
future internet

Article

Modeling and Security in Cloud Ecosystems

Eduardo B. Fernandez 1,*, Nobukazu Yoshioka 2, Hironori Washizaki 3 and Madiha H. Syed 1

1 Department of Computer and Electrical Engineering and Computer Science, Florida Atlantic University,
Boca Raton, FL 33431, USA; msyed2014@fau.edu

2 Center for Global Research in Advanced Software Science and Engineering (GRACE),
National Institute of Informatics, Tokyo 101-8430, Japan; nobukazu@nii.ac.jp

3 Department of Computer Science and Engineering, Waseda University, Tokyo 169-8555, Japan;
washizaki@waseda.jp

* Correspondence: fernande@fau.edu or ed@cse.fau.edu; Tel.: +1-561-297-3466

Academic Editors: Eduardo Fernández-Medina Patón, David G. Rosado and Dino Giuli
Received: 18 January 2016; Accepted: 8 April 2016; Published: 20 April 2016

Abstract: Clouds do not work in isolation but interact with other clouds and with a variety of systems
either developed by the same provider or by external entities with the purpose to interact with
them; forming then an ecosystem. A software ecosystem is a collection of software systems that
have been developed to coexist and evolve together. The stakeholders of such a system need a
variety of models to give them a perspective of the possibilities of the system, to evaluate specific
quality attributes, and to extend the system. A powerful representation when building or using
software ecosystems is the use of architectural models, which describe the structural aspects of such
a system. These models have value for security and compliance, are useful to build new systems,
can be used to define service contracts, find where quality factors can be monitored, and to plan
further expansion. We have described a cloud ecosystem in the form of a pattern diagram where
its components are patterns and reference architectures. A pattern is an encapsulated solution to a
recurrent problem. We have recently expanded these models to cover fog systems and containers.
Fog Computing is a highly-virtualized platform that provides compute, storage, and networking
services between end devices and Cloud Computing Data Centers; a Software Container provides
an execution environment for applications sharing a host operating system, binaries, and libraries
with other containers. We intend to use this architecture to answer a variety of questions about the
security of this system as well as a reference to design interacting combinations of heterogeneous
components. We defined a metamodel to relate security concepts which is being expanded.

Keywords: software ecosystems; architecture patterns; cloud computing; reference architectures;
security patterns; systems security

1. Introduction

Due to their convenience and relative low cost, cloud computing systems have become very
successful in attracting small and medium businesses and academic institutions. Their emergence
has brought a variety of products or services that complement or extend their basic services. Some
clouds are also connected to other (maybe more specialized) clouds and may support cyber-physical
systems, as well as a variety of user devices or intelligent machines. We have now what is
called a software ecosystem. Ecosystems were initially defined from a biological perspective:
systems formed by the interaction of a community of organisms with their physical environment
(http://wordnetweb.princeton.edu/perl/webwn). The term was later applied to software systems:
“a collection of software systems, which are developed and co-evolve in the same environment” [1].
For software product lines: “An ecosystem is the expansion of a software product line architecture to
include systems outside the product which interact with the product” [2]. Software ecosystems are

Future Internet 2016, 8, 13; doi:10.3390/fi8020013 www.mdpi.com/journal/futureinternet

http://www.mdpi.com/journal/futureinternet
http://www.mdpi.com
http://www.mdpi.com/journal/futureinternet


Future Internet 2016, 8, 13 2 of 15

advantageous to suppliers who can offer a larger variety of products or services, and to consumers
who can find more products to help them reach their business goals. Companies such as Microsoft
and Apple have been building ecosystems around their products for many years and more recently
telecommunications companies such as Cisco [3], Ericsson [4], and others, have been building extensive
software ecosystems.

Software ecosystems also include economic and socio-technical aspects [5]; but those aspects are
not considered here. In cloud ecosystems their complementary systems may not be produced by the
same vendor and may use different protocols, although able to interact with other products in the
ecosystem. These complementary systems are a growing set, where new types of products or services
constantly appear and provide some useful functions for some types of users. Some of those products
may be housed in real devices but they also can be virtualized and executed in any system, including
standard processors or cyber-physical systems.

Several authors, e.g., [5–7] have indicated that the lack of reference architectures or other abstract
models inhibit the wider adoption of software ecosystems and deny the possibility of exploiting their
full potential. This need motivates our work: Architectural models based on patterns are a powerful
representation when building or using cloud ecosystems and similar complex systems [8]. A pattern
is an encapsulated solution to a software problem. We started by describing models for clouds [9]
and then expanded them to describe cloud ecosystems [10]. After a careful search we have not found
similar models (see Section 4). We have expanded our initial ecosystem to cover fog systems [11]
and containers [12]. Most of the components of this system have already been modeled as patterns
by ourselves but some are missing, we identify here the new patterns we need. We present here a
systematic method to build ecosystem models for clouds, using patterns and reference architectures,
which is our main contribution. We discuss the value of these models with respect to several objectives,
which are useful for understanding and analyzing significant aspects of the ecosystem. We do not
claim completeness, an ecosystem is open-ended and our model will continue growing when we
identify more functions and their patterns.

As indicated, an important value of our model is for analyzing security aspects of an ecosystem
and we intend to answer several security questions with it. Our long term objective is to develop a
holistic security view across all the elements of the ecosystem and we are starting with security in
a fog controlling a variety of devices. In particular, we intend to define policies on what data from
the cloud can be sent to the devices or what data from the devices can be sent to the cloud. Devices
may contain sensitive data whose disclosure would affect the privacy of users. The fog platform, itself,
contains data and the access of that data should conform to cloud policies, as well as device policies;
that is, security constraints in the cloud and devices should propagate across up and down levels.
Without a unified view it is very difficult to integrate systems which may have their own security
policies. As part of this emphasis we show a security metamodel that is being extended to include
more concepts.

This work is organized as: Section 2 defines some necessary concepts; Section 3 presents related
work on ecosystems and fog security, while Section 4 describes the cloud ecosystem as a pattern
diagram, followed by a description of three of its patterns to illustrate their contents. Section 5
considers the use of security metamodels to complement our architectural models when dealing with
security aspects. Validation of the models is discussed in Section 6, which also emphasizes possible
applications for them Section 7 considers some security issues. We end with conclusions in Section 8.

2. Background

A pattern is a solution to a recurring problem in a specific context. Software patterns are
categorized as analysis [13], design [14], architecture [15], and security patterns [8]. Abstract patterns
describe a basic semantic aspect while Abstract Security patterns (ASPs), realize one or more security
policies able to control (stop or mitigate) a threat or comply with a security-related regulation or
institutional policy [16]. Patterns are described using a template composed of a set of sections.



Future Internet 2016, 8, 13 3 of 15

A problem section describes a problem and the forces that constrain and define guidelines for its
solution, e.g., “overhead must be reasonable”. Pattern solutions are usually described using modeling
languages such as the Unified Modeling Language (UML), maybe combined with formal languages
such as the Object Constraint Language (OCL). UML diagrams may include class, sequence, state,
and activity diagrams. A set of consequences indicate how the pattern solved the specific problem
and what are the advantages and disadvantages of using it; i.e., how well the forces were satisfied by
the solution. An implementation section provides hints on how to use the pattern in an application.
A section on “known uses” lists real systems where this solution has been used previously, i.e., a pattern
is an abstraction of a good practice. A section on related patterns indicates patterns that complement
or provide alternative solutions to the one in this pattern. A pattern embodies the knowledge and
experience of software developers and can be reused in new applications; carefully-designed patterns
implicitly apply good design principles. Patterns are also good for communication between designers
and to evaluate and reengineer existing systems. While initially developed for software, patterns can
describe hardware, physical entities, and combinations of these. Pattern solutions are suggestions, not
plug-ins or software components. A compound pattern is composed of two or more simpler patterns.

A Reference Architecture (RA) is an abstract software architecture, based on one or more domains,
with no implementation aspects [12,17,18]. An RA should define the fundamental concepts of a system
expressed as ASPs and the interactions among these units. An RA should be reusable, extendable, and
configurable; that is, it is a kind of composite pattern for whole architectures and it can be instantiated
into a concrete software architecture by adding platform aspects [17]. In addition to class and sequence
diagrams, an RA may include a set of use cases (UC), and a set of Roles (R) corresponding to its
stakeholders (actors). Types of RAs include those for the technology domain (describe platforms
and other design artifacts [18]), application domain (describe different types of applications), and
problem domain (similar to domain models, but oriented to software). After adding security patterns
to neutralize identified threats in an RA we have a Security Reference Architecture (SRA), and we have
just produced a SRA for clouds [9]. We can also add compliance patterns to produce a Compliance
Reference Architecture [19].

Policies are high-level guidelines defining how an institution conducts its activities in its business,
professional, economic, social, and legal environment. The institution security policies include laws,
rules, and practices that regulate how an institution uses, manages and protects resources. Regulations
are local or government policies that must be reflected in the implemented system. Industry regulations
are called standards. Policies, regulations, and standards can be described using UML models.

We describe the relationships between patterns using a pattern diagram [15]. In a pattern diagram
rounded rectangles represent patterns and arrows indicate the contribution of a pattern to another,
e.g., a Container provides virtual environments to PaaS in Figure 1.

Future Internet 2016, 8, 13 4 of 15 

 

 

Figure 1. A cloud ecosystem (showing its latest additions). 

3. Related Work 

As indicated earlier, the word ecosystem has a variety of interpretations. [7] discusses an Internet 

of Things (IoT) ecosystem from a business perspective. A business ecosystem is “the network of 

buyers, suppliers and makers of related products or services plus the socio-economic environment, 

including the institutional and regulatory framework.” Our definition is more restricted focusing on 

the products themselves but also considering policies defining institution or regulations, as well as 

industry standards that apply to the products. [7] indicates that ecosystems usually have a hub, or 

central product or service; we have a similar concept in our ecosystem. A specialized type of 

ecosystem is the learning ecosystem [20–22]. This type of ecosystem is quite different from ours in that 

it is a set of homogeneous units with a predefined purpose and a well-defined architecture; ours are 

heterogeneous systems with an evolving architecture. These ecosystems do not use our definition of 

pattern and do not use UML models to describe them. The only paper with more abstract models of 

ecosystems is [6], which presents a model oriented to the business (functional) aspects of ecosystems; 

in contrast our models emphasize the structural aspects of the interconnection of products. 

While there is a good amount of work on ecosystems from the point of view of software 

architecture, e.g., [2], we have found only a few examples of cloud ecosystems. The US National 

Institute of Standards and Technology (NIST) described an ecosystem for its Cloud Reference 

Architecture [23] and, later, an ecosystem for its Security Reference Architecture [24]. However, they 

included only a Broker to let users access multiple clouds, an Auditor to check compliance with 

regulations, and a Communications Provider; which is a rather meager set of external functions. They 

describe their models with words and block diagrams, which we consider not precise enough to 

guide developers and researchers. The Open Group has a web site with their cloud model [25]. This 

includes a UML model for the main blocks and a table describing the components involved. There 

are no UML models for the components and they consider the same main components of the NIST 

model. A blog presents some ideas about models for cloud ecosystems [26]; however, the models are 

loose and shown as block diagrams. The Open Services Gateway initiative (OSGi) also has some 

general ideas about ecosystems [27] but nothing specific about clouds. Ecosystems can also be seen 

as systems of systems and work on that topic may apply to them. Work on software product line 

architectures is also relevant [28], as well as work on cloud security requirements [29], but these 

works do not attempt to model a complete ecosystem. 

Given the novelty of fog computing there is little work on its security aspects. Three papers 

survey general security aspects: 

Figure 1. A cloud ecosystem (showing its latest additions).



Future Internet 2016, 8, 13 4 of 15

3. Related Work

As indicated earlier, the word ecosystem has a variety of interpretations. [7] discusses an Internet
of Things (IoT) ecosystem from a business perspective. A business ecosystem is “the network of
buyers, suppliers and makers of related products or services plus the socio-economic environment,
including the institutional and regulatory framework.” Our definition is more restricted focusing
on the products themselves but also considering policies defining institution or regulations, as well
as industry standards that apply to the products. [7] indicates that ecosystems usually have a hub,
or central product or service; we have a similar concept in our ecosystem. A specialized type of
ecosystem is the learning ecosystem [20–22]. This type of ecosystem is quite different from ours in that
it is a set of homogeneous units with a predefined purpose and a well-defined architecture; ours are
heterogeneous systems with an evolving architecture. These ecosystems do not use our definition of
pattern and do not use UML models to describe them. The only paper with more abstract models of
ecosystems is [6], which presents a model oriented to the business (functional) aspects of ecosystems;
in contrast our models emphasize the structural aspects of the interconnection of products.

While there is a good amount of work on ecosystems from the point of view of software
architecture, e.g., [2], we have found only a few examples of cloud ecosystems. The US National
Institute of Standards and Technology (NIST) described an ecosystem for its Cloud Reference
Architecture [23] and, later, an ecosystem for its Security Reference Architecture [24]. However,
they included only a Broker to let users access multiple clouds, an Auditor to check compliance with
regulations, and a Communications Provider; which is a rather meager set of external functions.
They describe their models with words and block diagrams, which we consider not precise enough
to guide developers and researchers. The Open Group has a web site with their cloud model [25].
This includes a UML model for the main blocks and a table describing the components involved. There
are no UML models for the components and they consider the same main components of the NIST
model. A blog presents some ideas about models for cloud ecosystems [26]; however, the models
are loose and shown as block diagrams. The Open Services Gateway initiative (OSGi) also has some
general ideas about ecosystems [27] but nothing specific about clouds. Ecosystems can also be seen
as systems of systems and work on that topic may apply to them. Work on software product line
architectures is also relevant [28], as well as work on cloud security requirements [29], but these works
do not attempt to model a complete ecosystem.

Given the novelty of fog computing there is little work on its security aspects. Three papers
survey general security aspects:

Ref. [30] evaluates business, professional, and government structures and practices for improving
IoT security, proposing some structures and rules. The paper focuses mainly in economic and political
aspects and does not provide any technical details.

Ref. [31] surveys fog applications and general security issues. They analyze in detail a
man-in-the-middle attack, where gateways used as fog devices may be replaced by fake ones.

Ref. [32] considers industrial IoT systems, which are cyber-physical systems where attacks can
have very serious effects. The paper surveys some of these attacks and provides a few solutions.

The only paper that discusses fog computing security models and architectures is [33]. The
paper proposes a policy-driven security management approach, considering the implementation of a
policy enforcement system (Reference Monitor [8]) that can enforce eXtensible Access Control Markup
Language (XACML) rules; however, they do not consider rights inheritance or propagation of rights in
the ecosystem. We see our work as expanding this work across the ecosystem.

Some works consider the use of cloud computing to support cyberphysical systems (CPSs) [34].
This work is more general than fog computing but some of their ideas are clearly related to this
architecture. Along these lines, our work on modeling and finding generic threats for CPSs is relevant
and we will apply it to fog computing [35]. It is clear that the security of the combination cloud/Internet
of Things is an area that requires more work and where our models appear promising.



Future Internet 2016, 8, 13 5 of 15

4. A Model for a Cloud Ecosystem

We show first the complete ecosystem in the form of a pattern diagram that relates the
contributions of the patterns with respect to each other. After building this pattern diagram we
need to build detailed models for the components. We show three examples of the patterns in the
ecosystem and a part of the SRA. None is shown completely, the idea is to show their main functions,
the complete descriptions can be found in their respective references. These descriptions follow the
standard pattern template of [15]. Missing parts include sections on Problem, Forces, Consequences,
Implementation, Known uses, and Related Patterns. The idea here is that we can build patterns for
every participant in the ecosystem, which provides a unified view of the complete system.

4.1. Pattern Diagram of the Ecosystem

Figure 1 shows our current cloud ecosystem. The Cloud Reference Architecture (Cloud RA) is the
main pattern that defines the ecosystem (the hub) [9]. As indicated, this can be converted into a Cloud
Security RA (Cloud SRA) by adding security patterns to control its identified threats. The Cloud SRA
includes, among others, patterns for Authentication, Authorization, and Logging [8]. We just defined a
cloud HIPAA-compliant RA [19]. Threats can be enumerated in several ways and we use an approach
based on activities in an activity diagram describing its use cases [8]. Cloud Web Application Firewalls
and Security Group Firewalls provide filtering functions that can be provided as services through
NFVs (see below) or on their own.

The service layers of a cloud are themselves compound patterns and we have written patterns for
IaaS, PaaS, and SaaS [36]. They describe the services sold by the cloud provider. Telecommunication
companies have discovered that they can provide services to their customers by building their
networks as services rented from some cloud provider [4]. The provision of network functions using
virtualization, Network Functions Virtualization (NFV), is a network architecture where functions,
such as load balancers, firewalls, Intrusion Detection Systems (IDSs), and accelerators, are built in
software and offered as services. Each Virtualized Network Function (VNF) may use one or more
virtual machines or containers running different software. Typically, NFVs come with some security
mechanisms but which ones depend on the vendor. To make the model more flexible we have a pattern
for the NFV without security and a derived pattern for the Secure NFV [37].

Cloud Access Security Brokers (CASBs) are security enforcement points between consumers and
service providers that apply security controls to access cloud services, usually SaaS services [38]. They
may also control access to internal company resources. Security controls may include authentication
(credentials and passwords), authorization policy enforcement, intrusion prevention, antimalware
filters, security logging/auditing, and encryption. There is no pattern yet for the Virtualization Layer,
although we defined a pattern for a Virtual Machine Operating System [8]. An important lower-level
pattern for this function is an OpenStack pattern, part of a hierarchy of IaaS patterns [39].

As indicated, analyzing threats and neutralizing them with patterns we arrived to secure units of
the SRA. Figure 2 shows a class model for the secure Virtual Machine (VM) image repository system.
The Virtual Machine Image Repository holds a set of Virtual Machine Images (VMIs) that can be
used to instantiate virtual machines. The Reference Monitor uses a filter that scans all VM images
before being published or retrieved. The Authenticator is an instance of the Authenticator Pattern
that allows the Reference Monitor to authenticate the users who can publish or retrieve images if the
Authorizer authorizes them. The Reference Monitor pattern enforces the authorization rights defined
in the Authorizer. The Security Logger/Auditor keeps track of accesses to the repository. Our latest
additions are the Container and the Fog Reference Architecture, described below.



Future Internet 2016, 8, 13 6 of 15

Future Internet 2016, 8, 13 6 of 15 

 

filters, security logging/auditing, and encryption. There is no pattern yet for the Virtualization Layer, 

although we defined a pattern for a Virtual Machine Operating System [8]. An important lower-level 

pattern for this function is an OpenStack pattern, part of a hierarchy of IaaS patterns [39]. 

As indicated, analyzing threats and neutralizing them with patterns we arrived to secure units 

of the SRA. Figure 2 shows a class model for the secure Virtual Machine (VM) image repository 

system. The Virtual Machine Image Repository holds a set of Virtual Machine Images (VMIs) that 

can be used to instantiate virtual machines. The Reference Monitor uses a filter that scans all VM 

images before being published or retrieved. The Authenticator is an instance of the Authenticator 

Pattern that allows the Reference Monitor to authenticate the users who can publish or retrieve 

images if the Authorizer authorizes them. The Reference Monitor pattern enforces the authorization 

rights defined in the Authorizer. The Security Logger/Auditor keeps track of accesses to the repository. 

Our latest additions are the Container and the Fog Reference Architecture, described below. 

 

Figure 2. Secure Virtual Machine Image (VMI) Repository System. 

4.2. Some of the Patterns in the Ecosystem 

4.2.1. Cloud Access Security Broker 

Intent 

Cloud Access Security Brokers (CASBs) are security enforcement points between consumers and 

service providers that apply security controls to the consumer’s users to access cloud services, usually 

SaaS services. They may also control access to internal company resources. Security controls may 

include authentication (credentials and passwords), authorization policy enforcement, intrusion 

prevention, antimalware filters, security logging/auditing, and encryption. 

Solution 

Using an intermediary system, called a CASB, which provides security controls (authentication 

and authorization), can monitor the use of services by users, and can perform malware detection 

   

Figure 2. Secure Virtual Machine Image (VMI) Repository System.

4.2. Some of the Patterns in the Ecosystem

4.2.1. Cloud Access Security Broker

Intent

Cloud Access Security Brokers (CASBs) are security enforcement points between consumers
and service providers that apply security controls to the consumer’s users to access cloud services,
usually SaaS services. They may also control access to internal company resources. Security controls
may include authentication (credentials and passwords), authorization policy enforcement, intrusion
prevention, antimalware filters, security logging/auditing, and encryption.

Solution

Using an intermediary system, called a CASB, which provides security controls (authentication
and authorization), can monitor the use of services by users, and can perform malware detection when
users access cloud applications. Additionally, other services such as performance, identity, and search
can be provided. Figure 3 shows the class diagram of the CASB. Consumers (users) request services
through the Broker which, in turn, gets them from one of the Service Providers. The Broker includes
a set of security mechanisms such as a SecurityLogger/Auditor, an Authorizer, an Authenticator,
an Encryptor, and maybe others. Consumers and CASBs can be mutually authenticated. The
CASB enforces rights for the consumers when they try to access an application. Internal Resources
(applications) can also be controlled by the CASB. An Identity Federation provides identifiers for
consumers and SPs to support authentication. Figure 4 shows the sequence diagram for the use
case “access an application service”: a consumer requests a service to the CASB, which invokes an
authentication protocol, when authenticated the consumer can access the service if authorized for it;
this interaction is logged.



Future Internet 2016, 8, 13 7 of 15

Future Internet 2016, 8, 13 7 of 15 

 

when users access cloud applications. Additionally, other services such as performance, identity, and 

search can be provided. Figure 3 shows the class diagram of the CASB. Consumers (users) request 

services through the Broker which, in turn, gets them from one of the Service Providers. The Broker 

includes a set of security mechanisms such as a SecurityLogger/Auditor, an Authorizer, an 

Authenticator, an Encryptor, and maybe others. Consumers and CASBs can be mutually 

authenticated. The CASB enforces rights for the consumers when they try to access an application. 

Internal Resources (applications) can also be controlled by the CASB. An Identity Federation provides 

identifiers for consumers and SPs to support authentication. Figure 4 shows the sequence diagram 

for the use case “access an application service”: a consumer requests a service to the CASB, which 

invokes an authentication protocol, when authenticated the consumer can access the service if 

authorized for it; this interaction is logged. 

The CASB enforces institution policies in any access as well as protecting against malware. In 

other words, the CASB is an extended Reference Monitor [8]. 

 

Figure 3. Class diagram of the CASB pattern. 

 

Figure 4. Sequence diagram for the use case “Access an application service”. 

4.2.2. The Software Container 

Figure 3. Class diagram of the CASB pattern.

Future Internet 2016, 8, 13 7 of 15 

 

when users access cloud applications. Additionally, other services such as performance, identity, and 

search can be provided. Figure 3 shows the class diagram of the CASB. Consumers (users) request 

services through the Broker which, in turn, gets them from one of the Service Providers. The Broker 

includes a set of security mechanisms such as a SecurityLogger/Auditor, an Authorizer, an 

Authenticator, an Encryptor, and maybe others. Consumers and CASBs can be mutually 

authenticated. The CASB enforces rights for the consumers when they try to access an application. 

Internal Resources (applications) can also be controlled by the CASB. An Identity Federation provides 

identifiers for consumers and SPs to support authentication. Figure 4 shows the sequence diagram 

for the use case “access an application service”: a consumer requests a service to the CASB, which 

invokes an authentication protocol, when authenticated the consumer can access the service if 

authorized for it; this interaction is logged. 

The CASB enforces institution policies in any access as well as protecting against malware. In 

other words, the CASB is an extended Reference Monitor [8]. 

 

Figure 3. Class diagram of the CASB pattern. 

 

Figure 4. Sequence diagram for the use case “Access an application service”. 

4.2.2. The Software Container 

Figure 4. Sequence diagram for the use case “Access an application service”.

The CASB enforces institution policies in any access as well as protecting against malware. In other
words, the CASB is an extended Reference Monitor [8].

4.2.2. The Software Container

Intent

A Software Container provides an execution environment for applications sharing a host operating
system, binaries, and libraries with other containers. Containers are lightweight, portable, extensible,
reliable, and secure.

Solution

Provide a runtime environment that can support the isolated execution of applications on a shared
host operating system (OS); this is a Software Container (Figure 5). They may also share binaries



Future Internet 2016, 8, 13 8 of 15

and libraries with other containers. Containers provide isolated execution and extensible services to
the application.

Future Internet 2016, 8, 13 8 of 15 

 

Intent 

A Software Container provides an execution environment for applications sharing a host 

operating system, binaries, and libraries with other containers. Containers are lightweight, portable, 

extensible, reliable, and secure. 

Solution 

Provide a runtime environment that can support the isolated execution of applications on a 

shared host operating system (OS); this is a Software Container (Figure 5). They may also share 

binaries and libraries with other containers. Containers provide isolated execution and extensible 

services to the application. 

Figure 6 shows the class diagram for this pattern. A Container controls a set of Applications 

sharing a host OS that provides a set of Resources. An Interceptor mediates the services provided to 

the application by the container. Applications hosted in containers can be accessed remotely through 

Proxies, where the Container acts as a broker. The client interacts with the Application Proxy, which 

represents the application. The application interacts with the Client Proxy, which represents the 

client. The Container provides a set of Services to the applications. Container Images are stored in 

image repositories. 

 

Figure 5. Two containers sharing one OS. 

 

Figure 6. Class diagram of the container pattern. 

4.2.3. Fog Computing 

Figure 5. Two containers sharing one OS.

Figure 6 shows the class diagram for this pattern. A Container controls a set of Applications
sharing a host OS that provides a set of Resources. An Interceptor mediates the services provided to
the application by the container. Applications hosted in containers can be accessed remotely through
Proxies, where the Container acts as a broker. The client interacts with the Application Proxy, which
represents the application. The application interacts with the Client Proxy, which represents the
client. The Container provides a set of Services to the applications. Container Images are stored in
image repositories.

Future Internet 2016, 8, 13 8 of 15 

 

Intent 

A Software Container provides an execution environment for applications sharing a host 

operating system, binaries, and libraries with other containers. Containers are lightweight, portable, 

extensible, reliable, and secure. 

Solution 

Provide a runtime environment that can support the isolated execution of applications on a 

shared host operating system (OS); this is a Software Container (Figure 5). They may also share 

binaries and libraries with other containers. Containers provide isolated execution and extensible 

services to the application. 

Figure 6 shows the class diagram for this pattern. A Container controls a set of Applications 

sharing a host OS that provides a set of Resources. An Interceptor mediates the services provided to 

the application by the container. Applications hosted in containers can be accessed remotely through 

Proxies, where the Container acts as a broker. The client interacts with the Application Proxy, which 

represents the application. The application interacts with the Client Proxy, which represents the 

client. The Container provides a set of Services to the applications. Container Images are stored in 

image repositories. 

 

Figure 5. Two containers sharing one OS. 

 

Figure 6. Class diagram of the container pattern. 

4.2.3. Fog Computing 

Figure 6. Class diagram of the container pattern.

4.2.3. Fog Computing

Our current work also includes modeling fog computing. Fog Computing is a highly virtualized
platform that provides compute, storage, and networking services between end devices and cloud
computing data centers [40–42]. Fog computing systems are key systems for the Internet of Things,
they can control for example smart grids or traffic lights [31,43]. We have completed a pattern for fog
computing [11]. Figure 7 shows its class diagram. The Fog is a collection of several distributed tiny



Future Internet 2016, 8, 13 9 of 15

clouds called Fog Nodes. They can be resource-rich servers, routers, access points, mobile devices, etc.
A Fog Node has resources which include hardware (compute, networking, and storage) capabilities.
The nodes provide real-time analytics using an Analytics Engine. Applications can be hosted in the
fog nodes using virtualization, provided by a Virtual Machine Monitor (VMM), which can create
virtual machines (VMs), and/or Containers. A Distributed Database stores both application data
and necessary metadata for service orchestration; it also has information about the hardware and
software capabilities of nodes, information about the status of fog nodes and services, policies for
security, filtering, and configuration. Fog computing uses policy-based service orchestration. A Policy
Manager is triggered by service requests and a Decision Maker Engine (Reference Monitor) gathers
relevant policies and metadata to decide about requests. Data is transferred between fog nodes,
the decision maker, and the various components of the Fog. The Fog also provides Authentication
and Authorization services. In addition, services like filtering, aggregation of data, logging, etc.,
can be provided.

Future Internet 2016, 8, 13 9 of 15 

 

Our current work also includes modeling fog computing. Fog Computing is a highly virtualized 

platform that provides compute, storage, and networking services between end devices and cloud 

computing data centers [40–42]. Fog computing systems are key systems for the Internet of Things, 

they can control for example smart grids or traffic lights [31,43]. We have completed a pattern for fog 

computing [11]. Figure 7 shows its class diagram. The Fog is a collection of several distributed tiny 

clouds called Fog Nodes. They can be resource-rich servers, routers, access points, mobile devices, 

etc. A Fog Node has resources which include hardware (compute, networking, and storage) 

capabilities. The nodes provide real-time analytics using an Analytics Engine. Applications can be 

hosted in the fog nodes using virtualization, provided by a Virtual Machine Monitor (VMM), which 

can create virtual machines (VMs), and/or Containers. A Distributed Database stores both application 

data and necessary metadata for service orchestration; it also has information about the hardware 

and software capabilities of nodes, information about the status of fog nodes and services, policies 

for security, filtering, and configuration. Fog computing uses policy-based service orchestration. A 

Policy Manager is triggered by service requests and a Decision Maker Engine (Reference Monitor) 

gathers relevant policies and metadata to decide about requests. Data is transferred between fog 

nodes, the decision maker, and the various components of the Fog. The Fog also provides 

Authentication and Authorization services. In addition, services like filtering, aggregation of data, 

logging, etc., can be provided. 

 

Figure 7. Class diagram of the Fog Computing pattern. 

5. Metamodels for Security Concepts 

The metamodel of Figure 8 relates the security concepts we are using in the ecosystem. Threats 

take advantage of Vulnerabilities that can exist in any cloud service level. Threats come from analysis 

of Use Cases or from published Threat Lists. Each use case has a set of Roles that describe the 

participants in the use case. We can stop a threat by removing the initial vulnerability or by 

controlling its propagation (by removing other vulnerabilities) through the use of a Security Pattern. 

The security pattern to use can be selected from the countermeasures defined in the Misuse Pattern 

Figure 7. Class diagram of the Fog Computing pattern.

5. Metamodels for Security Concepts

The metamodel of Figure 8 relates the security concepts we are using in the ecosystem. Threats take
advantage of Vulnerabilities that can exist in any cloud service level. Threats come from analysis of Use
Cases or from published Threat Lists. Each use case has a set of Roles that describe the participants in
the use case. We can stop a threat by removing the initial vulnerability or by controlling its propagation
(by removing other vulnerabilities) through the use of a Security Pattern. The security pattern to use can
be selected from the countermeasures defined in the Misuse Pattern which describes the threat. Threats
that lead to misuses are the goals of the attacker and are performed through low-level threats in the
Threat List or directly through a use case operation. Use cases include the roles that participate in the



Future Internet 2016, 8, 13 10 of 15

use case. Some threats can happen in all service levels. For example, a buffer overflow is a language
problem and allows escalation of privilege by the attacker operating at any level. Other threats are
specific to the level; for example, a financial application can be attacked by taking advantage of a lack
of proper authentication in remote access to accounts. If the threat takes advantage of a flaw in an
application, it may compromise the security of that application. If the threat affects the IaaS level,
it affects all the cloud computations, and if it happens at the PaaS level it can affect all the applications
developed or deployed in the cloud.

Future Internet 2016, 8, 13 10 of 15 

 

which describes the threat. Threats that lead to misuses are the goals of the attacker and are 

performed through low-level threats in the Threat List or directly through a use case operation. Use 

cases include the roles that participate in the use case. Some threats can happen in all service levels. 

For example, a buffer overflow is a language problem and allows escalation of privilege by the 

attacker operating at any level. Other threats are specific to the level; for example, a financial 

application can be attacked by taking advantage of a lack of proper authentication in remote access 

to accounts. If the threat takes advantage of a flaw in an application, it may compromise the security 

of that application. If the threat affects the IaaS level, it affects all the cloud computations, and if it 

happens at the PaaS level it can affect all the applications developed or deployed in the cloud. 

We have started to expand this metamodel by integrating and extending existing cloud security 

metamodels together with newly added concepts. Figure 9 shows how the metamodel would be used 

in cloud services development and maintenance. Our metamodel provides a basis for describing and 

accumulating security and privacy-related knowledge over different layers so that it becomes much 

easier to select and combine the right patterns and related knowledge for addressing these issues in 

cloud services. Moreover, designers could refer to the metamodel for designing high-level 

architectures of cloud service systems in efficient and effective manner. To confirm the usefulness 

and feasibility of the metamodel, we conducted a case study that describes a cloud security pattern 

based on the metamodel [44]. 

 

Figure 8. Metamodel for security concepts. 

 

Figure 9. Metamodel and cloud services. 

6. Validation of the Models 

    

Figure 8. Metamodel for security concepts.

We have started to expand this metamodel by integrating and extending existing cloud security
metamodels together with newly added concepts. Figure 9 shows how the metamodel would be used
in cloud services development and maintenance. Our metamodel provides a basis for describing
and accumulating security and privacy-related knowledge over different layers so that it becomes
much easier to select and combine the right patterns and related knowledge for addressing these
issues in cloud services. Moreover, designers could refer to the metamodel for designing high-level
architectures of cloud service systems in efficient and effective manner. To confirm the usefulness and
feasibility of the metamodel, we conducted a case study that describes a cloud security pattern based
on the metamodel [44].

Future Internet 2016, 8, 13 10 of 15 

 

which describes the threat. Threats that lead to misuses are the goals of the attacker and are 

performed through low-level threats in the Threat List or directly through a use case operation. Use 

cases include the roles that participate in the use case. Some threats can happen in all service levels. 

For example, a buffer overflow is a language problem and allows escalation of privilege by the 

attacker operating at any level. Other threats are specific to the level; for example, a financial 

application can be attacked by taking advantage of a lack of proper authentication in remote access 

to accounts. If the threat takes advantage of a flaw in an application, it may compromise the security 

of that application. If the threat affects the IaaS level, it affects all the cloud computations, and if it 

happens at the PaaS level it can affect all the applications developed or deployed in the cloud. 

We have started to expand this metamodel by integrating and extending existing cloud security 

metamodels together with newly added concepts. Figure 9 shows how the metamodel would be used 

in cloud services development and maintenance. Our metamodel provides a basis for describing and 

accumulating security and privacy-related knowledge over different layers so that it becomes much 

easier to select and combine the right patterns and related knowledge for addressing these issues in 

cloud services. Moreover, designers could refer to the metamodel for designing high-level 

architectures of cloud service systems in efficient and effective manner. To confirm the usefulness 

and feasibility of the metamodel, we conducted a case study that describes a cloud security pattern 

based on the metamodel [44]. 

 

Figure 8. Metamodel for security concepts. 

 

Figure 9. Metamodel and cloud services. 

6. Validation of the Models 

    

Figure 9. Metamodel and cloud services.



Future Internet 2016, 8, 13 11 of 15

6. Validation of the Models

Ecosystem model validation requires first to validate the patterns used in its construction;
then RAs and SRAs must also be validated, followed by the complete ecosystem.

Specific patterns are normally evaluated by submitting them to some pattern conference,
e.g., Pattern Languages of Programs (PLoP) or EuroPLoP. In these conferences, a pattern paper
is developed with the help of a shepherd and then discussed in a workshop by about ten people.
The pattern is then published and exposed for criticism. We have followed this route for all our
patterns. Of course, the ultimate evaluation comes when developers use them in their designs but the
patterns shown here are too new for this to have happened.

RAs are abstract models and cannot be evaluated with respect to security or performance through
experimentation or testing. An RA is similar to a pattern, and it has a similar use; it is a paradigm to
guide implementation of new systems or evaluation of existing systems as well as other uses described
below. Their evaluation must be based on how well they represent the relevant concepts of the systems
they describe, how well they handle potential threats, how complete they are, how precise they are,
how they can be applied to the design or evaluation of systems, and how useful they are for other
relevant functions. Again, their final validation comes from practitioners who can find them useful
and convenient to build concrete architectures. In this respect, we showed in [9] that our SRA included
all the functions found in the SRAs of commercial and experimental clouds.

A type of validation (or at least justification) of our ecosystem models comes from describing
their advantages:

Control of heterogeneity: The involved components come from different vendors and follow a
variety of standards and protocols. An abstract model can unify this heterogeneity and provide a way
to understand and analyze global aspects of these systems.

A holistic security view. Many authors, e.g., [45,46], emphasize the need to develop secure systems
in a holistic way. Systems built piecemeal omit important interactions that may result in vulnerabilities.
Enterprises have started to realize the value of holistic approaches to security [3,47]. An ecosystem
provides such a holistic view by indicating the places where security mechanisms can be attached
and their effect on the functional parts of the architecture. As we did in Figure 2, we can extend the
UML model of the functional ecosystem by indicating all the points where threats are neutralized
with corresponding security patterns. We can trace the propagation of attacks and study where to
place defenses for greater effect. Many threats result of the interaction of different units and cannot be
discovered by analyzing each unit in isolation. Privacy rules are defined in the clouds and in devices
but we need to make sure that interactions with the components still respect these rules. We elaborate
on other security aspects in Section 7.

Other quality factors: Holistic views are useful to combine quality factors such as safety or reliability
with security.

Compliance with standards and regulations. An RA can be used to support security standards and
regulations, which can be described as policies which in turn can be implemented as patterns and
made part of the SRA. The ecosystem helps architects or designers to identify what components of the
cloud system are associated with the standard and can be used to comply with the specific rules of the
standard. Relating specific regulations to specific security mechanisms can be used to demonstrate
compliance [19].

Support for software development [48]. DevOps is an increasingly popular agile process to build
software that relies heavily on containers. We explored the use of our Container pattern [12] for
this purpose.

Support for virtualization. It is possible to assign the software processes of the ecosystem to a
variety of hardware platforms, some or all of which can be virtualized. For example, one can build a
virtual drone implemented using two physical devices.

Support for service contracts. In an ecosystem users or institutions may want to rent services
involving more than one product. This requires a service level agreement indicating the obligations



Future Internet 2016, 8, 13 12 of 15

of providers and consumers. An ecosystem model can make these services transparent and indicate
where compliance would be monitored.

7. Security Issues of Ecosystems

We intend to develop a holistic security view across all the elements of the ecosystem. In particular,
we intend to define policies on what data from the cloud can be sent to the devices or what data from
the devices can be sent to the cloud. Devices may contain sensitive data whose disclosure would affect
the privacy of users. The fog platform, itself, contains data and the access of that data should conform
to cloud policies, as well as device policies; that is, security constraints in the cloud and devices should
propagate across levels. We intend to perform a systematic analysis of threats, keeping in mind that
the introduction of new products may bring new vulnerabilities; each use case of a new product or
service must be analyzed to consider possible attacker goals related to it.

Each component may have its own set of policy rules or may inherit from other components; in
the latter case there can be conflicts [49]. Fog platforms may communicate with other fogs and may
need authorizations to perform actions in remote fog systems. Some of this work has already been
done in isolated fogs [33], but it is not clear how these results apply to the new context defined by the
components of a cloud ecosystem.

We need to define policies on how data from the cloud can be used in the devices or what data can
be sent from devices to the cloud. The fog also sends commands to the devices and devices may send
events to the cloud. The fog, itself, has a database and operations that can be accessed from the cloud
or the devices. We need to require that devices have a basic separation of computing environments
as using two virtual machines or two separated environments. We need to build a detailed security
architecture to provide these functions, express it using XACML rules and build several examples.
We have developed patterns for XACML [8], which can be applied to describe precisely these rights.

Consider a set of rights for cloud resources (R, O, t), where R is a set of roles, O is a set of objects,
and t is an access type. Each right represents what a given actor or role can do with specific resources;
for example, in fog managing traffic lights, “Role ‘Traffic Light Controller’ can activate traffic lights”.
Those rights can be defined in the fog itself or can be inherited from higher-level rights defined in the
cloud. We may need to add new constraints in the form of predicates to the rights in the fog to access
devices, e.g., rights such as “Role Traffic Light Maintenance Worker” can activate or deactivate only
the lights in a specific zone. The fog may have also new roles. We need to add rights in devices to
access fog resources; this may give device users rights to access cloud data and it is related to the Bring
Your Own Device (BYOD) problem.

An important security need is management. The functions of such a system include determination
of assets, assignment of rights, consideration of regulations, policy definition, and privacy. The
metamodel of Section 5 is valuable for this purpose. A model oriented to fulfill the ISO 27000 security
regulations in clouds is given in [50], but there is no such a model for ecosystems.

8. Conclusions

Clouds require a variety of complementary components to be effective and cloud ecosystems
are starting to become widespread. Some are implicit ecosystems like the combination of clouds and
wireless devices. New components, such as containers and fog computing platforms, are appearing.
We believe that a holistic, unified treatment is fundamental to handle the complexity of cloud-based
systems and allow different kinds of users to analyze the synergy of the total ecosystem. Patterns
provide a unified way of representing all the components of the ecosystem and can represent both
functional and non-functional aspects. Pattern models are especially useful for handling security
and privacy, a unified approach reduces complexity, one of the most important weaknesses used
by attackers and can enable analysis of the propagation of threats and data leaks. We show that we
can start from patterns, combine them to produce reference architectures, and aggregate those two
concepts to build models for complete ecosystems. While we presented these models in terms of



Future Internet 2016, 8, 13 13 of 15

clouds, the methodology is general and can be used to build other types of ecosystems. We have
defined architectures for all the current components and we are using this architecture to analyze
security and related aspects. We identified several other directions where this ecosystem appears
valuable and we intend to study some of them. In the immediate future we are concentrating on
security aspects of the fog systems as part of a cloud ecosystem.

Acknowledgments: We thank our reviewers who provided valuable suggestions and references. Part of this work
was performed during the visit of Fernandez to Tokyo in March of 2015, supported by the National Institute of
Informatics of Japan.

Author Contributions: Eduardo B. Fernandez wrote the paper and proofread it. Sections 4.2.2 and 4.2.3 are
based on joint work with Madiha H. Syed. Sections 4.2.1 and 5 are joint work with Nobukazu Yoshioka and
Hironori Washizaki.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Lungu, M. Reverse Engineering Software Ecosystems. Ph.D. Thesis, University of Lugano, Lugano,
Switzerland, 2009.

2. Bosch, J. From software product lines to software ecosystems. In Proceedings of the 13th International
Software Product Line Conference, San Francisco, CA, USA, 24–28 August 2009; pp. 111–119.

3. Cisco Corp. Cisco Cloud Strategy for Cloud Providers. Available online: http://www.cisco.com/c/dam/
en/us/solutions/collateral/data-center-virtualization/cloud-infrastructure/at-a-glance-c45-730761.pdf
(accessed on 15 April 2016).

4. Basilier, H.; Darula, M.; Wilke, J. Virtualization network services—The telecom cloud. Ericsson Rev. 2014,
3, 2–9.

5. Jansen, S.; Finkelstein, A.; Brinkkemper, S. A Sense of Community: A Research Agenda for Software
Ecosystems. In Proceedings of the 31st International Conference on Software Engineering, New and
Emerging Research Track, Vancouver, Canada, 16–24 May 2009.

6. Boucharas, V.; Jansen, S.; Brinkkemper, S. Formalizing software ecosystem modeling. In Proceedings of the
1st International Workshop on Open Component Ecosystems, Amsterdam, The Netherlands, 24 August 2009.

7. Mazhelis, O.; Luoma, E.; Warma, H. Defining an Internet-of-Things ecosystem. In Proceedings of the
NEW2AN/ruSMART 2012, San Petersburg, Russia, 27–29 August 2012; pp. 1–14.

8. Fernandez, E.B. Security Patterns in Practice: Building Secure Architectures Using Software Patterns; John Wiley
& Sons: Chichester, UK, 2013.

9. Fernandez, E.B.; Monge, R.; Hashizume, K. Building a security reference architecture for cloud systems.
Requir. Eng. 2015. [CrossRef]

10. Fernandez, E.B.; Yoshioka, N.; Washizaki, H. Patterns for Security and Privacy in Cloud Ecosystems.
In Proceedings of the 23rd IEEE International Requirements Engineering Conference, Ottawa, ON, Canada,
24–28 August 2015.

11. Syed, M.H.; Fernandez, E.B.; Ilyas, M. A Pattern for Fog Computing. In Proceedings of the VikingPLoP 2016,
Leedam, The Netherlands, 7–10 April 2016.

12. Syed, M.H.; Fernandez, E.B. The Software Container pattern. In Proceedings of the 22nd Conference on
Pattern Languages of Programs 2015, Pittsburgh, PA, USA, 24–26 October 2015.

13. Fowler, M. Analysis Patterns: Reusable Object Models; Addison-Wesley: Boston, MA, USA, 1997.
14. Gamma, E.; Helm, R.; Johnson, R.; Vlissides, J. Design Patterns: Elements of Reusable Object-Oriented Software;

Addison-Wesley: Boston, MA, USA, 1994.
15. Buschmann, F.; Meunier, R.; Rohnert, H.; Sommerland, P.; Stal, M. Pattern-Oriented Software Architecture

Volume 1: A System of Patterns; Wiley: Chichester, UK, 1996.
16. Fernandez, E.B.; Yoshioka, N.; Washizaki, H.; Yoder, J. Abstract security patterns for requirements

specification and analysis of secure systems. In Proceedings of the Requirements Engineering track (WER)
of the 17th Ibero-American Conference on Soft. Eng. (CIbSE 2014), Pucon, Chile, 23–25 April 2014.

17. Avgeriou, P. Describing, instantiating and evaluating a reference architecture: A case study. Enterprise Archit.
Available online: http://www.rug.nl/research/portal/files/14407113/2003EnterpArchitJAvgeriou.pdf
(accessed on 15 April 2016).

http://dx.doi.org/10.1007/s00766-014-0218-7


Future Internet 2016, 8, 13 14 of 15

18. Angelov, S.; Grefen, P.; Greefhorst, D. A framework for analysis and design of software reference architectures.
Inf. Softw. Technol. 2012, 54, 417–431. [CrossRef]

19. Yimam, D.; Fernandez, E.B. Building Compliance and Security Reference Architectures for Cloud Systems.
In Proceedings of the IEEE Int. Conf. On Cloud Engineering (IC2E) 2016, Berlin, Germany, 4–8 April 2016.

20. García-Holgado, A.; García-Peñalvo, F.J. The evolution of the technological ecosystems: An architectural
proposal to enhancing learning processes. In Proceedings of the First International Conference
on Technological Ecosystems for Enhancing Multiculturality (TEEM’13), Salamanca, Spain,
14–15 November 2013; García-Peñalvo, F.J., Ed.; ACM: New York, NY, USA; pp. 565–571.

21. García-Holgado, A.; García-Peñalvo, F.J.; Rodríguez-Conde, M.J. Definition of a Technological Ecosystem
for Scientific Knowledge Management in a PhD Programme. In Proceedings of the Third International
Conference on Technological Ecosystems for Enhancing Multiculturality (TEEM’15), Porto, Portugal,
7–9 October 2015; Alves, G.R., Felgueiras, M.C., Eds.; ACM: New York, NY, USA; pp. 695–700.

22. García-Peñalvo, F.J.; Hernández-García, Á.; Conde-González, M.Á.; Fidalgo-Blanco, Á.; SeinEchaluce Lacleta, M.L.;
Alier-Forment, M.; Llorens-Largo, F.; Iglesias-Pradas, S. Learning services-based technological ecosystems.
In Proceedings of the Third International Conference on Technological Ecosystems for Enhancing
Multiculturality (TEEM’15), Porto, Portugal, 7–9 October 2015; Alves, G.R., Felgueiras, M.C., Eds.;
ACM: New York, NY, USA; pp. 467–472.

23. National Institute of Standards and Technology (NIST). Cloud Computing Reference Architecture.
Available online: http://www.nist.gov/customcf/get_pdf.cfm?pub_id=909505 (accessed on 15 April 2016).

24. National Institute of Standards and Technology (NIST). Cloud Computing Security Reference Architecture.
Available online: http://collaborate.nist.gov/twiki-cloud-computing/pub/CloudComputing/CloudSecurity/
NIST_Security_Reference_Architecture_2013.05.15_v1.0.pdf (accessed on 15 April 2016).

25. The Open Group Cloud Ecosystem Reference Model. Available online: http://www.opengroup.org/cloud/
cloud/cloud_ecosystem_rm/index.htm (accessed on 18 April 2016).

26. Chou, D. Rise of the Cloud Ecosystems. Available online: http://blogs.msdn.com/b/dachou/archive/
2011/03/16/rise-of-the-cloud-ecosystems.aspx (accessed on 15 April 2016).

27. Open Services Gateway initiative (OSGi). Available online: http://www.slideshare.net/bosschaert/osgi-
cloud- ecosystems (accessed on 16 April 2016).

28. Mellado, D.; Fernández-Medina, E.; Piattini, M. Security requirements engineering framework for software
product lines. Inf. Softw. Technol. 2010, 52, 1094–1117. [CrossRef]

29. Shei, S.; Alcañiz, L.M.; Mouratidis, H.; Delaney, A.; Rosado, D.G.; Fernández-Medina, E. Modelling
secure cloud systems based on system requirements. In Proceedings of the ESPRE, Ottawa, NT, Canada,
25 August 2015; pp. 19–24.

30. Axelrod, C.W. Enforcing security, safety and privacy for the Internet of Things. In Proceedings of the 2015
IEEE Long Island Systems, Applications and Technology Conference, New York, NY, USA, 1 May 2015.

31. Stojmenovic, I.; Wen, S. The Fog Computing paradigm: Scenarios and security issues. In Proceedings of
the 2014 Federated Conference on Computer Science and Information Systems, (ACSIS), Warsaw, Poland,
7–9 September 2014; pp. 1–8.

32. Sadeghi, A.R.; Wachsmann, C.; Waidner, M. Security and privacy challenges in industrial Internet of Things.
In Proceedings of the ACM DAC’15, San Francisco, CA, USA, 8–12 June 2015.

33. Dsouza, C.; Ahn, G.J.; Taguinod, M. Policy-driven security management for fog computing: Preliminary
framework and a case study. In Proceedings of the IEEE International Conference on Information Reuse and
Integration, San Francisco, CA, USA, 13–15 August 2014; pp. 16–23.

34. Taherkordi, A.; Eliassen, F. Towards Independent in-Cloud Evolution of Cyber-Physical Systems.
In Proceedings of the 2nd IEEE International Conference on Cyber-Physical Systems, Networks, and
Applications (CPSNA 2014), Hong Kong, China, 25–26 August 2014.

35. Fernandez, E.B. Preventing and unifying threats in cyberphysical systems. In Proceedings of the 17th IEEE
High Assurance Systems Engineering Symposium (HASE), Orlando, FL, USA, 7–9 January 2016.

36. Hashizume, K.; Fernandez, E.B.; Larrondo-Petrie, M.M. A pattern for Software-as-a-Service in Clouds.
In Proceedings of the Workshop on Redefining and Integrating Security Engineering, part of the ASE
International Conference on Cyber Security, Washington, DC, USA, 12–14 December 2012.

37. Fernandez, E.B.; Hamid, B. A pattern for Networks Functions Virtualization. In Proceedings of the
EuroPLoP2015, Kloster Irsee, Germany, 8–12 July 2015.

http://dx.doi.org/10.1016/j.infsof.2011.11.009
http://dx.doi.org/10.1016/j.infsof.2010.05.007


Future Internet 2016, 8, 13 15 of 15

38. Fernandez, E.B.; Yoshioka, N.; Washizaki, H. Cloud Access Security Broker (CASB): A pattern for accessing
secure cloud services. In Proceedings of the 4th AsianPLoP (Pattern Languages of Programs) 2015, Tokyo,
Japan, 5–7 March 2015.

39. Fernandez, E.B.; Washizaki, H.; Yoshioka, N. Patterns for Secure Cloud IaaS. In Proceedings of the Asian
Pattern Languages of Programs (PLoP) Conference, Taipei, Taiwan, 24–26 February 2016.

40. Bonomi, F.; Milito, R.; Zhu, J.; Addepalli, S. Fog computing and its role in the internet of things.
In Proceedings of the 1st ACM Mobile Cloud Computing Workshop, Helsinki, Finland, 17 August 2012.

41. Bonomi, F.; Milito, R.; Natarajan, P.; Zhu, J. Fog Computing: A Platform for Internet of Things and Analytics.
In Big Data and Internet of Things: A Roadmap for Smart Environments; Springer International Publishing:
Berlin, Heidelberg, Germany, 2014.

42. Yi, S.; Hao, Z.; Qin, Z.; Li, Q. Fog computing: Platform and applications. In Proceedings of the 2015 Third
International IEEE Workshop on Hot Topics in Web Systems and Technologies, Washington, DC, USA,
12–13 November 2015; pp. 73–78.

43. Ragget, D. The web of things: Challenges and opportunities. Computer 2015, 48, 28–32. [CrossRef]
44. Washizaki, H.; Fukumoto, S.; Yamamoto, M.; Yoshizawa, M.; Fukazawa, Y.; Okubo, T.; Ogata, S.;

Fernandez, E.B.; Kaiya, H.; Kato, T.; et al. A Metamodel for Security and Privacy Knowledge in Cloud
Services. submitted for publication. 2016.

45. Brown, A.; Apple, B.; Michael, J.B.; Schumann, M. Atomic-level security for web applications in a cloud
environment. Computer 2012, 45, 80–83. [CrossRef]

46. Fernandez, E.B.; Yoshioka, N.; Washizaki, H.; VanHilst, M. An approach to model-based development of
secure and reliable systems. In Proceedings of the Sixth International Conference on Availability, Reliability
and Security, Vienna, Austraia, 22–26 August 2011.

47. Cisco White Paper. Security Everywhere. Available online: http://www.cisco.com/web/offers/pdfs/
security-everywhere-whitepaper.pdf (accessed on 18 April 2016).

48. Syed, M.H.; Fernandez, E.B. Cloud ecosystems support for Internet of Things and DevOps using patterns.
In Proceedings of the First International Workshop on Interoperability, Integration, and Interconnection of
Internet of Things Systems (I4T), part of the IEEE International Conference on Cloud Engineering (IC2E),
Berlin, Germany, 4–8 April 2016.

49. Wood, C.; Summers, R.; Fernandez, E.B. Authorization in Multilevel Database Models. Inf. Syst. 1979, 4,
155–161. [CrossRef]

50. Beckers, K.; Coté, I.; Fassbender, S.; Heisel, M.; Hofbauer, S. A pattern-based method for establishing
a cloud-specific information security management system. Requir. Eng. 2013, 18, 343–395. [CrossRef]

© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC-BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1109/MC.2015.149
http://dx.doi.org/10.1109/MC.2012.400
http://dx.doi.org/10.1016/0306-4379(79)90017-6
http://dx.doi.org/10.1007/s00766-013-0174-7
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/

	
	
	
	
	
	
	
	
	


	
	
	
	

