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Abstract: The multi-focus image fusion method is used in image processing to generate
all-focus images that have large depth of field (DOF) based on original multi-focus images.
Different approaches have been used in the spatial and transform domain to fuse multi-focus
images. As one of the most popular image processing methods, dictionary-learning-based spare
representation achieves great performance in multi-focus image fusion. Most of the existing
dictionary-learning-based multi-focus image fusion methods directly use the whole source images
for dictionary learning. However, it incurs a high error rate and high computation cost in
dictionary learning process by using the whole source images. This paper proposes a novel
stochastic coordinate coding-based image fusion framework integrated with local density peaks.
The proposed multi-focus image fusion method consists of three steps. First, source images are
split into small image patches, then the split image patches are classified into a few groups by local
density peaks clustering. Next, the grouped image patches are used for sub-dictionary learning by
stochastic coordinate coding. The trained sub-dictionaries are combined into a dictionary for sparse
representation. Finally, the simultaneous orthogonal matching pursuit (SOMP) algorithm is used
to carry out sparse representation. After the three steps, the obtained sparse coefficients are fused
following the max L1-norm rule. The fused coefficients are inversely transformed to an image by
using the learned dictionary. The results and analyses of comparison experiments demonstrate that
fused images of the proposed method have higher qualities than existing state-of-the-art methods.

Keywords: multi-focus image fusion; sparse representation; dictionary learning; local density
peaks clustering

1. Introduction

High-quality images are widely used in different areas of a highly developed society. Following
the development of cloud computing, more and more images are processed in a cloud [1,2].
High-quality images can increase the accuracy and efficiency of image processing. Due to the
limitation of field depth in most of optical lenses, only the objects a certain distance away from
the camera can be captured in focus and sharply, and other objects are out of focus and blurred.
It usually takes multiple images of the same scene to enhance the robustness of image processing.
However, viewing and analyzing a series of images separately is neither convenient nor efficient [3].
The multi-focus image fusion method is an effective way to resolve this problem by combining
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complementary information from multiple images into a fused image, which is useful for human
or machine perception [4,5].

During the past few years, many image fusion algorithms have been developed to integrate
multi-focus images. In general, multi-focus fusion algorithms can be classified into two groups:
spatial-domain fusion and transform-domain fusion [3,6–11]. The spatial-domain methods only need
spatial information of images to carry out image fusion, without doing any type of transformation.
The main principle of spatial-domain methods is to select those pixels or regions with higher clarity
to construct the fused image, according to the image clarity measurement. Energy of Laplacian [8,12]
and spatial frequency [3,6,11] are two typical focus measures used to decide the clarity of pixels or
regions. The main limitations of spatial-domain fusion methods in generating desirable fused images
are the misalignment of decision map within the boundary of focused objects, and the incorrect
decision in locating sub-regions of focused or out-of-focused regions. To reduce these limitations,
some spatial-domain techniques use the average weight of pixel values to fuse source images, instead
of using binary decision [7]. Due to the weight construction method, these spatial-domain methods
may lead to blurring edges, contrast decrease, and reduction of sharpness [6].

In contrast to spatial-domain fusion methods, transform-domain fusion methods first convert
source images into a transform domain to obtain the corresponding transform coefficients. Then,
the transformed coefficients are merged, according to the pre-defined fusion rule. Finally, the
fused image is constructed by carrying out inverse transform of the fused coefficients. The most
commonly used transform-domain fusion methods are based on multi-scale transform (MST). MST
algorithms use the following methods, including discrete wavelet transform, gradient pyramid, dual
tree complex wavelet transform, and so on. Recently, some novel transform-domain analysis methods
have been proposed, such as curvelet transform [13], and nonsubsampled contourlet transform [9].
Although multi-scale transform coefficients can reasonably represent important features of an image,
each transform has its own merits and limitations corresponding to the context of input images.
Thus, it is difficult to select an optimal transform basis without apriori knowledge [14,15].

In recent years, sparse-representation based methods, as a subset of transform-domain
fusion methods, have been applied to image fusion. Different from other MST methods,
sparse-representation based methods usually use learned bases, which can adaptively change
according to the input images without apriori knowledge. Due to the adaptively learning feature,
sparse representation is an effective way to describe and reconstruct images and signals. It is widely
applied to image denoising [16], image deblurring [17], image inpainting [18], super-resolution [19]
and image fusion [20]. Yang and Li [21] first applied the sparse representation theory to image fusion
field and also proposed a multi-focus image fusion method with an MST dictionary. Li and Zhang
applied the morphologically filtering sparse feature to the matrix decomposition method to improve
the accuracy of sparse representation in multi-focus image fusion [20]. Wang and Liu proposed
an approximate K-SVD based sparse representation method for multi-focus fusion and exposure
fusion to reduce the computation costs of sparse-representation based image fusion [22]. Nejati
and Samavi proposed K-SVD dictionary-learning based sparse representation for the decision map
construction of multi-focus fusion [6]. However, these aforementioned sparse-representation based
methods do not take the high computation costs into account as K-SVD, and online dictionary
learning. In recent years, many researchers have been devoted to speeding up dictionary learning
for image fusion. Zhang and Fu [23] proposed a joint sparse-representation-based image fusion
method. Their method had lower complexity than K-SVD. However, it still required a substantial
amount of computations. Kim and Han [14] proposed a joint-clustering-based dictionary construction
method for image fusion. The proposed method used K-means clustering to group the image patches
before dictionary learning. The K-means clustering needed a number of cluster centers before
clustering. However, in most cases, the number of cluster centers is difficult to estimate accurately
before clustering.
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This paper proposes a novel stochastic coordinate coding (SCC)-based image fusion framework
integrated with local density peaks clustering. The proposed multi-focus image fusion framework
consists of three steps. First, a local density peaks clustering method is applied in order to cluster
image patches. The local density peaks based algorithm increases the accuracy of clustering, and does
not need any presetting value for the input image data. Second, an SCC-based dictionary construction
approach is proposed. The constructed dictionary not only obtains accurate descriptions of input
images, but also dramatically decreases the costs of dictionary learning. Finally, the trained dictionary
is used for the sparse representation of image patches, and max-L1 theory is implemented in the
image fusion process. The key contributions of this paper can be elaborated as follows:

1. An integrated sparse representation framework for multi-focus image fusion is proposed that
combines the local density peaks based image-patch clustering and stochastic coordinate coding.

2. An SCC-based dictionary construction method is proposed and applied to sparse representation
process, which can obtain a more accurate dictionary and decrease the computation cost of
dictionary learning.

The rest of this paper is structured as follows: Section 2 presents and specifies the proposed
framework; Section 3 simulates the proposed solutions and analyzes experiment results; and Section 4
concludes this paper.

2. Framework

2.1. Introduction of Framework

The proposed framework for image fusion shown in Figure 1 has three main steps. All image
patches are clustered into different groups in the first step. Then each image patch group is learned
by a sub-dictionary using the SCC algorithm [24] and these sub-dictionaries are combined into an
integrated dictionary. Finally, the learned dictionary is used for image fusion. The details of each
algorithm and method will be explained in the following paragraphs.
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Figure 1. Proposed Image Fusion Framework.

2.2. Local Density Peaks Clustering

An image usually consists of different types of image patches. It is efficient to describe the
underlying structure of each image patch by using specific sub-dictionary that describes different
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types of image patches. This paper uses the local density peaks clustering method to classify image
patches into a specific group by the similarity of structure [25,26]. Compared with other existing
clustering methods, the local density peaks clustering method has two advantages. First, the method
is insensitive to the start point (or initialization). Second, it does not need to know the number of
clusters before clustering. Moreover, the basis of local density peaks clustering can be easily expressed
by Euclidean distance between two different patches.

In Figure 2a, the local density ρi of each image patch i is calculated by using Equation (1).

ρi = ∑
j

χ(dij − dc) , (1)

when x ≤ 0, χ(x) = 0, otherwise χ(x) = 1. dij is the Euclidean distance between image patch i and
j. dc is a cutoff distance and usually set to the median value of dij. Basically, ρi equals the number
of patches that are closer than dc to patch i. The clustering algorithm is only sensitive to the relative
magnitude of ρi from a different image patch, and robust with respect to the choice of dc.

A distance δi of each image patch is measured to find the cluster centers. The calculation equation
is shown in Equation (2). δi is the minimum distance between the image patch i and any other patch
j with higher density. For the point with highest density, δi = max(dij). A local density map can
be constructed by using ρi (x-axis) and the normalized δi (y-axis, 0 ≤ δi ≤ 1), which is shown in
Figure 2b. The cluster centers are recognized that are boxed by dotted squares in Figure 2b, when the
value of δi is anomalously large. When the cluster centers are identified, the remaining image patches
are clustered into the relatively nearest identified center.

δi = min
j:ρj>ρi

(dij) , (2)

�

Figure 2. Local Density and Distance Map of Fusion Images, (a) shows the local density calculation of
each image patch; (b) shows the constructed local density map.

2.3. Dictionary Construction

In the clustering step, image patches with similar structure are classified into a few groups.
To construct a more discriminative and compact dictionary, the SCC online dictionary learning
algorithm [24] is used to learn a sub-dictionary for each cluster. Subsequently, the learned
sub-dictionaries are combined to a new dictionary for the image sparse representation and restoration.
The dictionary construction process is illustrated in Figure 1 as the dictionary learning step.
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2.3.1. Sub-Dictionary Learning Approach

The SCC online dictionary learning algorithm [24] shown in Algorithm 1 extracts eigenvalues
from each cluster and builds the corresponding sub-dictionary. The dictionary and sparse code are
initialized and denoted as D1

1, z0
i = 0, i = 1, 2, ... n respectively. The general expression of the sparse

code is zk
i = 0, i = 1, 2, ... n, k = 1, 2, ... n and learning rate η1

1 = 1. The number of epochs and the index
of data points are represented as superscript k and subscript i respectively. It acquires an image patch
xi, when k = 1 and i = 1. The sparse code zk

i is updated by a few steps of coordinate descent (CD):

zk
i = CD(Dk

i , xi, zk−1
1 ) , (3)

The j-th coordinate zk−1
i,j of zk−1

i (0 ≤ j ≤ m) is updated as follows:

bj ← (di,kj )
T(xi −Dk

i zk−1
i ) + zk−1

i,j , (4)

zk−1
i,j ← hλ(bj) , (5)

where hλ is a soft threshold shrinkage function [27,28] and bj is a descent parameter that can be
calculated by Equation (5). An updating cycle is equivalent to one step of coordinate descent.
Dictionary D is updated by stochastic gradient decent (SGD):

Dk
i+1 = PBm(D

k
i − ηk

i∇Dk
i

fi(Dk
i , zk

i )) , (6)

where P denotes the projection operator, and Bm is the feasible set of D that is defined as follows:
Bm = {D ∈ Rm×n : ∀j = 1, . . . , m, ||dj||2 ≤ 1}. The learning rate is an approximation of the inverse of
the Hessian matrix H = ∑k,i zk

i (z
k
i )

T . The gradient of Dk
i can be obtained as follows:

∇Dk
i

fi(Dk
i , zk

i ) = (Dk
i zk

i − xi)(zk
i )

T , (7)

This allows i = i + 1. If i > n, set Dk+1
1 = Dk

n+1, k = k + 1 and i = 1. Then it repeats the previous
calculating process. When k > m, the calculation stops, m is preset value and usually 10 ≤ m ≤ 15.
The SCC only runs a few steps of CD to update the sparse codes and SGD algorithm is conducted to
update the dictionary.

All sub-dictionaries D1, D2, ..., Dn are learned by using SCC. These sub-dictionaries are used for
describing the underlying structure of each image patches cluster.

2.3.2. Sub-Dictionary Combination

As a sub-dictionary for each cluster is learned, all sub-dictionaries are combined into a new
dictionary Φ.

Φ = [D1, D2..., Dn], (8)

2.4. Fusion Scheme

The fusion scheme is shown in Figure 1 and the image fusion algorithm is shown in Algorithm 2.
The learned dictionary is used for the estimation of coefficient vectors. For each image patch pi,
a coefficient vector zi is estimated by the SOMP algorithm using the learned dictionary. Max-L1
rule [21] is conducted for coefficient fusion shown in Equation (17),

zi =
m

∑
k=1

zk ∗Ok, where

{
Ok = 1, max(‖z1‖1, ‖z2‖1..., ‖zm‖1) = ‖zk‖1
Ok = 0, otherwise

(9)
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where zi is the fused coefficient vector, ‖•‖1 is the l1 norm, and * is an elementary
multiplication operation.

Algorithm 1 Online Sub-dictionary Learning Algorithm

Input:

image patch xi, sparse code zk
i , learning rate η1

1 , running time m
Output:

learned sub-dictionaries D1, D2, ..., Dn
1: Initialize D1

1, z0
i =0 (i=1,2,...n), η1

1= 1
2: Acquire an image patch xi, when k=1 and i=1
3: while k ≤ m do

4: Update sparse code zk
i = CD(Dk

i , xi, zk−1
1 )

5: Update j-th coordinate zk−1
i,j of zk−1

i according to Equations (4) and (5)
6: Update dictionary Dk

i+1 = PBm(D
k
i − ηk

i∇Dk
i

fi(Dk
i , zk

i ))
7: Update i = i + 1
8: if i > n then

9: Dk+1
1 = Dk

n+1, k = k + 1, and i = 1
10: end if
11: end while

Algorithm 2 Image Fusion Algorithm

Input:

image patch pi, coefficient vector zi
Output:

fused image I
1: for i = 1; i ≤ n; i ++ do

2: zi = ∑m
k=1 zk ∗Ok according to Equation 9

3: end for
4: for i = 1; i ≤ n; i ++ do

5: Ii = DZi

6: end for

The fused coefficient vectors are restored to an image. The restoring process is based on
Equation (10),

Ii = DZi (10)

where the Zi = {zi
1, zi

2..., zi
m} is corresponding to image patches of the fused image and D is the

learned dictionary.

3. Experiments and Analyses

The proposed multi-focus image fusion method is applied to standard multi-focus images from
public website [29]. All standard multi-focus images used in this paper are free to use for research
purposes. The images from the image fusion library have the size of 256 × 256 pixels or 320 × 240
pixels. The fused images are evaluated by comparing them to the fused images of other existing
methods. In this paper, four pairs of images are used as a case study to simulate the proposed
multi-focus image fusion method. To simulate a real world environment, four pairs of images have
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two scenes. One is an outdoor scene, such as a hot-air balloon and leopard shown in Figure 3a,b
respectively. The other is an indoor scene, such as a lab and bottle shown in Figure 3c,d respectively.
These four pairs of original images are from the same sensor modality. Since each image focuses on a
different object, there are two images for each scene. The out-of-focus regions in the original images
are blurred.

 

Figure 3. Four Source Image Pairs of Different Scenes for Multi-focus Fusion Experiments, (a)–(d) are
source image pairs of hot-air balloon, leopard, lab, bottle respectively.

3.1. Experiment Setup

The quality of the proposed image fusion scheme is evaluated against the other seven popular
multi-focus fusion methods. These multi-focus fusion methods consist of popular spatial-based
image fusion methods, like Laplacian energy (LE) [8]; four states of art MST methods, including
disperse wavelet transform (DWT) [30], dual-tree complex wavelet transform (DT-CWT) [31],
curvelet (CVT) [13], non-subsampled contourlet (NSCT) [9]; two sparse representation methods,
including sparse representation with a fixed DCT dictionary (SR-DCT) [21] and sparse representation
with a trained dictionary by K-SVD (SR-KSVD) [32]. The objective evaluation of fused image
includes edge intensity (EI) [33], edge retention QAB/F [34], mutual information (MI) [35,36], and
visual information fidelity (VIF) [37]. Then it compares the dictionary construction time of the
proposed method with K-SVD [32], which is the most popular dictionary construction method.
All experiments are implemented using Matlab, version 2014a; MathWorks: Natick, MA, 2014. and
Visual Studio, version Community 2013; Microsoft: Redmond, WA, 2013. mixed programming on
an Intel(R) Core(TM), version i7-4720HQ; Intel: Santa Clara, CA, 2015. CPU @ 2.60GHz Laptop with
12.00 GB RAM.

3.1.1. Edge Intensity

The quality of the fused image is measured by the local edge intensity L in image I [38]. It folds a
Gaussian kernel G with the image I to get a smoothed image. Then it obtains the edge intensity image
by subtracting the smoothed image from the original image. The spectrum of the edge intensities
depends on the width of the Gaussian kernel G.

L = max(0, I−G ∗ I) (11)
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The fused image H is calculated by image Lj, j = 1, ..., n and the weighted average of local
edge intensities.

H(x, y) =
N

∑
j=1

wj(x, y)Lj(x, y), (12)

wj(x, y) =
Lj(x, y)

∑N
k=1 Lk(x, y)

(13)

3.1.2. Mutual Information

MI for images can be formalized as Equation (14) [35].

MI =
L

∑
i=1

L

∑
j=1

hA,F(i, j)log2
hA,F(i, j)

hA(i)hF(j)
, (14)

where L is the number of gray-level, hR,F(i, j) is the gray histogram of image A and F. The hA(i) and
hF(j) are edge histogram of image A and F. For a fused image, the MI of the fused image can be
calculated by Equation (15).

MI(A, B, F) = MI(A, F) + MI(B, F) , (15)

where MI(A, F) represents the MI value between input image A and fused image F; MI(B, F)
represents the MI value of input image B and fused image F.

3.1.3. QAB/F

The QAB/F metric is a gradient-based quality index to measure how well the edge information
of source images conducted to the fused image [34]. It is calculated by:

QAB/F =
∑i,j (QAF(i, j)wA(i, j) + QBF(i, j)wB(i, j))

∑i,j (wA(i, j) + wB(i, j))
, (16)

where QAF = QAF
g QAF

0 , QAF
g and QAF

0 are the edge strength and orientation preservation values at
location (i,j). QBF can be computed similarly to QAF . wA(i, j) and wB(i, j) are the importance weights
of QAF and QBF respectively.

3.1.4. Visual Information Fidelity

VIF is the novel full reference image quality metric. VIF quantifies the mutual information
between the reference and test images based on natural scene statistics (NSS) theory and human
visual system (HVS) model. It can be expressed as the ratio between the distorted test image
information and the reference image information, the calculation equation of VIF is shown in
Equation (17).

VIF =
∑i∈subbands I(

−−→
CN,i;

−−→
FN,i)

∑i∈subbands I(
−−→
CN,i;

−−→
EN,i)

, (17)

where I(
−−→
CN,i;

−−→
FN,i) and I(

−−→
CN,i;

−−→
EN,i) represent the mutual information, which are extracted from

a particular subband in the reference and the test images respectively.
−→
CN denotes N elements from

a random field,
−→
EN and

−→
FN are visual signals at the output of HVS model from the reference and the

test images respectively.
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An average VIF value of each input image and integrated image is used to evaluate the fused
image. The evaluation function of VIF for image fusion is shown in Equation (18) [37].

VIF(A, B, F) =
VIF(A, F) + VIF(B, F)

2
, (18)

where VIF(A, F) is the VIF value between input image A and fused image F; VIF(B, F) is the VIF
value between input image B and fused image F.

3.2. Image Quality Comparison

To show the efficiency of the proposed method, the quality comparison of fused images is
demonstrated. Four pairs of multi-focused images of a hot-air balloon, leopard, lab, and bottle are
employed for quality comparison. It compares the quality of fused image based on visual effect,
the accuracy of focused region detection, and the objective evaluations. The different images are used
to show the differences between fused images and corresponding source images. This paper increases
the contrast and brightness of difference images for printable purposes. All difference images are
adjusted by using the same parameters.

In the first comparison experiment, the "hot-air balloon" images are a pair of multi-focused
images. The source multi-focused images are shown in Figure 4a,b. In Figure 4a, the biggest hot-air
balloon on the bottom left is out of focus, the rest of the hot-air balloons are in focus. In contrast,
in Figure 4b, the biggest hot-air balloon is in focus, but the rest of balloons are out of focus. LE,
DWT, DT-CWT, CVT, NSCT, SR-DCT, SR-KSVD and the proposed method are employed to merge two
multi-focused images into a clear one, respectively. The corresponding fusion results are shown in
Figure 4c–j respectively. The difference images of LE, DWT, DT-CWT, CVT, NSCT, SR-DCT, SR-KSVD
and the proposed method do the matrix subtraction with the source images shown in Figure 4a,b.
The corresponding subtracted results are shown in Figure 5a–h,i–p respectively.

Figure 5a–h are the difference images between Figure 4a and Figure 4c–j, and Figure 5i–p are the
difference images between Figure 4b and Figure 4c–j. The difference images of LE, DWT, DT-CWT,
CVT, NSCT, SR-DCT, SR-KSVD and the proposed method are the matrix subtraction results of the
corresponding fused images and source images shown in Figure 4a,b.

There are a lot of noises in Figure 4h, which are acquired by SR-DCT. The rest of integrated
images in Figure 4 are similar. Difference images, that show hot-air balloons of LE, DWT, and
DT-CWT on the left side respectively, do not get all the edge information in Figure 5a–c.

Similarly, Figure 5i–k shows that the biggest hot-air balloons of LE, DWT, and DT-CWT on the
bottom left, respectively, are not totally focused. Due to the misjudgement of focused areas, the
fused "hot-air balloon" images of LE, DWT, DT-CWT, and SR-DCT have shortcomings. Compared
with source images, the rest of the methods do great job in identifying the focused area. To further
compare the quality of fused images, objective metrics are used.

Table 1 shows the objective evaluations. Compared with the rest of the image fusion methods,
the proposed method SR-SCC gets the largest value in MI and VIF. LE and DT-CWT get the largest
value in EI and QAB/F respectively, but they provide an inaccurate decision in detecting the focused
region. The proposed method has the best overall performance of multi-focus image fusion in the
"hot-air balloon" scene among all eight methods, according to the quality of fused image, accuracy of
locating focused region, and objective evaluations.
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Figure 4. Fused Images of "Hot-air Balloon" by Different Methods, (a,b) are source images,
(c–j) are fused images of LE, DWT, DT-CWT, CVT, NSCT, SR-DCT, SR-KSVD, and proposed
SR-SCC respectively.

�

Figure 5. Difference Images of "Hot-air Balloon" by Different Methods, (a–h) are differences images
between source image in Figure 4a and fused images of LE, DWT, DT-CWT, CVT, NSCT, SR-DCT,
SR-KSVD, and proposed SR-SCC in Figure 4c–j respectively, (i–p) are differences images between
source image in Figure 4b and corresponding fused images in Figure 4c–j respectively.
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Table 1. Objective Evaluations of Multi-focus "Hot-air Balloon" Fusion Experiments.

Method EI QAB/F MI VIF

LE 70.5069 0.9843 7.1359 0.7829
DWT 64.2923 0.9465 6.8532 0.7463
DT-CWT 63.5688 0.9878 6.8828 0.7771
CVT 69.6241 0.9812 7.1579 0.8113
NSCT 69.4987 0.9850 7.6092 0.8187
SR-DCT 65.9602 0.7488 3.9220 0.4695
SR-KSVD 69.5190 0.9854 7.8824 0.8234
SR-SCC 69.5625 0.9852 7.9117 0.8242

Similarly, the source images of the other three comparison experiments, as "leopard", "lab" and
"bottle", are shown in Figures 6, 7 and 8a,b respectively. In a set of source images, two images (a)
and (b) focus on different items. The source images are fused by LE, DWT, DT-CWT, CVT, NSCT,
SR-DCT, SR-KSVD, and the proposed method to get a totally focused image, and the corresponding
fusion results are shown in Figures 6, 7 and 8c–j respectively. The difference between fused images
and their corresponding source images are shown in Figures 9, 10 and 11a–h,i–p respectively.

Figure 6. Fused Images of "Leopard" by Different Methods, (a,b) are source images, (c–j) are fused
images of LE, DWT, DT-CWT, CVT, NSCT, SR-DCT, SR-KSVD, and proposed SR-SCC respectively.
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Figure 7. Fused Images of "Lab" by Different Methods, (a,b) are source images; (c–j) are fused images
of LE, DWT, DT-CWT, CVT, NSCT, SR-DCT, SR-KSVD, and proposed SR-SCC respectively.

Figure 8. Fused Images of "Bottle" by Different Methods, (a,b) are source images; (c–j) are fused
images of LE, DWT, DT-CWT, CVT, NSCT, SR-DCT, SR-KSVD, and proposed SR-SCC respectively.
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�

Figure 9. Difference Images of "Leopard" by Different Methods, (a–h) are differences images between
source image in Figure 6a and fused images of LE, DWT, DT-CWT, CVT, NSCT, SR-DCT, SR-KSVD,
and proposed SR-SCC in Figure 6c–j respectively, (i–p) are differences images between source image
in Figure 6b and corresponding fused images in Figure 6c–j respectively.

�

Figure 10. Difference Images of "Lab" by Different Methods, (a–h) are differences images between
source image in Figure 7a and fused images of LE, DWT, DT-CWT, CVT, NSCT, SR-DCT, SR-KSVD,
and proposed SR-SCC in Figure 7c–j respectively, (i–p) are differences images between source image
in Figure 7b and corresponding fused images in Figure 7c–j respectively.
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�

Figure 11. Difference Images of "Bottle" by Different Methods, (a–h) are differences images between
source image in Figure 8a and fused images of LE, DWT, DT-CWT, CVT, NSCT, SR-DCT, SR-KSVD,
and proposed SR-SCC in Figure 8c–j respectively, (i–p) are differences images between source image
in Figure 8b and corresponding fused images in Figure 8c–j respectively.

Objective metrics of multi-focus "leopard", "lab", and "bottle" fusion experiments are shown in
Tables 2–4 respectively to evaluate the quality of fused images.

• Multi-focus "leopard" fusion: The proposed method SR-SCC achieves the largest value in MI
and VIF. LE obtains the largest value in EI index, but it makes inaccurate decision in detecting the
focused region. SR-KSVD shows great performance in QAB/F, and the result of proposed method
is only 0.0002 smaller than SR-KSVD. According to the quality of visual image, the accuracy of
focused region, and objective evaluations, the proposed method does a better job than the rest of
the methods.
• Multi-focus "lab" fusion: The proposed method SR-SCC achieves the largest value in QAB/F

and VIF. DWT obtains the largest value of EI index, but it cannot distinguish the correct focused
areas. SR-KSVD has the best performance in MI. The proposed method and SR-KSVD show
great performance of visual effect in focused area, distinguishing focused area, and objective
evaluation. Compared with SR-KSVD, the proposed method dramatically reduces computation
costs in dictionary construction. So the proposed method has the best overall performance among
all comparison methods.
• Multi-focus "bottle" fusion: DWT obtains the largest value in EI, but it does not get an accurate

focused area. The proposed method achieves SR-SCC with the largest values of the rest of the
objective evaluations. So the proposed method has the best overall performance compared with
other methods in the "bottle" scene.
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Table 2. Objective Evaluations of Multi-focus "Leopard" Fusion Experiments.

Method EI QAB/F MI VIF

LE 94.1343 0.9443 6.7677 0.7920
DWT 94.8093 0.9430 6.1765 0.7629
DT-CWT 80.2643 0.9470 6.2083 0.7636
CVT 93.5736 0.9359 6.4109 0.8068
NSCT 93.6767 0.9447 7.1940 0.8245
SR-DCT 76.9935 0.7343 3.3002 0.7291
SR-KSVD 93.5276 0.9450 7.4607 0.8269
SR-SCC 93.6448 0.9448 7.5420 0.8283

Table 3. Objective Evaluations of Multi-focus "Lab" Fusion Experiments.

Method EI QAB/F MI VIF

LE 55.0926 0.7964 5.0724 0.6299
DWT 56.7262 0.8795 4.6665 0.5885
DT-CWT 44.6470 0.8196 5.0999 0.6025
CVT 53.5711 0.8438 4.7937 0.6367
NSCT 53.5958 0.8055 5.3111 0.6625
SR-DCT 48.8765 0.6332 3.1122 0.3385
SR-KSVD 53.0461 0.8791 5.7345 0.6766
SR-SCC 53.0304 0.8826 5.6656 0.6893

3.3. Dictionary Construction Time Comparison

As shown in the previous subsection, the fused images of different multi-focus fusion methods
are compared by objective evaluations. Dictionary-learning based image fusion methods, including
SR-KSVD and the proposed SCC method, achieve the best performance. However, the dictionary
construction process usually takes a very long time. The efficiency of dictionary construction
is an important feature of image fusion method. Both K-SVD [39] and the proposed SCC are
sparse-representation based dictionary learning methods. So it compares the dictionary construction
time of K-SVD and the proposed SCC. K-SVD is one of the most popular dictionary learning methods
in recent years. It uses an iterative algorithm to reduce dictionary learning errors and can describe
the underlying structure of the image perfectly. To verify the low computation cost of the proposed
method, four pairs of images are used for testing computation time. The time consumption of K-SVD
and SCC are shown in Figure 12 and Table 5. SCC uses low computation times, that are marked in
bold, in four group experiments. The experimental results demonstrate that SCC has a much better
performance of computation time than K-SVD.

Table 4. Objective Evaluations of Multi-focus "Bottle" Fusion Experiments.

Method EI QAB/F MI VIF

LE 128.0512 0.8478 4.1059 0.4113
DWT 131.5033 0.8355 3.5696 0.3779
DT-CWT 96.3171 0.8548 3.8049 0.4035
CVT 122.5616 0.8448 3.8799 0.4678
NSCT 69.4987 0.9850 7.6092 0.8187
SR-DCT 122.4806 0.8518 4.1766 0.4784
SR-KSVD 128.4125 0.8625 4.8410 0.5118
SR-SCC 128.5106 0.8629 4.8901 0.5291
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Figure 12. Computation Time Comparison.

Table 5. Time Consumption Comparison.

Method Hot-Air Balloon Leopard Lab Bottle

K-SVD 46.49 45.02 47.72 42.72
SCC 3.56 3.60 3.72 3.12

4. Conclusions

This paper proposed an integrated image fusion framework based on online dictionary learning.
Compared with traditional image fusion methods, the integrated framework had two major
improvements. First, it introduced a local density-based clustering method in sparse representation,
which had high performance in clustering without any apriori knowledge. Second, an online
dictionary learning algorithm was used to extract discriminative features that enhanced the efficiency
of image fusion. The proposed method was compared with seven existing algorithms LE, DWT,
DT-CWT, CVT, NSCT, SR-DCT, SR-KSVD, and SR-SCC using four source image pairs and objective
metrics. Experimental results demonstrated that the proposed method was significantly superior to
other methods in terms of subjective and objective evaluation. This means that the fused images of the
proposed method had better quality than other methods. Compared with other sparse-representation
based methods, the proposed method had high efficiency in generating fused images.

Although the proposed solution had a good performance in image fusion, many optimizations
are still worth doing in the follow-up research. The parallel processing and the use of multiple
graphics processing units (GPUs) will be considered to improve the efficiency of proposed solution.
Denoising techniques will also be applied to the proposed solution to enhance the quality of the
fused image.
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