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Abstract: Cloud computing systems enable clients to rent and share computing resources of third
party platforms, and have gained widespread use in recent years. Numerous varieties of mobile,
small-scale devices such as smartphones, red e-health devices, etc., across users, are connected to
one another through the massive internetwork of vastly powerful servers on the cloud. While mobile
devices store “private information” of users such as location, payment, health data, etc., they may also
contribute “semi-public information” (which may include crowdsourced data such as transit, traffic,
nearby points of interests, etc.) for data analytics. In such a scenario, a mobile device may seek to
obtain the result of a computation, which may depend on its private inputs, crowdsourced data from
other mobile devices, and/or any “public inputs” from other servers on the Internet. We demonstrate
a new method of delegating real-world computations of resource-constrained mobile clients using
an encrypted program known as the garbled circuit. Using the garbled version of a mobile
client’s inputs, a server in the cloud executes the garbled circuit and returns the resulting
garbled outputs. Our system assures privacy of the mobile client’s input data and output of
the computation, and also enables the client to verify that the evaluator actually performed the computation.
We analyze the complexity of our system. We measure the time taken to construct the garbled circuit
as well as evaluate it for varying number of servers. Using real-world data, we evaluate our system
for a practical, privacy preserving search application that locates the nearest point of interest for the
mobile client to demonstrate feasibility.

Keywords: secure cloud computing; privacy preserving search; garbled circuits; secure multiparty computation

1. Introduction

Cloud computing systems enable clients to rent and share computing resources of third party
platforms such as Amazon Elastic Cloud, Microsoft Azure, etc., and have gained increased attention
in recent years. Availability of a large pool of hardware and software resources allows clients of
cloud computing systems to perform computations on a vast amount of data without setting up their
own infrastructure [1]. Numerous varieties of mobile, small-scale, IoT (Internet-of-Things)-devices
(such as smartphones, e-health devices, etc.), across users, are connected to one another through the
massive internetwork of vastly powerful servers on the cloud. These individual devices on their own
are significantly enhancing our everyday lives; additionally, big data analytics on the cloud enables
cross-correlation of numerous datasets to learn large-scale patterns across users to further enhance the
user experience.
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While mobile devices store “private information” of users such as location, payment, health data, etc.,
they may also contribute “semi-public information” (which may include crowdsourced data such as
transit, traffic, nearby points of interests, etc.) for data analytics. In such a scenario, a mobile device may
seek to obtain the result of a computation, which may depend on its private inputs, crowdsourced data
from other mobile devices, and/or any “public inputs” from other servers on the Internet. However,
the mobile device may not perform the computation on its own: (i) due to resource constraints
(in terms of computing, memory, network, power, etc.); and/or (ii) due to the restrictions (privacy,
legal requirements, etc.) on the servers to share data from one user with others. Alternatively, exchange of
data in “ plain text form” between the mobile client and the cloud service provider to carry out the
computations will also result in complete loss of data privacy.

Homomorphic encryption [2] is one of the approaches to address the problem of preserving
data privacy. It can allow the cloud service providers to perform specific computations directly
on the encrypted client data, without requiring private decryption keys. To perform any arbitrary
computation on encrypted data, fully homomorphic encryption (FHE) schemes (e.g., [3–5]) have been
proposed recently. However, FHE schemes are currently not suitable for mobile cloud computing or
big data applications due to extremely large cipher text size and computational requirements beyond
the capabilities of mobile devices today. Therefore, there exists a need for a more efficient alternative
suitable for mobile systems.

We consider Yao’s garbled circuits approach [6,7] in our work as a potential alternative to FHE
schemes to drastically reduce the ciphertext size. In general, any computation can be represented
using a Boolean circuit, for which, there exists a corresponding garbled circuit [6–9]. Each gate in
a garbled circuit can be unlocked using a pair of input “wire keys” to reveal an output wire key, which,
in turn, serves as an input wire key for unlocking the subsequent gate in the next level of the circuit,
and so on. Each wire key corresponds to the underlying plaintext bit for the relevant wire in the circuit,
and the association between the wire keys and the plaintext bits is kept secret from the cloud server
that performs the computation. Thus, “oblivious evaluation” of any arbitrary function, expressible as
a Boolean circuit, is possible using garbled circuits on any third-party server in the cloud.

While garbled circuits can preserve the privacy of client data, they are, however, one time
programs—using the same version of the circuit more than once can reveal to an adversarial evaluator
the mapping between the garbled values and the plaintext bits. Since creating a garbled circuit is at
least as expensive as evaluating the underlying Boolean circuit, expecting the client to create a new
version of the garbled circuit for each evaluation, however, is an unreasonable solution. Therefore,
unlike FHE schemes which can directly delegate the desired computation to the cloud servers, a
scheme using garbled circuits, presents the additional challenge of efficiently delegating to the cloud
servers the creation of garbled circuit [10].

We propose a new method, in which to perform any computation on behalf of the client,
a number of cloud servers collaborate to create a new version of the garbled circuit in a distributed
manner. Using unique seed value from the client, each server generates a set of private input bits,
and interacts with all the other servers to create a new garbled circuit, which is a function of the
private input bits of all the servers. Essentially, the servers construct the desired garbled circuit without
revealing their private inputs to one another using a secure multiparty computation protocol (e.g.,
Goldreich et al. [8,9]). Once a new version of the garbled circuit is created using multiple servers, the
client utilizes an arbitrary server in the cloud for evaluation. Even if the evaluating server chooses
to collude with any strict-subset of servers that participated in the creation of the garbled circuit,
the resulting version of the garbled circuit, the garbled inputs that can unlock the circuit, and the
corresponding garbled outputs, remain unrecognizable to the evaluator.

While the mobile clients are resource constrained, the cloud servers, however, are sufficiently
provisioned to perform numerous intensive computation and communication tasks. Therefore,
our proposed system is designed to readily exploit the real-world asymmetry that exists between
typical mobile clients and cloud servers. Beyond the generation and exchange of compact cipher
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text messages, our system requires very little computation and communication involvement from
the mobile client to achieve secure and verifiable computing capability. However, the cloud servers
can efficiently generate and exchange a large volume of random bits necessary for carrying out the
delegated computation due to the significantly large amount of resources available to them. Therefore,
our proposed scheme is very suitable for mobile environments (While our proposed system is especially
beneficial for clients in a mobile environment, due to compact cipher text messages, it is also suitable
for clients in other environments that need to delegate their computations to the cloud servers in a
secure manner).

We employ the garbled circuit design of Beaver, Micali, Rogaway (BMR [11,12]) and the secure
multiparty computation protocol of Goldreich et al. [8,9] for the purpose of building a secure cloud
computing system. To facilitate the construction of the garbled circuit in the cloud, and also to enable
the client to efficiently recover and verify the result of the computation, our method incorporates the
novel use of the cryptographically secure Blum, Blum, Shub pseudo random number generator [13,14],
whose strength relies on the computational difficulty of factorizing large numbers into primes.
Using our proposed system, the client can efficiently verify that the evaluator actually and fully
performed the requested computation.

Our major contributions are as follows. First, we design a secure mobile cloud computing system
that uses multiple servers to perform any arbitrary computation on behalf of the client. Second, even if
the evaluating server colludes with all but one of the servers that created the garbled circuit, our
system assures the privacy of the client input and the result of the computation. Third, using our
system the client can efficiently recover the result of the computation and verify whether the evaluator
actually performed the computation. Fourth, we present an analysis of the complexity of our proposed
scheme from the perspective of both the client and the server. Our scheme uses very small cipher text
messages suitable for mobile clients in comparison to Gentry’s FHE scheme [3]. Fifth, we evaluate our
system for a privacy preserving search application that locates the nearest point of interest (bank/ATM)
from the mobile client. Our method shows how publicly available location information from different
sources (e.g., from Wells Fargo, Chase) may be used in conjunction with private location information
of a mobile device in a privacy preserving computation. Finally, to demonstrate the feasibility of our
system, we measure the time taken to construct and evaluate the garbled circuit for varying number
of servers.

The rest of the paper is structured as follows. Section 2 presents a high-level overview, our adversary
model and the main characteristics of our system. In Section 3, we present the background material.
We present our proposed secure and verifiable cloud computing system in Section 4. We analyze the
complexity of our system in Section 5. Section 6 presents our case study of a privacy preserving search
application for computing the nearest point of interest from the mobile client. We discuss the related
work in Section 7, and present our concluding remarks in Section 8.

2. A High-Level Overview of Our System

In our proposed system, the client utilizes a set of (n+ 2) servers, {p1, p2, . . . , pn, pc, pe}, in the cloud.
To each server pi (1 ≤ i ≤ n), the client initially sends a description of the desired computation (simple
examples of which could be addition of two numbers, computation of hamming distance between
two bit sequences, etc.), and a unique seed value si . Each of the n servers first creates (or retrieves from
its repository, if available already) a corresponding Boolean circuit (B) for the requested computation.
Each server pi (1 ≤ i ≤ n), uses the unique seed value si to generate a private pseudorandom bit
sequence whose length is proportional to the total number of wires in the Boolean circuit (B). Then,
these n servers use their private pseudorandom bit sequences and the Boolean circuit (B) as inputs,
communicate with one another, as well as perform some local computations, according to a secure
multiparty computation protocol, to create their shares (GCi, (1 ≤ i ≤ n)) for an one-time program
called a “garbled circuit”.
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Once the shares for the garbled circuit are created, the client instructs all of the n servers,
pi (1 ≤ i ≤ n), to send their shares, GCi, to the server pc. Applying an XOR operation on these
shares, the server pc creates the desired circuit, GC = GC1 ⊕ GC2 ⊕ . . .⊕ GCn. Subsequently, the client
instructs the server pc to send the garbled circuit GC to another server pe for evaluation, either for
immediate or future use. Now, the client generates its own garbled input values for each input wire in
the circuit using the unique seed values si (1 ≤ i ≤ n), and sends them to the server pe for evaluation.
Using these garbled inputs, the server pe unlocks each gate on the first level of the circuit to obtain the
corresponding garbled outputs, which, in turn, can unlock each gate on the second level of the circuit,
and so on. In this manner, the server pe unlocks every gate in the circuit, to obtain the garbled outputs
of the circuit, and returns them to the client. To recover the result of the desired computation, the client
now translates these garbled output values into plaintext bits.

Figure 1 depicts an overview of our proposed secure cloud computing system with (n+ 2) = 5 servers.

 

 

 

  

  

𝑐𝑙𝑖𝑒𝑛𝑡 
𝑠1 

𝑠2 

𝑠3 

𝐺𝐶1 

𝐺𝐶2 

𝐺𝐶3 𝐺𝐶 = 𝐺𝐶1 ⊕  
𝐺𝐶2 ⊕ 𝐺𝐶3  

𝑔𝑎𝑟𝑏𝑙𝑒𝑑 𝑖𝑛𝑝𝑢𝑡𝑠 

𝑔𝑎𝑟𝑏𝑙𝑒𝑑 𝑜𝑢𝑡𝑝𝑢𝑡𝑠 

𝐼12 

𝐼13 𝐼23 

Figure 1. Our secure cloud computing model with (n + 2) = 5 servers. (1) Client sends unique
seed value, si, to each pi (1 ≤ i ≤ 3); (2) p1, p2, p3 interact (Iij, 1 ≤ i < j ≤ 3) to construct shares of the
garbled circuit GC; (3) Each pi sends its share (GCi) to pc; (4) pc computes GC = GC1 ⊕ GC2 ⊕ GC3,
and sends it to pe; (5) Client generates garbled inputs, and sends them to pe for evaluation; (6) pe

evaluates GC, and returns the garbled outputs to the client.

2.1. Our Adversarial Model

We assume that there exists a secure communication channel between the client and each of the
(n+ 2) servers, {p1, p2, . . . , pn, pc, pe}, to send the unique seed values for pseudorandom bit generation,
identity of the other servers, etc. We assume that every pair of communicating servers authenticate
one another (Note that without authentication, an external adversary can masquerade any of the
servers to disrupt the construction of the garbled circuit in an unpredictable manner. Additionally,
if the communication between the client and the (n + 2) servers is compromised by an external
adversary, then it can determine the semantics of garbled inputs/outputs based on the seed values.
Therefore, both authenticity and confidentiality of communication are essential for the construction of
garbled circuits). We assume a very capable adversary, where the evaluator pe will remain unable to
determine the plain text values from the garbled values that it can observe during evaluation even if it
individually colludes with any proper subset of the n servers, {p1, p2, . . . , pn}. Our adversary model
captures a very realistic scenario — where the client may be certain that some (however, not all) of
the parties are corrupt, however, it is uncertain which of the parties are corrupt. If any adversarial
party eavesdrops and analyzes all the messages between different parties, and also analyze all the
messages that it has legitimately received from the other parties, it still cannot determine the shares of
the other parties, or the plain text values of the garbled value pairs that are assigned to each wire in the
circuit. Furthermore, the client can efficiently detect a cheating evaluator pe which returns arbitrary
numbers as output to the client without performing any computation. A new garbled circuit is created
for every evaluation in our model. Thus, the set of inputs and outputs that have changed or remained
the same between different evaluations remains unknown to the evaluator.
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2.2. Main Characteristics of Our System

We highlight some of the main features of our secure cloud computing system in this subsection.

1. Offloaded Computation: The client delegates the intensive computational tasks to the cloud
servers of creating and evaluating the garbled circuit. The client only chooses the cloud servers, provides
them with unique seed values, generates garbled inputs during evaluation, and interprets garbled
outputs returned by the evaluator.

2. Compact Cipher Text: While Gentry’s scheme has an extremely large cipher text size, the cipher
text size can be as small as a few hundred bits with our scheme (Section 5.6). Thus, our proposed
method is far more practical for cloud computing in mobile systems in comparison to FHE schemes.

3. Decoupling: The process of creating the garbled circuit is decoupled from the process of evaluating
the garbled circuit. While the servers, pi (1 ≤ i ≤ n), interact with one another for creating the
garbled circuit, the server pe evaluates the garbled circuit, independently.

4. Advance Construction: Since evaluation of the garbled circuit requires no interaction among
the servers, if several versions of the garbled circuit for a given computation are precomputed
and stored at the evaluator, in advance, then it can readily carry out the requested computation.
Thus, the client will only incur the relatively short time taken to evaluate the garbled circuit. In
other words, precomputation will drastically improve the response time for the client.

5. Collusion Resistance: To interpret any garbled value, the evaluator, pe, must collude with each
of the n servers, pi (1 ≤ i ≤ n). Thus, even if (n − 1) out of the n servers are corrupt and
collude with the evaluator, the privacy of the client’s inputs and the result of the computation are
still preserved.

6. Verification of Outputs: The client has the ability to verify that the evaluator actually carried out
the requested computation.

3. Background

We briefly describe the construction and evaluation of Yao’s garbled circuits [6,7], as well as the
oblivious transfer protocols of Naor and Pinkas [15,16].

3.1. Yao’s Garbled Circuit

Any computation (simple examples of which could be addition of two numbers, computation of
hamming distance between two bit sequences, etc.) can be represented as a Boolean circuit.
Such a Boolean circuit can be expressed using only {AND, XOR} gates, which corresponds to
a “functionally-complete” set of operators. Therefore, any mechanism capable of performing AND
and XOR operations, homomorphically, can enable secure delegation of any arbitrary computation.
In our work, we achieve the homomorphic computation of AND and XOR gates using garbled
circuits [6–9].

Each wire in the circuit is associated with a pair of keys known as “garbled values” that correspond
to the underlying binary values. For example, the circuit in Figure 2 has seven wires, ωi (0 ≤ i ≤ 6),
and three gates, P, Q, R, denoting OR, AND, XOR gates respectively. Keys ω0

i , ω1
i represent the garbled

values corresponding to binary values 0, 1 respectively on the wire ωi.

𝑃 

𝑄 

𝑅 

𝜔0 

𝜔1 

𝜔2 

𝜔3 

𝜔4 

𝜔5 

𝜔6 

Figure 2. A circuit with three gates, P, Q, R, and seven wires, ωi (0 ≤ i ≤ 6).
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Each gate in the circuit, is associated with a list of four values, in a random order, known as
“garbled table”. Table 1 shows the garbled tables for the gates P, Q, R of Figure 2. Let x, y ∈ {0, 1}.
Let Ek[v] denote the encryption of v using k as the key. Then, each entry in the garbled table for P is
of the form, Eωx

0
[Eω

y
1
[ω

x|y
4 ]]. Similarly, each entry in the garbled table for Q and R are of the forms,

Eωx
2
[Eω

y
3
[ω

x.y
5 ]] and Eωx

4
[Eω

y
5
[ω

x⊕y
6 ]], respectively.

Table 1. Garbled Tables for Gates P, Q, R.

P Q R

Eω0
0
[Eω1

1
[ω1

4 ]] Eω0
2
[Eω1

3
[ω0

5 ]] Eω1
4
[Eω1

5
[ω0

6 ]]

Eω0
0
[Eω0

1
[ω0

4 ]] Eω1
2
[Eω0

3
[ω0

5 ]] Eω0
4
[Eω0

5
[ω0

6 ]]

Eω1
0
[Eω1

1
[ω1

4 ]] Eω0
2
[Eω0

3
[ω0

5 ]] Eω1
4
[Eω0

5
[ω1

6 ]]

Eω1
0
[Eω0

1
[ω1

4 ]] Eω1
2
[Eω1

3
[ω1

5 ]] Eω0
4
[Eω1

5
[ω1

6 ]]

Suppose that the client wishes to delegate the computation of Figure 2, i.e., ((a|b) ⊕ (c.d)),
to a server in the cloud. The server is provided with a description of the circuit (Figure 2) along
with the set of the garbled tables (Table 1), which together represents a “garbled circuit”. However,
the client keeps the mapping between the garbled values and the underlying binary values as secret.
For example, to evaluate the circuit with inputs a = 1, b = 0, c = 0, d = 1, the client provides the set
of garbled inputs, ω1

0 , ω0
1 , ω0

2 , ω1
3 , to the cloud server.

Now, assume that there exists a mechanism to determine whether a value is decrypted correctly;
for example, through zero-padding. Using ω1

0, ω0
1 as keys, the server attempts to decrypt all the

four entries in the garbled table for gate P; however, only the fourth entry will decrypt correctly to
reveal the garbled output ω1

4. Similarly, using ω0
2, ω1

3 as keys, the first entry in the garbled table
for gate Q reveals the garbled output ω0

5. Finally, on using ω1
4, ω0

5 as keys, the third entry in the
garbled table for gate R reveals the garbled output ω1

6. Thus, the server can perform an “oblivious
evaluation” of the garbled circuit and return the result of the computation ω1

6 to the client. Using the
secret mapping, the client can determine that the garbled value ω1

6 corresponds to the binary value 1.
In our work, we use an alternative garbled circuit design from Beaver, Micali, Rogaway (BMR [11,12]),

and adapt it, as we describe in Section 4, for the purpose of building a secure cloud computing system.

3.2. 1-Out-Of-2 Oblivious Transfer

In the 1-out-of-2 oblivious transfer (OT) protocol, there are two parties: a sender and a chooser.
There are two private messages at the sender: M0, M1, and the chooser holds a private choice bit,
σ ∈ {0, 1}. At the end of the 1-out-of-2 OT protocol, the sender learns nothing, and the chooser learns
Mσ only.

Let p = 2q + 1 denote a safe prime number; i.e., q is also a prime number. Let Z∗p =

{1, 2, 3, 4, . . . , (p− 1)}, which denotes the set of integers that are relatively prime to p. Let G denote
a subgroup of Z∗p, where |G| = q. Let g denote the generator for G.

The sender randomly chooses an element, C ∈ G, and sends it to the chooser. Note that the discrete
logarithm of C is unknown to the chooser. The chooser randomly selects an integer, k (1 ≤ k ≤ q),
and sets PKσ = gk mod p, and PK1−σ = C× (PKσ)−1 mod p. The chooser sends PK0 to the sender.
Note that PK0 does not reveal the choice bit σ to the sender.

The sender calculates PK1 = C× (PK0)
−1 mod p on its own, and randomly chooses two elements,

r0, r1 ∈ G. Let h(x) denote the output of the hash function (e.g., SHA, which stands for secure hash
algorithm) on input x. Let Ei denote the encryption of Mi, ∀i ∈ {0, 1}. Then, the sender calculates
Ei = [(gri mod p), (h(PKri

i mod p)⊕Mi)], and sends both E0, E1 to the chooser.
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The chooser decrypts Eσ to obtain Mσ as follows. Let l1 = grσ mod p and l2 = h(PKrσ
σ mod p)⊕Mσ

denote the first and second numbers respectively in Eσ. The chooser calculates Mσ using the relation,
Mσ = h(lk

1 mod p)⊕ l2. Note that since the discrete logarithm of C, and hence PK1−σ, is unknown to
the chooser, it cannot retrieve M1−σ from E1−σ.

3.3. 1-Out-Of-4 Oblivious Transfer

In the 1-out-of-4 oblivious transfer (OT) protocol, there are two parties: a sender and a chooser.
There are four private messages at the sender: M00, M01, M10, M11, and the chooser holds two private
choice bits, σ1, σ2. At the end of the 1-out-of-4 OT protocol, the sender learns nothing, and the chooser
learns Mσ1σ2 only.

The sender randomly generates two pairs of keys, (L0, L1), (R0, R1), and computes the encryptions
of M00, M01, M10, M11 as follows. Let Fk(x) denote the output of a pseudorandom function such as
AES-128, that is keyed using k on the input x. Let Eij denote the encryption of Mij, ∀i, j ∈ {0, 1}. Then,
Eij = Mij ⊕ FLi(2i + j + 1)⊕ FRj(2i + j + 1).

The sender and the chooser engage in 1-out-of-2 OT twice. In the first 1-out-of-2 OT, the sender
holds two messages, L0, L1, and the chooser holds the choice bit, σ1; at the end of this OT, the chooser
obtains Lσ1 . In the second 1-out-of-2 OT, the sender holds two messages, R0, R1, and the chooser holds
the choice bit, σ2; at the end of this OT, the chooser obtains Rσ2 .

Now, the sender sends all the four encryptions, E00, E01, E10, E11, to the chooser. Using Lσ1 , Rσ2 ,
the chooser decrypts Eσ1σ2 to obtain Mσ1σ2 , as Mσ1σ2 = Eσ1σ2 ⊕ FLσ1

(2σ1 + σ2 + 1)⊕ FRσ2
(2σ1 + σ2 + 1).

4. Secure and Verifiable Cloud Computing for Mobile Systems

In Section 4.1, we present the construction of BMR garbled circuit [11,12] using n servers through
the secure multiparty computation protocol of Goldreich et al. [8,9]. In Section 4.2, we highlight how
we adapt the protocol of Goldreich and the garbled circuit design of BMR, in order to suit them for
our secure cloud computing model. In our model, each server pi (1 ≤ i ≤ n), generates shares of
garbled values using cryptographically secure pseudorandom number generation method of Blum,
Blum, Shub [13,14]. In Section 4.3, we present our method of how the client efficiently recovers the
result of the delegated computation, as well as how the client verifies that the evaluator in fact carried
out the computation. We summarize our secure cloud computing model in Section 4.4.

4.1. Construction and Evaluation of Garbled Circuits

4.1.1. Construction of the Garbled Circuit, GC

Garbled Value Pairs: In order to denote the underlying plaintext bits 0 and 1, each wire in the
circuit is associated with a pair of garbled values. Let x, y denote two input wires, and z denote
the output wire of a specific gate A in the circuit. Assume that (α0, α1), (β0, β1) and (γ0, γ1) are the
pair of garbled values associated with the wires x, y, and z, respectively. Let LSB(v) denote the least
significant bit of the number v. Then, LSB(α0) = LSB(β0) = LSB(γ0) = 0 and LSB(α1) = LSB(β1) =

LSB(γ1) = 1.
Let n denote the number of servers and k denote the security parameter. Then, each garbled value

is (nk + 1) bits long, and is a concatenation of shares from the n servers. Let a, b, c ∈ {0, 1}. Then the
garbled values for gate A are as follows: αa = αa1||αa2||αa3|| . . . ||αan||a; βb = βb1||βb2||βb3|| . . . ||βbn||b;
γc = γc1||γc2||γc3|| . . . ||γcn||c; here αai, βbi, γci are shares of server pi (1 ≤ i ≤ n).

λ Value: A 1-bit λ value is associated with each wire in the circuit, which determines the semantics
for the pair of garbled values associated with that wire. Specifically, for a garbled value v whose
LSB(v) = b, the underlying plaintext bit is (b⊕ λ).

Collusion Resistance: Let λx, λy, λz denote the λ values for the three wires x, y, z respectively. Then,
λx =

⊕n
i=1 λxi, λy =

⊕n
i=1 λyi, λz =

⊕n
i=1 λzi, where λxi, λyi, λzi are shares of server pi (1 ≤ i ≤ n).
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Since the λ value of each wire is unknown to any individual server, the evaluator of the garbled circuit
must collude with each of the n servers to interpret the garbled values.

Garbled Table: Each gate, A, in the circuit, is associated with an ordered list of four values,
[A00, A01, A10, A11], representing the garbled table for gate A. Note that the λ values of the input wires,
which are random, and also unknown to any of the n servers, determine the order of the entries in the
garbled table. Let ⊗ denote the binary operation of gate A, where ⊗ ∈ {XOR, AND}. Then, the value
of one specific entry is expressed as, Aab = γ[((λx⊕a)⊗(λy⊕b))⊕λz]⊕ [Gb(αa1)⊕Gb(αa2)⊕ . . .⊕Gb(αan)]⊕
[Ga(βb1)⊕Ga(βb2)⊕ . . .⊕Ga(βbn)], where Ga and Gb are pseudorandom functions that expand k bits
into (nk + 1) bits. In the expression for Aab , G0(s) and G1(s) denote the first and last (nk + 1) bits of
G(s) respectively, where G denotes a pseudorandom generator, which on providing a k-bit input seed,
outputs a sequence of (2nk + 2) bits, i.e., if |s| = k, then |G(s)| = (2nk + 2). G may represent the output
of AES block cipher in output feedback mode, for example.

For each gate in the circuit, to compute each garbled table entry Aab, the n servers use the secure
multiparty computation protocol of Goldreich [8,9] (Section 4.1.2), where f (x1, x2, . . . , xn) = Aab,
and for each server, pi, (1 ≤ i ≤ n), its private input, xi = [λxi, λyi, λzi, Gb(αai), Ga(βbi), γ0i, γ1i] is a
vector of length m = (3+ 2(nk + 1) + 2k) bits.

4.1.2. Secure Multiparty Computation of an Entry, Aab

Assume that n parties need to compute the value of an arbitrary function of their private inputs,
namely f (x1, x2, . . . , xn) without revealing their private inputs to one another. Assume that the function
f (x1, x2, . . . , xn) is expressed as a Boolean circuit (B′) (Boolean circuit B′ is different from Boolean circuit
B. While B is a circuit that corresponds to the computation requested by the client (e.g., addition of
two numbers), B′ is a circuit that creates the entries such as Aab in the garbled tables of the garbled
circuit GC) using XOR and AND gates only.

We briefly describe the secure multiparty computation protocol of Goldreich [8,9] as follows.
For each wire in the Boolean circuit, the actual binary value which corresponds to the XOR-sum of
shares is distributed among the n parties.

Evaluation of each XOR gate in the circuit, requires no communication—it is carried out locally;
each party merely performs an XOR operation over its shares for the two input wires to obtain its
share for the output wire.

Evaluation of each AND gate in the circuit, however, requires communication between all pairs of
parties. For the two inputs wires of the AND gate, let ai, bi denote the shares of party pi; and let aj, bj
denote the shares of party pj. Then, the output of the AND gate is expressed as follows:

(
⊕n

i=1 ai).(
⊕n

i=1 bi) = [
⊕

1≤i<j≤n((ai ⊕ aj).(bi ⊕ bj))]
⊕n

i=1((ai.bi).I), where I = n mod 2.
Each party pi computes ((ai.bi).I) locally; and the computation of each partial-product, ((ai ⊕

aj).(bi ⊕ bj)), is realized using 1-out-of-4 oblivious transfer (OT [15,16]) between pi and pj, such that no
party reveals its shares to the other party [8,9].

Following the above procedure, the n parties evaluate each gate in the circuit. Thus, in the end,
for the BMR protocol, as we have described above, each server pi (1 ≤ i ≤ n), obtains the share,
( f (x1, x2, . . . , xn))i = (Aab)i, such that f (x1, x2, . . . , xn) = Aab =

⊕n
i=1(Aab)i.

4.1.3. Evaluation of the Garbled Circuit, GC

The garbled table for each gate, A, in the circuit is an ordered list of four values, [A00, A01, A10, A11].
During evaluation, let α, β denote the garbled values for the two input wires of gate A.

Let a = LSB(α), b = LSB(β). Then, the garbled value for the output wire, γ, is computed using
α, β, Aab, as described in the two steps below:

1. split the most significant nk bits of α into n parts, α1, α2, α3, . . . , αn; each part has k bits; similarly,
split the most significant nk bits of β into n parts, β1, β2, β3, . . . , βn; each part has k bits; i.e.,
|αi| = |βi| = k, where 1 ≤ i ≤ n.



Future Internet 2016, 8, 17 9 of 25

2. compute γ = [Gb(α1)⊕Gb(α2)⊕ . . .⊕Gb(αn)]⊕ [Ga(β1)⊕Ga(β2)⊕ . . .⊕Ga(βn)]⊕ Aab.

In this manner, the garbled output for any gate in the circuit can be computed using the garbled
table and the two garbled inputs to the gate. Note that while the construction of the garbled circuit
requires interaction among all the n parties, pi (1 ≤ i ≤ n), the server pe can perform the evaluation of
the garbled circuit independently.

4.2. Secure and Verifiable Cloud Computing through Secure Multiparty Computation

In a secure multiparty computation protocol, multiple parties hold private inputs, and receive the
result of the computation. However, in our proposed secure cloud computing system, while multiple
parties participate in the creation of garbled circuits, only the client holds private inputs and obtains
the result of the computation in garbled form. Therefore, we adapt the protocols of Goldreich and
BMR in a number of ways, as we discuss in this section, to build an efficient, secure cloud computing
system, that also enables the client to easily verify the outputs of the computation.

First, note that in the protocol of Goldreich [8,9], each party pi sends its share ( f (x1, x2, . . . , xn))i to
all the other parties. Using these shares, each party computes f (x1, x2, . . . , xn) as

⊕n
i=1( f (x1, x2, . . . , xn))i.

In our secure cloud computing system, however, we require each server pi (1 ≤ i ≤ n), to send its
share ( f (x1, x2, . . . , xn))i = (Aab)i to only one server, pc, which combines the received shares using the
XOR operation to produce entries such as Aab for each garbled table in the garbled circuit, GC.

Second, in the BMR protocol [11,12], which is also a secure multiparty computation protocol,
in addition to creating the garbled circuit, for evaluation, the n parties also create garbled
inputs using secure multiparty computation. Then, each of these n parties evaluates the
garbled circuit and obtains the result of the computation. In our system model, since only
the client holds the inputs for the computation, it generates the corresponding garbled input
for each input wire on its own using the seed values it sends to each server, pi (1 ≤ i ≤
n). Then, it sends these garbled values to the server pe for evaluating the garbled circuit and
obtains the result in garbled form. Note that in our model, only the server pe evaluates the
garbled circuit, and that pe cannot interpret any garbled value, unless it colludes with all the
n servers, pi (1 ≤ i ≤ n).

Third, in the BMR protocol [11,12], the λ value is set to zero for each output wire in the Boolean circuit.
Therefore, each party evaluating the garbled circuit obtains the result of the computation in plaintext
form from the LSB of the garbled output for each output wire in the circuit. In our system model,
however, the λ value for each output wire is also determined using the XOR-sum of the shares from
all the n servers, pi (1 ≤ i ≤ n). As a consequence, result of the computation in plaintext form remains
as secret for the evaluator pe.

Fourth, in the protocol of Goldreich [8,9], each party splits and shares each of its private input bits
with all the other parties over pairwise secure communication channels. In our system, we eliminate
this communication using a unique seed value sik that the client shares with all pairs of parties,
(pi, pk), (1 ≤ i, k ≤ n). To split and share each of its m private input bits xij (1 ≤ j ≤ m), party pi uses
the seed value sik to generate rkj (∀k 6= i). Specifically, party pi sets its own share as xij

⊕n
k=1,k 6=i rkj,

where rkj = R(sik, j, gateid, entryid) corresponds to the output of the pseudorandom bit generator
using the seed value sik for the jth private input bit of party pi, for a specific garbled table entry
(entryid) of one of the gates (gateid) in the Boolean circuit. Similarly, party pk sets its own share as
rkj = R(sik, j, gateid, entryid). The total number of pseudorandom bits generated by each party for the
protocol of Goldreich equals 2(n− 1)m× 4Ng = 8(n− 1)m× Ng, where m = (3 + 2(nk + 1) + 2k),
and Ng denotes the total number of gates in the circuit. In other words, our approach eliminates the
exchange of a very large number of bits (O(n3kNg) bits) between the n parties.

Fifth, our novel use of the Blum, Blum, Shub pseudorandom number generator for generating
garbled value shares enables the client to efficiently recover and verify the outputs of the computation.
The client can detect a cheating evaluator, if it returns arbitrary values as output. We present this in
a greater detail in Section 4.3.
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4.3. Recovery and Verification of Outputs

We address the following questions in this subsection:

1. How does the client efficiently recover the result of the computation without carrying out the
delegated computations by itself?

2. How does the client verify that the evaluator, in fact, evaluated the garbled circuit? Stated differently,
is it possible for the client to determine whether the evaluator returned arbitrary numbers without
carrying out any computation at all, instead of the actual garbled output for each output wire?

We can enable the client to efficiently retrieve and verify the outputs received from the evaluator, pe.
To accomplish this, each of the n parties that participates in the creation of the garbled circuit uses
the cryptographically secure Blum, Blum, Shub pseudorandom number generator [13,14], as we have
described below.

Let N = p× q denote the product of two large prime numbers such that p and q are congruent
to 3 mod 4. The client chooses a set of n seed values, {s1, s2, . . . , sn}; each seed value si belongs to Z∗N,
the set of integers relatively prime to N. Over a secure communication channel, the client sends the
modulus value N and a unique seed value si to each party pi (1 ≤ i ≤ n). However, the client retains
the prime factors, p, q, of N as secret.

Let bi,j = LSB(xi,j) denote the jth bit generated by the party pi; here xi,j = x2
i,(j−1) mod N,

and xi,0 = si.
In the Boolean circuit, each wire ω is associated with (ω0, ω1), a pair of garbled values, and λω,

a 1-bit value. These are expressed as follows:
ω0 = ω01||ω02||ω03|| . . . ||ω0n||0,
ω1 = ω11||ω12||ω13|| . . . ||ω1n||1, and
λω = λω1⊕ λω2⊕ λω3⊕ . . .⊕ λωn.
In the above expressions: ω0i, ω1i and λωi are shares of the party pi (1 ≤ i ≤ n),

and |ω0i| = |ω1i| = k, and |λωi| = 1.
Let W denote the number of wires in the Boolean circuit. For each wire ω (0 ≤ ω ≤ W − 1),

in the Boolean circuit, each party, pi (1 ≤ i ≤ n), generates (2k + 1) pseudo random bits. Therefore,
each party, pi, generates a total of (W(2k + 1)) pseudorandom bits.

To generate its shares ω0i, ω1i, and λωi for wire ω, party pi concatenates the bi,j values, where the
indices j belong to the range: [(ω(2k+ 1)+ 1), (ω + 1)(2k+ 1)]. Let Ωωk = ω(2k+ 1) for concise notation.
Then,

ω0i = bi,(Ωωk+1)||bi,(Ωωk+2)|| . . . ||bi,(Ωωk+k),
ω1i = bi,(Ωωk+k+1)||bi,(Ωωk+k+2)|| . . . ||bi,(Ωωk+2k),
λωi = bi,(Ωωk+2k+1).
Short-Cut: Note that each server pi must compute all the previous (j − 1) bits before it can

compute the jth bit. However, using its secret knowledge of the prime factors of N, i.e., p, q, the client

can directly calculate any xi,j (hence, the bit bi,j) using the relation: xi,j = x2j mod C(N)
i,0 mod N; here C(N)

denotes the “Carmichael function”, which equals the least common multiple of (p− 1) and (q− 1).
Therefore, without having to compute ω0, ω1, and λω for any intermediate wire in the circuit, the

client can readily compute ω0, ω1, and λω for any output wire ω in the circuit using the secret values
p, q. The client can translate each of the garbled values from the evaluator pe into a plaintext bit using
the λω values of the output wires in order to recover the result of the requested computation. Only
if the garbled output from the evaluator matches with either ω0 or ω1, for each output wire ω of the
circuit, the client declares that the output verification is successful.

Collusion Resistance: Notice that the evaluator can return one of the two expected garbled outputs
for every output wire in the circuit without performing any computation at all, if and only if: (i) it
colludes with all the n servers, {p1, p2, . . . , pn}, that participated in creating the garbled circuit; or (ii) it
factorizes N into the prime factors, p and q, which is infeasible.
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Furthermore, note that in order to cheat successfully without any collusion, the evaluator would
have to correctly guess one of the two expected garbled outputs for each output wire in the circuit.
Each garbled output value is (nk + 1) bits long. Therefore, for any reasonable value of the number of
servers (n ≥ 2) and security parameter (k = 128, for example), the evaluator would have to correctly
guess hundreds of bits for each output wire in the circuit. Hence, it is very highly unlikely for the
evaluator to be successful.

Unpredictability: Even with the knowledge of all the previous/future bits, one cannot predict
the next/previous bit output from the Blum, Blum, Shub pseudorandom number generator [13,14].
Therefore, through the observation of garbled values during evaluation, the evaluating server, pe,
cannot predict the preceding or subsequent garbled values, or the λ values for every wire in the circuit.

4.4. Summary of Our Proposed System

We summarize our secure cloud computing model in this subsection.

1. The client chooses {p1, p2, . . . , pn, pc, pe}, a set of (n + 2) servers in the cloud. Then, to each server
pi (1 ≤ i ≤ n), the client provides a unique seed value si, and a description of the desired computation.
To each pair of servers, (pi, pk), (1 ≤ i, k ≤ n), the client also provides another seed value sik.

2. For the requested computation, each server, pi (1 ≤ i ≤ n), creates (or retrieves from its repository,
if available already) a corresponding Boolean circuit (B).

3. Using the pseudo random generator of Blum, Blum, Shub, each server, pi (1 ≤ i ≤ n), uses the
seed value si to generate its shares for the pair of garbled values and a λ value for each wire in the
circuit (B). Each server, pi, generates a pseudorandom bit sequence of length W(2k + 1) bits using
seed value si; here W denotes the number of wires in the Boolean circuit (B).

4. The client instructs the n servers pi (1 ≤ i ≤ n) to construct the shares (GCi) of a
BMR garbled circuit, GC, using their shares as private inputs for the secure multiparty
computation protocol of Goldreich. Each pair of servers, (pi, pk), (1 ≤ i, k ≤ n), generates
pseudorandom bits using pairwise seed values sik while using the protocol of Goldreich. Let
Ai = (A00)i||(A01)i||(A10)i||(A11)i denote the shares of server pi corresponding to the four garbled
table entries of gate A. Then, GCi equals the concatenation of all bit strings of the form Ai, where
the concatenation operation is carried out over all the gates in the circuit.

5. The client instructs each of the n servers, pi (1 ≤ i ≤ n) to send their shares GCi to the server pc.
Performing only XOR operations, the server pc creates the desired circuit, GC = GC1 ⊕GC2 ⊕
. . .⊕GCn, which is sent to server pe for evaluation.

6. The client generates garbled input values for each input wire in the circuit using the unique seed
values si (1 ≤ i ≤ n), and sends them to the server pe for evaluation. The client also generates the
λ values and the two possible garbled values for each output wire in the circuit using these seed
values, and keeps the λ values as secret.

7. The server pe evaluates GC using the garbled inputs to obtain the garbled output for every output
wire in the circuit and sends them to the client. The client now translates these garbled values
into plaintext bits, using the λ values, to recover the result of the requested computation.

8. For each output wire in the circuit, the client checks whether the garbled output that is received
from the evaluator, pe, matches with one of the two expected garbled values that it computed
on its own. If the client determines that there is a match for all output wires, it declares that the
evaluator in fact carried out the computation.

5. Complexity

5.1. Circuit Size of One Garbled Table Entry

We analyze the size of the Boolean circuit (B′) for computing one specific entry (Aab) in the garbled table.
Assume that each gate produces one output bit from two input bits. As we have shown in Section 4.1.1,
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Aab = γ[((λx⊕a)⊗(λy⊕b))⊕λz] ⊕ [Gb(αa1)⊕ Gb(αa2)⊕ . . .⊕ Gb(αan)]⊕ [Ga(βb1)⊕ Ga(βb2)⊕ . . .⊕ Ga(βbn)];
here ⊗ ∈ {XOR, AND} denotes the binary operation of gate A.

Let s denote the expression: ((λx ⊕ a)⊗ (λy ⊕ b))⊕ λz. Since λx =
⊕n

i=1 λxi, λy =
⊕n

i=1 λyi,
λz =

⊕n
i=1 λzi, where λxi, λyi, λzi are shares of server pi, (1 ≤ i ≤ n), computing s requires a total of

3+ 3(n− 1) = 3n XOR gates and 1⊗ gate.
Boolean circuit B′ includes a multiplexer that chooses γs, where γs = ((γ0⊕ γ1).s)⊕ γ0, which is

composed of 2 XOR gates and 1 AND gate. The multiplexing is performed on the most significant nk
bits since |γ0| = |γ1| = nk + 1, and LSB(γs) = s. This multiplexer is composed of a total of 2nk XOR
gates and nk AND gates.

Now, consider the expression: γs ⊕ [Gb(αa1)⊕ Gb(αa2)⊕ . . .⊕ Gb(αan)]⊕ [Ga(βb1)⊕ Ga(βb2)⊕
. . .⊕Ga(βbn)]; it has (2n + 1) terms, which are combined using 2n XOR operations. Computing this
expression requires a total of 2n(nk + 1) XOR gates, since each term has a length of (nk + 1) bits.

Therefore, the Boolean circuit (B′) that computes one specific garbled table entry (Aab) has a total
of (3n + 2nk + 2n(nk + 1)) XOR gates, nk AND gates, and 1⊗ gate.

Figure 3 shows the total number of gates in the circuit that computes Aab, when A is an AND gate,
as a function of n for a fixed value of k = 128 bits. Notice the relatively small number of AND gates
in the circuit. For example, when n = 6, the circuit that computes Aab has a total of 10782 XOR and
769 AND gates. To summarize, while the number of XOR gates increases quadratically with n, the
number of AND gates increases only linearly with n.
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Figure 3. Number of gates in the circuit that computes one garbled table entry as a function of n.

Let B denote the Boolean circuit that corresponds to the desired computation such as addition of
two numbers. Then, in order to create the garbled circuit GC for B, the n parties use the Boolean circuit
B′ for the protocol of Goldreich to compute each one of the four garbled table entries of the form Aab
for each gate A in the circuit B.

5.2. Communication Cost to Compute One Garbled Table Entry

In general, a 1-out-of-2 OT [15] exchange between two parties involves the exchange of: (i) a random
element C from the prime order subgroup, G, of Z∗p; (ii) a public key, PK0; and (iii) the encryptions,
E0, E1, of the plaintext messages M0, M1. Let k denote the security parameter, which equals the size
of the plaintext messages, M0, M1. Let s1:2 denote the total number of bits that are exchanged during
a 1-out-of-2 OT. Then, s1:2 = |C|+ |PK0|+ |E0|+ |E1| = |p|+ |p|+ (|p|+ k) + (|p|+ k) = 4|p|+ 2k.

A 1-out-of-4 OT [16] exchange between two parties includes: (i) two 1-out-of-2 OTs,
and (ii) four encryptions, E00, E01, E10, E11. Let s1:4 denote the total number of bits exchanged
during a 1-out-of-4 OT. Then, s1:4 = 2(s1:2) + 4k = 8(|p|+ k); here |p| and k are public and symmetric
key security parameters, respectively. For example, |p| = 3072 achieves the equivalent of k = 128-bit
security [17]; in this case, the sum of the sizes of all messages exchanged during a 1-out-of-4 OT is
s1:4 = 3200 bytes.
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For each AND gate in the circuit B′, each pair of servers, (pi, pj), 1 ≤ i < j ≤ n, engage in
a 1-out-of-4 OT, and there are a total of n(n − 1)/2 combinations of (pi, pj). The total number of
1-out-of-4 OTs is at most t1:4 = (nk + 1)× n(n− 1)/2 since the number of AND gates in the circuit B′

is at most (nk + 1).
To create the desired garbled table entry, Aab, at the completion of the secure multiparty

computation protocol of Goldreich, each server, pi (1 ≤ i ≤ n), sends its share (Aab)i to another server, pc,
which receives a total of s? = n(nk + 1) bits from the other n servers since |(Aab)i| = nk + 1.

To summarize, in order to create one garbled table entry, Aab, the total amount of network traffic,
T = (t1:4× s1:4) + s? = (nk + 1)[(4(|p|+ k)× n(n− 1)) + n]. The network traffic is a cubic function of
n when the security parameters, k and |p|, are fixed.

Figure 4 shows the network traffic to create one garbled table entry as a function of n. For example,
when n = 5, the cloud servers exchange 19.56 MB of data in order to create a single entry in the garbled table.

2 3 4 5 6 7 8 9 10
0

20

40

60

80

100

120

140

160

180

N
e
tw

o
rk

 t
ra

ff
ic

 t
o
 c

o
m

p
u
te

 o
n
e
 g

a
rb

le
d

ta
b
le

 e
n
tr

y
 (

m
e
g
a
 b

y
te

s
)

Number of parties (n)

Figure 4. Amount of network traffic to compute one garbled table entry as a function of n.

In the process of creating the garbled circuit, GC, the total amount of network traffic equals
4Ng × T, where Ng denotes the total number of gates in the circuit B that corresponds to the
desired computation.

5.3. Computation Cost of Creating the Garbled Circuit

Let W denote the total number of wires in the circuit B. For each wire, each server, pi (1 ≤ i ≤ n),
generates (2k + 1) bits using the Blum, Blum, Shub (BBS) pseudorandom number generator (PRNG)
[13,14] for its share of garbled values and the λ value. Therefore, the n servers collectively generate
a total of b1 = n(2k + 1)W bits using the BBS PRNG. Let N denote the modulus value in BBS PRNG
(note: |N| = 3072 achieves 128-bit security [17]). Then, n(2k + 1)W modular multiplication operations
in Z∗N are necessary to generate bits using BBS PRNG.

Let Wo denote the number of output wires in the circuit B. Let G denote the PRNG, which
we have described in Section 4.1.3, that outputs a sequence of (2nk + 2) bits on providing a k-bit
input seed. Each server uses the PRNG G, on its share of each garbled value for every non-output wire
in the circuit B. Then, while creating the garbled circuit, the n servers collectively use the PRNG G,
2n(W −Wo) times to generate a total of b2 = 4n(nk + 1)(W −Wo) bits.

Let Ng denote the total number of gates in the circuit B. For protocol of Goldreich, the total
number of pseudorandom bits generated by each party using the PRNG R, equals 8(n− 1)m× Ng,
where m = (3 + 2(nk + 1) + 2k) (Section 4.2). Thus, the n parties collectively generate a total of
b3 = 8n(n− 1)(3 + 2(nk + 1) + 2k)× Ng bits using the PRNG R.

Note that both the PRNG G and PRNG R can be realized using a block cipher such as AES (which
stands for advanced encryption standard) operating in output feedback mode.

Let t1:4 denote the number of 1-out-of-4 OTs to create one garbled table entry (Section 5.2).
Then, the total number of 1-out-of-4 OTs to create the complete garbled circuit GC is at most
4Ng × t1:4 = 4Ng × (nk + 1)× n(n− 1)/2.
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During a 1-out-of-2 oblivious transfer, the sender and chooser generate a total of |C| + |k| +
|r0| + |r1| = (4|p| − 1) bits. Each 1-out-of-4 oblivious transfer involves the cost of two 1-out-of-2
oblivious transfers, in addition to generating a total of |L0| + |L1| + |R0| + |R1| = 4k bits. A very
small constant number of modular arithmetic operations, AES and SHA crypto operations are carried
out during each OT. While creating the garbled circuit GC, these sets of operations are performed
4Ng× (nk + 1)× n(n− 1)/2 times; and a total of b4 = 4Ng× (nk + 1)× (n(n− 1)/2)× (8|p|+ 4k− 2)
bits are generated during the OTs.

To summarize, the total number of bits that are generated by the n parties while creating the
garbled circuit is b = b1 + b2 + b3 + b4 = (n(2k + 1)W) + (4n(nk + 1)(W −Wo)) + (8n(n − 1)(3 +

2(nk+ 1)+ 2k)×Ng)+ (4Ng× (nk+ 1)× (n(n− 1)/2)× (8|p|+ 4k− 2)). Thus, for any given Boolean
circuit, when the security parameters k and |p| are fixed, the total number of bits generated randomly
is a cubic function of n.

For example, consider the construction of a garbled circuit for adding two 32-bit numbers.
The corresponding Boolean circuit has a total of W = 439 wires, Wo = 33 output wires, and Ng = 375
gates (The 32-bit adder circuit in [18] has 127 AND gates, 61 XOR gates and 187 NOT gates. Note that a
NOT gate is equivalent to an XOR gate, since NOT(x) = (1⊕ x). As we have mentioned in Section 4.1,
we consider only two different types of gates, namely, {AND, XOR} in our work. Alternatively, note
that more efficient constructions are possible; for example, an AND gate with a NOT gate on its output
wire may be replaced with a single NAND gate, if the output wire of the AND gate is not an input wire
for any other gate in the circuit).

Figure 5 shows the total number of Mbits that are generated randomly while creating
one garbled table entry (i.e., b/(4Ng × 220)) for the 32-bit adder. As an example,
when n = 5, these parties collectively generate a total of 153.41 Mbits to create one garbled table entry.
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Figure 5. Total number of Mbits generated randomly while creating one garbled table entry for the
32-bit adder.

5.4. Cost of Evaluating the Garbled Circuit

In order to perform the requested computation, the server pe obtains the garbled circuit, GC,
from the server pc. Let Ng denote the total number of gates in the circuit B. Each entry in the garbled
table has a length of (nk + 1) bits. Therefore, the size of the garbled circuit equals 4Ng × (nk + 1) bits.

Figure 6 shows the size of the garbled circuit in Kbits for the 32-bit adder. This circuit has Ng = 375 gates.
The security parameter k = 128.
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Figure 6. Size of the garbled circuit in Kbits for the 32-bit adder.

Let W and Wo denote the total number of wires and output wires, respectively, in the Boolean
circuit B. During evaluation, for each non-output wire of the circuit, the server pe uses the PRNG G
n times. Therefore, G is used for a total of (W −Wo)n times.

5.5. Cost for the Client

In order to create the garbled circuit, the client provides: (i) a unique seed value, si, to each server
pi (1 ≤ i ≤ n); and (ii) a seed value, sik, to each pair of servers (pi, pk), (1 ≤ i, k ≤ n).

The length of each seed value, |si| = |N| for the BBS PRNG. The length of each seed
|sik| = k for the PRNG R, which can be implemented using a block cipher such as AES in output
feedback mode. Let bs denote the total number of bits that the client exchanges for the seed values.
Then, bs = n|N|+ n(n− 1)k = n(|N|+ (n− 1)k).

For each plaintext input bit to the circuit, the client is required to generate the garbled input.
Each garbled value is (nk + 1) bits long, whose least significant bit depends on the λ value, and the
λ value, in turn, depends on the 1-bit shares for the n parties. Let bi denote the number of bits that the
client needs to generate for each input wire. Then, bi = (nk + n).

The client needs to generate both possible garbled outputs for each output wire to enable the
verification of outputs. Let bo denote the number of bits that the client needs to generate for each
output wire. Then, bo = (2nk + n).

Let Wi and Wo denote the number of input and output wires, respectively, in the Boolean circuit B.
Then, the client generates/exchanges a total of bs +Wi × bi +Wo × bo = n[|N|+ (n− 1)k +Wi(k + 1) +
Wo(2k + 1)] bits.

Figure 7 shows the total number of Kbits that the client generates in order to enable the servers to
construct and evaluate the garbled circuit, as well as for the verification of outputs for the 32-bit adder.
This circuit has Wi = 64 input wires and Wo = 33 output wires. The security parameters are k = 128
and |N| = 3072.
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Figure 7. Total number of Kbits that the client generates to delegate the construction and evaluation of
the garbled circuit, and to verify the outputs for the 32-bit adder.
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For example, when n = 10, the client generates about 209 Kbits, if the security parameters are
k = 128 and |N| = 3072. Furthermore, note that even when the security parameters are increased
to k = 256 and |N| = 15, 360, the client generates only 510 Kbits (The security parameters k and |N|
are related; Barker et al. [17] provide a tabular listing of recommended combination of value-pairs
(k, |N|)).

Comparing Figure 7 with Figures 4 and 5, we notice that while the servers generate and exchange
Gigabytes of information to create the garbled circuit, the resource constrained mobile client, on the
other hand, generates and exchanges only Kbytes of information with the evaluator and the other
servers in the cloud.

While the network traffic among the servers is a cubic function of n (Section 5.2), our result
in Figure 7 shows that it is feasible to perform privacy preserving computations on behalf of
resource-constrained clients, and that our system is well-suited for such clients, since they generate
and exchange only compact cipher text messages with the servers - that are many orders of magnitude
smaller than the amount of network traffic between the servers.

5.6. Comparison of Our Scheme with Gentry’s FHE Scheme

While Gentry’s FHE scheme [3] requires a single server only, it, however, expects the client to
exchange O(k5) bits with the evaluating server, for each input and output wire of the circuit. In our
secure cloud computing system, for each input and output wire, the client exchanges O(nk) bits only
with the server pe since each garbled value has a length of (nk + 1) bits. For example, the size of each
encrypted plain text bit equals several Gigabits with Gentry’s FHE scheme, while it equals a mere
641 bits in our approach with n = 5 and k = 128. Therefore, in comparison to FHE schemes, our
approach is far more practical for cloud computing in mobile systems.

5.7. Construction and Evaluation Time

We used BIGNUM routines and crypto functions from the OpenSSL library to implement
our secure cloud computing system. We built our system as a collection of modules, and our
implementation uses TCP (which stands for Transmission Control Protocol) sockets for communication
among the servers. Using a server with Intel Xeon 2.53 GHz processor (Intel, Santa Clara, CA, USA),
with 6 cores and 32 GB RAM we evaluated our system. Figure 8 shows the time taken to construct
one garbled table for varying number of servers. We note that in order to significantly reduce the
construction time, the garbled tables for any number of gates in the circuit can be constructed in parallel.

2 3 5 6
0

1000

2000

3000

4000

5000

6000

T
im

e
 t
a
k
e
n
 t
o
 c

o
n
s
tr

u
c
t 
o
n
e

g
a
rb

le
d
 t
a
b
le

 (
s
e
c
o
n
d
s
)

4
Number of parties (n)

Figure 8. Time taken to construct one garbled table.

Figure 9 shows the time taken to evaluate one garbled gate for varying number of servers.
Notice that evaluation is significantly faster than construction, and that the latter can be done offline.
The evaluating server can readily carry out the requested computation, and therefore drastically reduce
the response time for the mobile client, if the garbled circuits are pre-computed and made available to
the evaluator, in advance.
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Figure 9. Time taken to evaluate one garbled gate.

While our prototype is implemented entirely in software, we note that it is possible to achieve
significant speedup through special dedicated hardware blocks. For example, our method relies on the
computation of pseudorandom functions such as AES, which can be expressed as a Boolean circuit with
only AND gates and XOR gates [18]. Therefore, using hardware blocks for realizing the computation
of pseudorandom functions that are used very frequently in our system can dramatically improve the
overall time taken for performing privacy-preserving computations on the cloud on behalf of the client.

6. Privacy Preserving Search for the Nearest Bank/ATM

In this section, we consider the special scenario of a mobile device seeking to obtain the result of a
computation that depends on its own “private inputs”, and also on “public inputs” obtained from other
servers on the Internet. More specifically, we examine the following privacy preserving application.
A mobile client, which is located at the intersection of two streets, needs to determine the location
of the nearest Chase or Wells Fargo banks or an ATM machine in a privacy-preserving manner.
We evaluate our application using real-world data available for Salt Lake City, UT, whose streets are
arranged in a “grid pattern”. Our application assures the privacy of the following: (i) the mobile client’s
input location; (ii) the computed bank/ATM location nearest to the client; and (iii) the computed
distance to the nearest ATM. Note that these secrets are revealed to the evaluator only if it colludes
with all the n servers that participate in the creation of the garbled circuit.

We consider an area of Salt Lake City, UT that lies between the Main Street (which represents the
0 East Street), the 1300 East Street, the South Temple Street (which represents the 0 South Street), and
the 800 South Street. This area consists of L = 10 ATM locations that are shown in Table 2.

Table 2. Locations of Banks and ATMs in Salt Lake City, UT (source: Chase [19], Wells Fargo [20]).

Bank/ATM Location

Chase 201 South 0 East

Chase 185 South 100 East

Chase 376 East 400 South

Chase 531 East 400 South

Wells Fargo 299 South 0 East

Wells Fargo 381 East 300 South

Wells Fargo 79 South 0 East

Wells Fargo 778 South 0 East

Wells Fargo 570 South 700 East

Wells Fargo 235 South 1300 East
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Each East/South coordinate in this area is an l = max(dlog21300e, dlog2800e) = 11-bit unsigned number.
Therefore, the location of the mobile client at an intersection, or any bank/ATM in this area can be
identified using Lind = 2l = 22 bits.

6.1. Circuit for Computing Manhattan Distance

Let (xa, ya) represent the coordinates of the mobile client at an intersection. Similarly, let (xb, yb)

represent the coordinates of a bank/ATM. Since the streets are arranged in a grid pattern, the shortest
distance (D) between (xa, ya) and (xb, yb) equals the sum of the absolute differences between the
respective coordinates: D = |xa− xb|+ |ya− yb|. This distance metric is more commonly referred to as
the Manhattan distance.

We design a Boolean circuit for computing the Manhattan distance between two points, (xa, ya)

and (xb, yb). Assume that each coordinate is an l bit unsigned number. Figures 10 and 11 show the
block diagram of our circuit. We use the SUB and ADD blocks of Kolesnikov et al. [21].

𝑥𝑙 …𝑥2 𝑥1 = 𝑥𝑏 − 𝑥𝑎 − 𝑥𝑙+1 𝑦𝑙 …𝑦2 𝑦1 = 𝑦𝑏 − 𝑦𝑎 − 𝑦𝑙+1 

𝑥𝑎1  𝑥𝑏1 𝑥𝑎2 𝑥𝑏2 𝑥𝑎𝑙  

𝑆𝑈𝐵 

𝑥𝑙  𝑥2 𝑥1  

𝑥𝑙  𝑥2  𝑥1  

𝐼𝑁𝑉 

𝑥𝑙+1 

𝑥𝑏𝑙  𝑦𝑎1  𝑦𝑏1 𝑦𝑎2  𝑦𝑏2 𝑦𝑎𝑙  

𝑆𝑈𝐵 

𝑦𝑙  𝑦2 𝑦1  

𝑦𝑙  𝑦2  𝑦1  

𝐼𝑁𝑉 

𝑦𝑙+1 

𝑦𝑏𝑙  

Figure 10. Absolute difference between the X and Y coordinates.

𝑥1  𝑦1  𝑥2  𝑦2  𝑥𝑙  𝑦𝑙  

𝐴𝐷𝐷 
𝑥𝑙+1 

𝐻𝐴 𝐻𝐴 𝐻𝐴 
𝑦𝑙+1 

𝑑𝑙+1  𝑑𝑙  𝑑2  𝑑1  

𝑑𝑙+1 𝑑𝑙  𝑑2 𝑑1 

𝑀𝑎𝑛ℎ𝑎𝑡𝑡𝑎𝑛 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 = 𝑑𝑙+1𝑑𝑙…𝑑2𝑑1 

𝐼𝑁𝐶  

Figure 11. Manhattan Distance Computation.

Each SUB/ADD block is composed of l 1-bit subtractors/adders; each 1-bit subtractor/adder,
in turn, is composed of 4 XOR gates, 1 AND gate. Note that (l + 1)th output bit of SUB block equals
the complement of carry-out bit from the lth 1-bit subtractor.

If xa ≥ xb, then the output of SUB block equals the absolute difference, |xa − xb|. Otherwise,
the output of SUB block equals the negative value, −|xa − xb|, in 2′s complement form. Since xl+1 = 1
for negative values, we use xl+1 as one of the inputs for the XOR gates in the INV block to compute
the 1′s complement of the absolute difference. Then, we subsequently use xl+1 as a carry-in input bit
for the ADD block. Thus, the output of the ADD block accounts for both xa ≥ xb and xa < xb cases.

Similarly, for the Y coordinates we use the SUB and INV blocks to compute the absolute difference
in 1′s complement form. To account for the case when yl+1 = 1, we use an INC block that adds the
value of the bit yl+1 to the output of the ADD block. The INC block is composed of l half-adder (HA)
blocks, where each HA block, in turn, is composed of 1 XOR and 1 AND gate.
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The output of the INC block represents the (l + 1)-bit Manhattan distance between (xa, ya) and
(xb, yb). Using the circuit design of Figures 10 and 11, a list of distances between the location of the
mobile client and any number (L) of ATM locations can be computed. Table 3 shows that our Boolean
circuit for computing the Manhattan distance between two points has a total of (15l + 1) XOR gates
and 4l AND gates.

Table 3. Circuit size for Manhattan distance calculation.

Block #XOR Gates #AND Gates

2× SUB 2× 4l 2× l

2× INV 2× l 0

ADD 4l l

INC l + 1 l

Total 15l + 1 4l

Note: In a more direct alternative to compute Manhattan distance, we may first find min(xa, xb)

and max(xa, xb), and always subtract min(xa, xb) from max(xa, xb) (similarly for the Y coordinates).
While this approach would eliminate INV and INC blocks, it however would require the use of two
comparator and conditional swap blocks [22], which together introduce 12l new XOR gates and 4l
AND gates. Consequently, this alternative approach to compute Manhattan distance would require
a total of 24l XOR gates and 7l AND gates. Thus, in comparison to this more direct alternative,
our design shown above in Figure 10 and Figure 11 requires a significantly smaller number of (15l + 1)
XOR and 4l AND gates.

6.2. Circuit for Computing the Nearest ATM

Following the computation of distance between the mobile client and L ATM locations, it is
necessary to find the nearest ATM, along with its distance. We use the approach of Kolesnikov et al. [21]
to find the minimum value and its index, given a list of values. Kolesnikov et al. [21] have designed a
MIN block to find the minimum of two input values – it uses the result of a comparator to multiplex
the minimum value, as well as the corresponding index as shown in Figure 12. Table 4 shows the size of
the circuit that computes the minimum of two values, along with its index. In our privacy preserving
application, each distance is an (l + 1) = 11 + 1 = 12-bit number, and each index that identifies
an ATM using its East and South coordinates is an Lind = 2l = 22-bit number.

𝑖𝐷1  𝑖𝐷2  𝐷1 𝐷2 

𝑀𝐼𝑁 

𝑚𝑖𝑛 𝐷1, 𝐷2  
𝑖𝑚𝑖𝑛 𝐷1,𝐷2  

𝑖𝐷3  𝑖𝐷4  𝐷3 𝐷4 

𝑀𝐼𝑁 

𝑚𝑖𝑛 𝐷3, 𝐷4  

𝑀𝐼𝑁 

𝑚𝑖𝑛 𝐷1, 𝐷2, 𝐷3, 𝐷4  

𝑖𝑚𝑖𝑛 𝐷3,𝐷4  

𝑖𝑚𝑖𝑛 𝐷1,𝐷2,𝐷3,𝐷4  

𝑖𝑢  𝑖𝑣 𝑢 

𝐶𝑀𝑃 

𝑣 

𝑀𝑈𝑋 𝑀𝑈𝑋 

𝑀𝐼𝑁 

𝑚𝑖𝑛 𝑢, 𝑣  𝑖𝑚𝑖𝑛 𝑢,𝑣  

Figure 12. Finding minimum value and index.
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Table 4. Circuit size of 1 Min block.

Block #XOR Gates #AND Gates

CMP 3(l + 1) l + 1

MUXmin 2(l + 1) l + 1

MUXindex 2Lind Lind

Total 5(l + 1) + 2Lind 2(l + 1) + Lind

Given L values and their indices, using (L− 1) MIN blocks organized as a tree, the minimum
value and the corresponding index are propagated from the leaves to the root. Figure 12 shows
the computation of the minimum of 4 input values, D1, D2, D3, D4, and the corresponding index,
imin(D1,D2,D3,D4)

, as an example.
Table 5 shows the number of XOR and AND gates in the complete circuit that computes the

nearest ATM location. It shows that in our privacy preserving application of finding the nearest Chase
or Wells Fargo ATM in Salt Lake City, the circuit has a total of 2596 XOR and 854 AND gates.

Table 5. Complete circuit size for nearest ATM. DIST(L) denotes distance to L locations. T(MIN)

denotes the tree of MIN blocks.

Block #XOR Gates #AND Gates

DIST(L) v1 = (15l + 1)L v3 = 4lL

T(MIN) v2 = [5(l + 1) + 2Lind]× (L− 1) v4 = [2(l + 1) + Lind]× (L− 1)

Total v1 + v2 v3 + v4

Application 2596 854

6.3. Server-Side and Client-Side Cost

Figure 13 shows the network traffic as a function of the number of servers (n) involved in the
creation of the garbled circuit that can compute the nearest ATM and the corresponding distance in
a privacy preserving manner. For example, with n = 4 servers, the servers exchange a total of 126 GB
of information to create the garbled circuit. This result demonstrates the feasibility of our approach for
performing real-world privacy-preserving computations.
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Figure 13. Server-side network traffic to construct the garbled circuit for determining the nearest ATM.

In order to facilitate the creation of the garbled circuit, and for the evaluation, the mobile
client sends: (i) the seed values to the n servers; and (ii) the garbled values representing the coordinates
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of the input location to the evaluator. Since the ATM locations are publicly known, they are assumed
to be hard-coded in the garbled circuit. i.e., the client is not required to transmit the ATM locations to
the servers.

Figure 14 shows the total number of bits generated by the client to delegate the privacy preserving
computation of finding the nearest ATM and the distance from the client. To preserve location privacy,
the client exchanges a very small amount of information with the servers—less than 60 Kbits, with n = 4
servers, for example. From Figures 13 and 14, we note that in comparison to the server-side cost, the
client-side cost grows much slowly with the number of servers.
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Figure 14. Client-side cost to determine the nearest ATM.

7. Related Work

Homomorphic encryption methods enable computations directly on the encrypted data,
without requiring private decryption keys. For example, the product of two ciphertext messages
produces a ciphertext corresponding to the product of the underlying plain text messages in the
RSA public key system [2]. Domingo-Ferrer et al. [23] present an additive and multiplicative
homomorphic scheme in which polynomials are used to represent ciphertext; however, multiplication
operations drastically increase the size of the cipher text in their scheme. Recently, fully homomorphic
encryption (FHE) schemes (e.g., [3–5]) have been proposed, which enable performing any arbitrary
computation on encrypted data. However, FHE schemes are currently not suitable for mobile cloud
computing applications due to extremely large cipher text size and computational requirements
beyond the capabilities of mobile devices today. Our work presents a far better alternative suitable for
mobile systems.

Yao’s garbled circuits have been mainly used in the context of secure two-party computation [6,7,24].
Lindell et al. [25] present an extensive survey of secure multiparty computation, along with numerous
potential applications—some examples of which are privacy preserving data mining, private set
intersection, electronic voting and electronic auction. Over the years, a number of secure two-party
and multiparty computation systems have been built (e.g., [26–28]). In secure multiparty computation
systems, multiple parties hold private inputs and receive the result of the computation. While multiple
parties participate in the creation of garbled circuits, only the client has the private inputs and obtains
the result of the computation, in garbled form however, in our secure cloud computing system. As
we have described in Section 4.2, in our work, we adapt secure multiparty computation protocols
[8,9,11,12], for building a secure and verifiable cloud computing for mobile systems.

Some existing works [29,30] use arithmetic circuits for performing homomorphic addition and
multiplication operations. However, Boolean circuits are sufficient for our purpose of creating
the garbled table entries, since it only involves simple binary operations such as XOR and
AND (Section 4.1.1). Additionally, Boolean circuits are more efficient than arithmetic circuits for
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homomorphic comparison of numbers, which we have used abundantly in our privacy preserving
search application (Section 6), since comparison using an arithmetic circuit involves a large number of
multiplications and communication rounds among the participants [29,30].

Branching programs offer an alternate method for representing Boolean functions. Ames et al. [31]
present a branching program formulation for secure health monitoring using homomorphic encryption.
Ames et al. [31] present simulation results on real ECG (which stands for electrocardiogram) data, and
note that their approach of using branching programs provides significant speedup in comparison to
methods using traditional circuits. It could be a very interesting avenue for future research to explore the
use of garbled circuits in conjunction with branching programs, especially for secure cloud computing
applications and mobile big data systems.

In the Twin clouds [32] secure cloud computing architecture, the client uses a private cloud
for creating garbled circuits and a public commodity cloud for evaluating them. Our solution,
however, utilizes multiple public cloud servers for creating as well as evaluating the garbled circuits.
Stated alternatively, our solution obviates the requirement of private cloud servers. Furthermore, in
twin clouds, the privacy of the client data is lost if the evaluator colludes with the sole/only server
that constructs the garbled circuit. In our work, on the other hand, the use of multiple servers for
construction of garbled circuits offers greater resistance to collusion (Section 2).

While FHE schemes remain impractical currently, they, however, offer interesting constructions,
such as reusable garbled circuits [33] and verifiable computing capabilities [34]. In our proposed
system, we enable the client to efficiently verify whether a cloud server has actually evaluated the
garbled circuit, without depending on any FHE scheme.

Naehrig et al. [35] present an implementation of a “somewhat” homomorphic encryption scheme,
which is capable of computing simple statistics such as mean, standard deviation and regression,
which require only addition operations, and a very few multiplication operations. Another recent work
(P4P [36]) provides privacy preservation for computations involving summations only. In comparison,
our scheme, which is based on Yao’s garbled circuits, is not limited to computation of simple statistics
or summations only; i.e., our scheme is more generic, and can perform any arbitrary computation.

Carter et al. [37] have proposed a secure two party computation system, which however has
three participants: Alice, Bob and a Proxy. In their work, Alice is a mobile device
that delegates the task of evaluating the garbled circuits to the Proxy, which is a cloud
server, and Bob is a webserver that creates garbled circuits. We note that our computation
and adversary models are very different from that of Carter et al.’s work [37]. First,
in their work, both Alice and Bob provide private inputs for the secure two party
computation that they wish to perform jointly; however, in our work, only one party, i.e.,
the mobile client, provides inputs and obtains the result of the computation in garbled form. Second,
Carter et al.’s [37] scheme requires that neither Alice nor Bob can collude with the Proxy; in a sharp
contrast, even if the evaluating server colludes with all but one of the cloud servers that participated in
the creation of the garbled circuit, our method can preserve the privacy of the client’s data.

8. Concluding Remarks

We proposed a novel secure and verifiable cloud computing for mobile big data systems using
multiple servers. Our method is a unique combination of the secure multiparty computation protocol
of Goldreich et al. [8,9], the garbled circuit design of Beaver et al. [11,12], and the cryptographically
secure pseudorandom number generation method of Blum et al. [13,14]. Even if the evaluator colludes
with all but one of the servers that participated in the creation of the garbled circuit, our method can
preserve the privacy of the mobile client’s inputs and the results of the computation. Furthermore,
our system can detect a cheating evaluator that returns arbitrary output without performing any
computation at all. We presented the server-side and client-side complexity analysis of our system.
Using real-world data, we evaluated our system for a privacy preserving search application that locates
the nearest point of interest from the mobile client. We also evaluated the time taken to construct



Future Internet 2016, 8, 17 23 of 25

and evaluate a garbled circuit for varying number of servers to demonstrate the feasibility of our
proposed approach.

To summarize, our method shows how publicly available location information from different
sources (e.g., from Wells Fargo, Chase) may be used in conjunction with private location information
of a mobile device in a privacy preserving computation.

Our software implementation is available through our computing in the cloud website [38].
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