissecting firm evidences about computer crimes, e.g., hacking. However, due to the large volume of Internet traffic, not all the traffic captured and analyzed is valuable for investigation or confirmation. After analyzing some existing network forensics methods to identify common shortcomings, we propose in this paper a new network forensics method that uses a combination of network vulnerability and network evidence graph. In our proposed method, we use vulnerability evidence and reasoning algorithm to reconstruct attack scenarios and then backtrack the network packets to find the original evidences. Our proposed method can reconstruct attack scenarios effectively and then identify multi-staged attacks through evidential reasoning. Results of experiments show that the evidence graph constructed using our method is more complete and credible while possessing the reasoning capability.
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1. Introduction


With the emergence of the global information era, computer networks have become an indispensable infrastructure. As a result of the continuous development of computer network technologies, the number of network offenses has been increasing rapidly, which has evolved from technical issues to global social issues, forcing national governments to adopt ways of maintaining the right of users and to implement tough sanctions on network criminals. In this context, network forensics can play an important role by offering scientifically proven methods to gather, process, interpret and use digital evidence to provide a conclusive description of cyber-crime activities [1]. Both traditional digital forensics and network forensics would need to obtain or identify the potential electronic evidence. However, network forensics is different from traditional digital forensics in that it needs to extract and analyze dynamic communication data over the network to provide valid electronic evidences about the activities of attackers to the court. Network forensics have some common features with network intrusion detection, i.e., they all need to acquire network packets for analysis [2]. The main difference is that while network intrusion detection only needs to detect intrusions and then respond to them, network forensics is the science of dealing with capturing, recording and analyzing network events and traffic in order to obtain the evidences of the intrusions.



Network forensic analysis is a process that analyzes intrusion evidence in the networked environments to identify suspicious users as well as actions in an attack scenario. Unfortunately, the overwhelming amount and low quality of network data makes it very difficult for analysts to obtain succinct presentation of complex multi-staged intrusions. In the current literature, network forensics techniques have been studied on the basis of forensic tools, process models and framework implementations. However, there is still a lack of comprehensive study on cybercrime investigation that uses network forensics frameworks along with a critical review of present network forensics techniques [3].



In this paper, we present a modular analysis process in which evidence graph and evidence reasoning are applied to network forensics analysis. While the evidence graph provides the basis for evidence analysis, vulnerability evidence reasoning algorithm is used to reconstruct attack scenarios so as to backtrack the network packets to derive the original evidences. We will also perform some experiments to validate our proposed method and to compare our method to Wang’s network forensics analysis method [4] primarily through using MIT Lincoln Laboratory LLDOS 1.0 and LLDOS 2.0.2 datasets [5] to demonstrate the effectiveness and the accuracy of our method. Experiment results will demonstrate that evidence graph constructed using the proposed method is effective with certain reasoning ability and thus can be used as a powerful tool for rapid and effective network forensics analysis.



The remainder of this paper is organized as follows. Section 2 contains a literature review of related research work. Section 3 presents the proposed method and Section 4 describes the experiments as well as the analysis of the results. Section 5 summarizes the work that we have done and outlines some ideas for future work.




2. Related Work


Frequent occurrence of computer offenses has prompted the development of network forensic technologies. In the United States, computer-derived evidence has been accepted by the court since 1969. Network forensics was first proposed in the 1990s by Ranum [6], who has been credited with defining network forensics as the “capture, recording and analysis of network events in order to discover the source of security attacks or other problem incidents”. Network forensics is defined by Palmer as “the use of scientifically proven techniques to collect, identify, examine, correlate, analyze, and document digital evidence from multiple, actively processing digital sources for the purpose of uncovering facts related to unauthorized activities meant to disrupt, corrupt, and/or compromise system components as well as providing information to assist in response to or to recover from these activities” [7]. Based on the above definitions, Schwartz described the aim of network forensics as the reconstruction of network events to provide sufficient evidence to allow perpetrators to be prosecuted [8].



In order to acquire evidences, various network forensic methods have been proposed to collect and analyze network data. Pilli proposed a method that collects packets under the TCP/IP protocol to analyze the common characteristics of attacks so as to filter suspicious packets [9]. However, high data rate of network traffic creates difficulties for network forensics in the capture and preservation of all network packets [10]. Kaushik, through scanning ports, found that attackers could find potential loopholes and then use these vulnerabilities to attack hosts [11]. Roussev et al. outlined a method of collecting relevant data by utilizing latency-optimized target acquisition (LOTA) whereby the data is collected sequentially without the need for continually seeking to locate data [12]. Data integrity plays a vital role in the process of network forensics, which expresses the ability of keeping accurate, complete and consistent data in the network. Mukkamala proposed a method that uses artificial intelligence techniques, such as ANNs (Artificial Neural Networks) and SVMs (Support Vector Machines), to ensure the integrity of evidence in network forensics [13]. Xie et al. designed and implemented PIDAS, a Provenance aware Intrusion Detection and Analysis System that integrates both online intrusion detection and offline forensic analysis. The method expresses and reveals the causality-based relationship between the invasion process and the files that are infected [14]. However, network forensics is different from intrusion detection and analysis by emphasizing on different points. Rekhis and Boudriga developed an Investigation-based Temporal Logic of Actions and a high level specification language for digital investigation [15], entitled I-TLA and I-TLA+, respectively. I-TLA+ can be used to generate executable specifications of attack scenarios, showing sufficient details about how an attack is conducted and how the system behaves accordingly. Our method will generate attack scenarios and identify multi-staged attacks through evidential reasoning.



Today’s Industrial Control Systems (ICSs) operating in critical infrastructures (CIs) are becoming increasingly complex. Settanni et al. presented a collaborative approach to protecting cyber incident information in which extensive use of the proposed pan-European incident management system was outlined [16]. Cherdantseva et al. indicated that although there were already a number of risk assessment methods for SCADA (Supervisory Control and Data Acquisition) systems, there was still the need for further research and improvement [17]. While being able to aid the investigation of attacks by tracing the attacks back to their sources and attributing crimes to individuals, hosts or networks, network forensics should also have the ability to predict future attacks by constructing attack patterns from existing traces of intrusion data [18]. Network forensics should provide functionalities such as attacker identification and attack reconstruction to complement the traditional intrusion detection and perimeter defense techniques in building a robust security mechanism. Chen et al. proposed a scalable forensics mechanism to identify the origin of stealthy self-propagating attacks [19] in which spatial and temporal contact activities are utilized to reduce the traffic volume and to back track the attacks. Causality reasoning on network events can help relationship discovery and provide detailed insights on event relations. Zhang et al. applied machine learning methods to detecting malware activities through network traffic analysis [20] and developed an approach to analyze programs as black boxes from the network perspective. However, the problem is different from the one that we concern about.



Ammann proposed a method based on the “map” of network vulnerability analysis, which shows the evidences using an evidence graph [21]. Palmer proposed a method that uses an attack graph to display the route of attackers and takes the attack graph as the evidence [7]. Rasmi et al. proposed to use attack graphs for network intrusion detection to identify the intentions of attackers, which can provide help for the detection of network intrusions [22,23]. Liu suggested a method to codify federal rules on digital evidence in a Prolog based tool to construct an evidence graph to visualize the corresponding attack scenarios that have happened in an attacked network [24]. Wang and Daniels (2008) developed a graph-based approach toward network forensics analysis. An evidence graph model would facilitate evidence presentation and automated reasoning [25]. Tian developed a real-time network intrusion forensics method called NetForensic [2], thus introducing vulnerabilities into the network intrusion forensics field. The evidence graph that is used to display network evidences has been gradually improved over the years.



Nonetheless, current network forensics methods exhibit the following common shortcomings:

	
Evidence from a single source (only network packets or alerts from network intrusion detection systems) may lead to incomplete or misleading evidences.



	
Data preprocessing methods used in the network forensics may lead to accuracy problem since such methods are generally less accurate to ensure that the result data is truly related to the particular crime event.



	
Some methods do not employ data preprocessing, resulting in low efficiency when dealing with a huge quantity of data.








The network forensics method that we propose in this paper thus has the following merits:

	
Our method can process data from multiple sources, which would help to produce more and complete evidences.



	
Our method uses the machine learning algorithm of SVM to filter suspicious data.



	
Our method uses Event Vector (EV) to unify heterogeneous data before storing and analyzing them.



	
Our method employs network vulnerability analysis to derive forensic results.









3. The Proposed Method


Our proposed method combines evidence graph and vulnerability reasoning. To ensure that the method follows certain procedures, we first propose a new network forensics framework that conforms to the general principles of network forensics. The framework is shown in Figure 1.


Figure 1. A Framework for Network Forensics.
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The functionality of each component in the framework is briefly described below:

	
Data collection module collects digital evidence (network program logs and network packets) from heterogeneous nodes deployed in the network in which network packets are the primary sources and network program logs are the accessorial ones.



	
Data preprocessing module adds digital signature and timestamp to digital evidence to ensure the integrity of the data.



	
Data storage module stores collected data into a database to ensure data authority and non-repudiation.



	
Data standardization module extracts the common fields from the collected data, converts them into a unified format and presents the results as an event vector. In addition, SVM is used to filter out benign packets and suspicious packets so as to reconstruct accurate evidence graph using the suspicious packets.



	
Evidence reasoning module uses the vulnerability evidence reasoning algorithm (VERA) to infer attacked nodes as well as the attacking routes. Primary data can also be backtracked to provide more and clearer evidence.



	
Evidence presentation module uses the evidence graph to show final evidence, which would include the intrusion nodes as well as the operations between nodes.








Note that core to our analysis method are the data standardization module, the evidence graph construction module and the evidence reasoning module. The evidence graph construction module constructs the evidence graph based on preprocessed data and updates graph attributes. Afterwards, the evidence reasoning module performs attack scenario inference based on the graph structure. In the following, we will describe these main modules in more details.



3.1. Data Collection


The Scientific Working Group for Digital Evidence (SWGDE) defined electronic evidence as information of probative value that is stored or transmitted in a binary form [26]. Casey noted electronic evidence as any constitution or relevant digital data that is enough to prove a crime in terms of computer and network storage media [27]. In order to make the evidence from network forensics valid, the following principles should always be obeyed:

	
Primitiveness of evidence: evidence should never be changed or destroyed.



	
Integrity of evidence: analysis and transmission process must ensure the integrity of data.



	
Continuity of evidence: when network evidence is submitted to the court, the evidence should illustrate the process of the relevant events.



	
Authentication of evidence: the whole process of evidence collection must be properly supervised.








The evidence in network forensics may come from multiple sources or different channels. In our study, cyber-crime data include but are not limited to the following sources:

	
Network packets;



	
Operating system log files;



	
Anti-virus software log files;



	
IIS server log files, FTP server log files, etc.;



	
Firewall log files.








Heterogeneous data is collected from the above sources, among which network packets are the primary source. Although attributes of evidence may vary with different sources, some essential fields apply to all categories of evidence and should be converted into a unified format.




3.2. Data Standardization


Tasks in the data standardization stage include normalization and filtration. All types of evidence from heterogeneous sources should be converted into a uniform format for analysis.



3.2.1. Event Vector


Event vector (EV) is defined as: EV = <ID, Source, Target, Operation, Timestamp, Data_Source>, which can be expressed as:
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In an EV, source represents the main enforcer, target represents the object that is the bearer of the event, operation is an action that is executed by the source that would influence the target, timestamp indicates the time of the operation, and Data_Source indicates where the digital vector originates from, i.e., a network packet or a log file. These data fields are stored in the form of an event vector, which would help to construct the evidence graph.



According to the definition of EV, a child process that is invoked by a parent process can be expressed as:
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The parent process is the source, the child process is the target and fork is the operation. If the child process writes into a file next, it can be expressed as:


[image: there is no content]











The child process is the source, the file is the target and write is the operation.



Similarly, according to the definition of EV, a network packet can be defined as <ID, IP1, IP2, Visit, Timestamp, Net packet>, which can be expressed as:
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Event vectors are used to unify the collected data which will be used to construct the evidence graph to facilitate the analysis of evidence for investigation.




3.2.2. Support Vector Machine (SVM)


Machine learning techniques are widely used in data mining in general and network traffic analysis in particular. Support vector machine (SVM) [28] is one of the most popular supervised learning algorithms for both regression and classification problems due to its robustness and high accuracy. SVM is capable of accurately classifying network traffic through using a small set of training samples, making it an effective tool to perform network packet classification. We will use the widely popular open source SVM code LIBSVM [29] in our experiments to separate suspicious packets from all other packets. This is because the large percentage of redundancy that exists in network packets would make it difficult to analyze attacks in an efficient manner. We thus use SVM to filter out benign packets and suspicious packets and then use the suspicious packets to construct an accurate evidence graph.



The use of the LIBSVM generally involves two steps: first, training a data set to obtain a model and second, using the model to predict information of a testing data set. We adopt the data that was acquired from the 1998 DARPA intrusion detection evaluation program which is blasted with multiple attacks in a local area network (LAN) that simulated a typical U.S. Air Force LAN. For each TCP/IP connection, 41 various quantitative and qualitative features (KDD-CUP-99 [30] Task Description) were extracted. We partition the packets into two classes: normal and attack, where the attack packets consist of the collection of all 22 different attacks. In the experiment, all attack packets are classified and labeled as +1 and normal data as −1. We use a training set of 7312 data items with 41 features. The data set contains benign packets and suspicious packets.



First, we transform each and every packet into a matrix that consists of 41 features and a class flag as shown in the following example records:






	duration, protocol_type, service, flag, src_bytes, dst_bytes, land, wrong_fragment, urgent, hot, num_failed_logins, Logged in, num_compromised, root_shell, SU_attempted, num_root, num_file_creations, num_shells, num_access_files, num_outbound_cmds, is_hot_login, is_guest_login, count, serror_rate, rerror_rate, same_srv_rate, diff_srv_rate, srv_count, srv_serror_rate, srv_rerror_rate, srv_diff_host_rate, dst_host_count, dst_host_srv_count, dst_host_same_srv_rate, dst_host_diff_srv_rate, dst_host_same_src_port_rate, dst_host_srv_diff_host_rate, dst_host_serror_rate, dst_host_srv_serror_rate, dst_host_rerror_rate, dst_host_srv_rerror_rate



	0,tcp,http,SF,210,151,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,8,8,0.00,0.00,0.00,0.00,1.00,0.00,0.00,8,89,1.00,0.00,0.12,0.04,0.00,0.00,0.00,0.00



	



	0,tcp,http,SF,212,786,0,0,0,1,0,1,0,0,0,0,0,0,0,0,0,0,8,8,0.00,0.00,0.00,0.00,1.00,0.00,0.00,8,99,1.00,0.00,0.12,0.05,0.00,0.00,0.00,0.00








All packets are transformed into the above format and are then stored in a matrix named “data” as the training data. Then, we place the class tag (1 or −1) in a “label” variable. The “data” matrix is an attribute matrix where the number of rows and columns are determined by the number of samples and the number of attributes, respectively. The “label” variable is a class tag (1 or −1). Lastly, we use LIBSVM to build a classification model which we have used to test 6980 data items with 41 features. The method of processing the test data is the same as the above and Table 1 lists the results while Figure 2 shows the ROC curve.


Figure 2. ROC curve.
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Table 1. Testing Results.







	
Parameter

	
Training Dataset

	
Testing Dataset






	
Data volume

	
7312

	
6980




	
Support vector number

	
567




	
Kernel function

	
RBF




	
C (optimal)

	
16




	
γ (average optimal)

	
0.0078125




	
Time

	
1.63 s










Network packet classification would filter out suspicious packets from a dataset and the result will be stored in the form of the event vector. With data standardization, we can use standardized data to construct an evidence graph.



SVM is used to filter out benign packets and suspicious packets so as to construct a more accurate evidence graph using the suspicious packets. Therefore, the key to SVM classification is to filter out suspicious packets and the ROC curve shows the TPR and FPR of attack class. TPR expresses the true positive rate as the Y axis of the ROC curve while FPR expresses the false positive rate as the X axis of ROC curve. We can see from Figure 2 the high accuracy of SVM in filtering out suspicious packets.





3.3. Evidence Graph


The evidence graph is the foundation of our forensic analysis since it provides an intuitive representation of collected forensic evidences. Therefore, constructing a complete evidence graph is the most important step in our method. According to the definition of the EV, each of the collected forensic evidences can be expressed by an EV. We can then build an evidence graph based on the EVs.



An evidence graph (EG) is a directed graph EG = <V, E> in which V is the set of vertices that should include all the objects in the event vectors and E is the set of edges {<S, T, Timestamp|S, T∈V & Path(S, T)>} describing the relationships between the vertices of a finite set. Path(S, T) indicates a one-way path from vertex S to vertex T.



The evidence graph is an effective mechanism that helps to incorporate relevant information into the evidence reasoning process. Each path in the evidence graph has the following attributes: timestamp, operation and data source. In the evidence graph, digital evidences are sorted by time based on the timestamps, starting from the first in the record, moving to the next along the time and ending at the last. The operation between two nodes is very significant. Operations such as the “FTP upload” are very dangerous to the target. In the proposed network forensics method, network packets carry a higher level of importance to prove validity of evidence.



Figure 3 illustrates the proposed algorithmic procedure for constructing an evidence graph.


Figure 3. The Algorithm for Constructing an Evidence Graph.
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3.4. Evidence Reasoning


Our method applies evidence reasoning to network forensics based on the evidence graph, taking into consideration of node vulnerabilities as well as connections between nodes. The analysis results should show the details of network forensics evidence and attack scenarios including the identification of key nodes in the evidence graph as well as key steps of attacks.



3.4.1. Vulnerability Relevance Analysis


Analysis of past attacks that exploited network vulnerabilities indicates that attackers usually use multiple hosts and vulnerabilities to attack a network or a host of nodes. Thus, the relevance of vulnerabilities has become increasingly important in network security.



National Vulnerability Database (NVD) [31] has been widely used in various areas. Based on the regular rules of vulnerabilities, we can establish the relationships between vulnerabilities in NVD. Common Vulnerabilities & Exposures (CVE) [32] can be used as a data dictionary to unify the names of information security vulnerabilities or weaknesses. Common Vulnerability Scoring System (CVSS) [33] is a free and open industry standard which can be used to assess and mark security vulnerabilities.



The process of scanning vulnerabilities involves four steps: (1) scan the target network; (2) determine the existence of vulnerabilities through comparing with NVD records; (3) query CVE to determine the names of vulnerabilities; and (4) calculate the vulnerability scores through the CVSS vulnerability scoring system.



Nessus is a popular tool that can be used to scan vulnerabilities to update vulnerability database at any time. Nessus is fully compatible with CVE. To better understand, the following example is used to illustrate the process of constructing vulnerability database.



Scanning target 172.18.4.144 using Nessus would identify a vulnerability named “CVE-2004-2761” which should appear in the vulnerability report by Nessus. In the report, every vulnerability will have “Risk information”. In this case, the risk information for “CVE-2004-2761” is as follows:

	
Risk Factor: Medium 



	
CVSS Base Score: 4.0 



	
CVSS Vector: CVSS2#AV:N/AC:H/Au:N/C:P/I:P/A:N 



	
CVSS Temporal Vector: CVSS2#E:ND/RL:OF/RC:C 



	
CVSS Temporal Score: 3.5 








As shown above, the influence of vulnerability “CVE-2004-2761” is medium. Table 2 shows the detail of CVSS base score and Table 3 shows the detail of CVSS temporal Score.



Table 2. CVSS Base Score.







	
Base Metric

	
Evaluation

	
Score






	
Access Vector

	
Network

	
1.0




	
Access Complexity

	
High

	
0.35




	
Authentication

	
None

	
0.704




	
Confidentiality Impact

	
Partial

	
0.275




	
Integrity Impact

	
Partial

	
0.275




	
Availability Impact

	
None

	
0.0




	
Base Score = round_to_1_decimal




	
(((0.6 × Impact) + (0.4 × Exploitability) − 1.5) × f(Impact))




	
Impact = 10.41 × (1 − (1 − ConfImpact) × (1 − IntegImpact) × (1 − AvailImpact))




	
Exploitability = 20 × Access Vector × Access Complexity × Authentication




	
f(impact) = 0 if Impact = 0, 1.176 otherwise










Table 3. CVSS Temporal Score.







	
Base Metric

	
Evaluation

	
Score






	
Exploitability

	
Not Defined

	
1.0




	
Remediation Level

	
Official Fix

	
0.87




	
Report Confidence

	
Confirmed

	
1.0




	
Temporal Score = round_to_1_decimal

(Base Score × Exploitability × Remediation Level × Report Confidence)










From the vulnerability report, we can see all the vulnerabilities as well as the scores of the vulnerabilities of target “172.18.4.144”. Such information is then stored in a network vulnerability database as shown in Table 4.



Table 4. Network Vulnerability Database.







	
Host

	
Average Base Score

	
Average Temporal Score

	
Average Score






	
172.18.4.144

	
5.4

	
4.55

	
9.95




	
172.18.4.11

	
6.3

	
3.5

	
9.8










Through this process, we can obtain the vulnerability scores for network hosts and store them in a network vulnerability database that provides information about vulnerabilities of each host in the network.




3.4.2. Vulnerability Evidence Reasoning Algorithm


We propose a Vulnerability Evidence Reasoning Algorithm (VERA) based on the evidence graph and the network vulnerability database. The algorithmic procedure is illustrated in Figure 4. Using this algorithm, we can infer attacked nodes as well as attacking routes. In VERA, each network node has two important values: the degree of importance of the node (called Nodeworth) and that of the links (Linkworth). Nodeworth is defined as the value of vulnerabilities that a host has while Linkworth is the sum of the Nodeworth of all the nodes that have outgoing links to the node. In our case, the value of Nodeworth is the summation of the average base score and the average temporal score, as illustrated in Table 4. If a network host is vulnerable, it can be easily attacked and compromised. The initial value of Nodeworth is the average value of the vulnerability of a node.


Figure 4. The Procedure for Vulnerability Evidence Reasoning.
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Following are the steps of the VERA algorithm to be applied to network forensics:

	
H is the adjacency matrix for the evidence graph assuming that the set of nodes N = {n1, n2, …, nn}. For any node ni∈N, yi is the Nodeworth of the node, zi is the Linkworth of the node, Ai is the set of nodes that have outgoing links to the node, and Bi is the set of nodes to which this node has outgoing links. Z is the Linkworth of all the nodes.



	
Initialize Nodeworth vector y and Linkworth vector:


[image: there is no content]



(1)






[image: there is no content]



(2)







Then, (Vul1, Vul2, …, Vuln) is the average vulnerability score of a host node.



	
At the kth iteration, the Nodeworth of node ni is [image: there is no content] which is equal to the sum of zi, i.e., y = HTZ.


[image: there is no content]



(3)







	
After a new Nodeworth vector y is obtained in the previous step, the Linkworth of the host is the sum of yi. i.e., Z = Hy.


[image: there is no content]



(4)







	
The sum of each vector is equal to 1. Thus, execute the two steps until they converge.


[image: there is no content]



(5)












Y contains the Nodeworth values of all the nodes which are sorted in an ascending order. The more vulnerable a node is, the higher the score of the node. Z contains the Linkworth values of all the nodes in the descending order. If a link connects important nodes, it is easy to be attacked. In addition to the definitions of Nodeworth and Linkworth, we can also consider the relevance of vulnerability. We can thus consider a node with a high Nodeworth value to be a potential candidate of the attack and a node with a high Linkworth value to be a potential victim. Based on network vulnerability and the result of VERA, we can identify the attacker and the victim in the evidence graph and reconstruct the attack scenario.






4. Experiments and Analysis


In this paper, we designed two sets of experiments to evaluate our network forensics approach. The first experiment was performed based on test data collected from a small network environment we set up in our lab to validate our proposed approach. Given the limited amount of traffic and the small scale of the experimental environment in the first experiment, we carried out another experiment by using a well-known dataset widely used in network security research to further validate our proposed approach. We will describe the experiments that we performed along with an analysis of the results from the experiment that used the more general datasets.



4.1. Experiment with Collected Data


In this experiment, we set up a test network environment with real network traffic, simulated some network attacks and applied our proposed network forensics approach to detect the attacks. Our experimental network setup followed very closely that of the Lincoln Laboratory for generating the intrusion detection evaluation datasets [4]. The whole experimental network setup includes test network segment and attack segment with the test network segment including a Windows target, a Linux target and a traffic generator. The Windows target has some common loopholes and backdoors and the Linux target offers services such as WWW, FTP, Telnet, Finger, etc. The traffic generator was used to generate the background traffic and the Snort software was used to collect network packets that were stored in a database. A Windows attacker was used to generate attacks host and adopts multiple attacks. Linux attacker simulates to generate multiple attacks host and install attack tool.



Any kind of attacks could be considered, but due to the limited scale of the network as well as the excessive number of malicious attacks, it may not be feasible to simulate every type of attacks. Using the simulated network environment, we collected a moderate amount of network packets and stored the packets in a MySQL database that were later classified by SVM through which suspicious packets were then obtained and stored in the database in the form of event vector. Finally, we applied the VERA algorithm to derive attack routes and the attackers with the original evidence graph being stored in an adjacency matrix.



We performed the experiment several times with the traffic generator generating the background traffic ranging from hundreds to thousands of network packets. In all the cases, we simulated the same attack, used SVM to classify the packets to arrive at an evidence graph shown in Figure 5.


Figure 5. The Evidence Graph of First Experiment Scenario.
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From the evidence, graph shown in Figure 5, we can clearly see the succinct complete attack procedure. First, the attacker used “telnet” from host “211.71.91.144” to log into host “211.71.91.11”. Then, the attacker used instructions “useradd” and “groupadd” to add access privileges. Next, the attacker reset the password though instruction “passwd”. Second, host “211.71.91.11” used the “FTP” upload script to access host “211.71.91.14” and “webshell” to operate files on server “211.71.91.14”. In addition, host “211.71.91.144” remotely logged into “211.71.91.14”. The attacker used instruction “Tar” to pack up script files and backup it. Lastly, host “211.71.91.14” launched an “ARP attack” to host “211.71.91.20”.




4.2. Experiment with External Datasets


To perform a more comprehensive experiment and to be able to compare our experiment results to those from some existing methods, in particular the work by Wang [3], we employed MIT Lincoln Lab DARPA 2000 LLDOS 1.0 dataset and MIT Lincoln Lab 2000 DARPA intrusion detection scenario 2.0.2 [5] in this experiment. The datasets were generated in the MIT Lincoln Lab by using 14 hosts to simulate the external Internet environment to visit a service provider that deployed 39 hosts in the network and 6 hosts in a DMZ zone. These systems used a variety of general purpose operating systems such as Windows, Linux Red Hat 5.0, Sun OS 4.1.4 and Solaris 2.7. Both the LLDOS 1.0 and the LLDOS 2.0.2 [5] datasets contain a number of attack sessions.



The experiment was conducted based on the framework of network forensics shown in Figure 1. Both LLDOS 1.0 and LLDOS 2.0.2 datasets were stored in a MySQL database that were classified by SVM. Suspicious data packets were also stored in the database in the form of event vector. Figure 6 shows the evidence graph of the initial construction of the event vector with all the nodes and edges for the evidences.


Figure 6. The Original Evidence Graph. (a) LLDOS 1.0; (b) LLDOS 2.0.2.
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In order to use the VERA algorithm to derive the attack routes as well as the attackers, the original evidence graph is saved in an adjacency matrix which is denoted by H in the VERA algorithm.



Figure 7 shows the final evidence graph for the LLDOS 1.0 dataset after running the VERA algorithm, which provides a clear and intuitive evidence of the attacker. First, the attacker derived the range of the IP addresses of the destination hosts and used host “202.77.162.213” to scan the entire range of the IP addresses. Second, the attacker executed “Ping” with the Sadmind option to check whether the Sadmind service was available in which the attacker selected host “172.16.115.20” as a source of the attack. Third, buffer overflow attack was launched through Sadmind vulnerability in the Solaris operating system. Fourth, the attacker acquired the root authority via Telnet and RPC to install the Mstream backdoor. Finally, the attacker used “172.16.115.20” to manage “131.84.1.31” to launch a DDoS attack whose scenario is exactly the same as that detected by the MIT Lincoln Laboratory.


Figure 7. LLDOS 1.0 Dataset Evidence Graph (Omission of DDoS Attacks).
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Figure 8 shows the final evidence graph for the LLDOS 2.0.2 dataset after running the VERA algorithm, which provides a rather complete attack procedure. Same as in the LLDOS 1.0 dataset scenario, the attacker carried out attacks in “202.77.162.213” by utilizing the Sadmins vulnerability in the Solaris OS operating system and successfully obtained the root authority on both “172.16.112.50” and “172.16.115.20”. However, the attacks in the LLDOS 2.0.2 dataset were more complex and subtle. The attacker selected the “HINFO DNS” query to get the details of a target host (a DNS server) and compromised the DNS server via the Sadmins vulnerability in Solaris OS. Finally, the attacker uploaded attack scripts and an Mstream backdoor program to the target DNS server via FTP.


Figure 8. The Evidence Graph of LLDOS 2.0.2 Dataset (Omission of DDoS Attack).
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To compare our method to Wang’s method [3], we first show the evidence graph from Wang’s work in Figure 9. To better perform the comparison, we first simplify Figure 9 and express the result in Figure 10. Comparison of Figure 7 and Figure 10 as shown in Figure 11 clearly shows that our method can generate a more complete evidence graph. In addition, the evidence graph can show the process of attacks in more details. Although Figure 10 identifies “172.16.112.100” as a victim, it is in fact not a victim in the official statement shown in Figure 11, indicating a deficiency of Wang’s network forensics method.


Figure 9. Wang’s LLDOS 1.0 Dataset Evidence Graph (Omission of DDoS Attack).
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Figure 10. Wang’s simplified evidence graph (omission of the DDoS attack).
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Figure 11. Comparison between VERA and Wang’s method.
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We also compared the results of running the LLDOS 2.0.2 dataset. Although it was claimed that Wang’s algorithm could effectively address multi-staged attack scenarios, it is not much useful to demonstrate the attacks in the LLDOS 2.0.2 dataset. In contrast, our method identified the whole attack scenario of the LLDOS 2.0.2 dataset as shown in Figure 8.



Comprehensive comparison and analysis clearly indicates that our method is more effective than Wang’s method in the following aspects:

	
Sources of data. The evidences in our method come from multiple sources, including not only selected network packets but also web application logs.



	
Sufficiency of forensics analysis. Our proposed method can sufficiently analyze evidence to ensure the validity of original evidence.



	
Completeness of evidence reasoning. Our proposed method combines evidence graph with network vulnerabilities, making the algorithm more effective while lower in time complexity.










5. Conclusions and Future Direction


In this paper, we presented a method for network forensics that combines evidence graph with vulnerability evidence reasoning. To ensure that the method follows certain procedures, we first proposed a new network forensics framework that conforms to the general principles of network forensics. Based on the architecture of network forensics, we can use program logs and network packets from multiple sources to provide data for digital evidence. We also suggested adding a digital signature and timestamps to digital evidence to ensure the integrity of data and to convert heterogeneous data to a uniform format to protect the tractability of data. Based on the network forensics method, we introduced the score of vulnerability to network forensics to ensure the relevance of digital evidence and proposed our VERA algorithm to infer attacked nodes as well as attacking routes. For visualization of the final evidence, we used the evidence graph to exhibit attacked nodes and the attacking routes. Experimental results show that our method can realize the reconstruction of attack scenarios more effectively while possessing the capability of analyzing multi-staged attacks.



The proposed method still has some limitations though. First, there are a variety of network program logs, so developing more powerful classification algorithms is the key for web log classification and analysis. Second, SVM can be further improved to filter out benign packets and suspicious packets so as to construct a more accurate evidence graph by using the suspicious packets. Third, the VERA algorithm needs to be further improved to achieve an even higher level of accuracy and efficiency in the identification of attacked nodes as well as the attacking routes. In addition, more experiment is needed in which data collected from a network environment that can more closely reflect the scale of today’s Internet as well as common attack patterns. This is because although we have demonstrated the effectiveness of our proposed method and compared it with some existing work, the experiment was performed based on datasets that may not accurately reflect traffic and attack scenarios in today’s networks. Given the scale and the complexity of today’s networks, it would be more challenging to distinguish between benign packets and malicious ones, making it more difficult to train the SVM classifier. Thus, the small-scale network environment that we set up for the experiment can hardly generate sufficient network traffic to adequately test the effectiveness and the efficiency of the SVM classifier. Consequently, the adaptability and the accuracy of our proposed method needs to be further verified with more experimental data due to the lack of more recent test datasets and the limitations of our lab environment at the current time.



There are a lot of challenges in the field of network forensics research. Beyond the study in this paper, there are many more issues that need to be further studied. In the future, we will focus our research on evidence reasoning and on the distribution of vulnerabilities. We will also implement the proposed method to conduct experiments in real networks. Further optimization of the basic method as well as more comprehensive experiment should always accompany any extensions beyond our current research which should include the use of more recent datasets as soon as they become available and the generation of datasets that can better reflect both traffic situations and attack patterns in today’s networks.
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