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Abstract: Regarding mobility, health conditions and personal preferences, evacuees can be
categorized into different classes in realistic environments. Previous emergency navigation
algorithms that direct evacuees with a single decision rule cannot fulfil civilians’ distinct
service requirements and increase the likelihood of inducing destructive crowd behaviours,
such as clogging, pushing and trampling, due to diverse mobility. This paper explores
a distributed emergency navigation algorithm that employs the cognitive packet network
concept to tailor different quality of service needs to different categories of evacuees. In
addition, a congestion-aware algorithm is presented to predict the future congestion degree
of a path with respect to the observed population density, arrival rate and service rate of each
route segment. Experiments are implemented in a simulated environment populated with
autonomous agents. Results show that our algorithm can increase the number of survivors
while providing improved quality of service.

Keywords: emergency navigation; diverse evacuees; quality of service;
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1. Introduction

Nowadays, traditional emergency evacuation conducted by incident commanders is being superseded
by cyber-physical-human systems (CPHS) [1], due to the mass of information exchange and decision-
making involved, as well as the advent of low-cost microelectronic devices. As the core of emergency
response systems, related emergency navigation algorithms [2–4] have motivated considerable research.
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However, previous algorithms usually employed a single metric and did not consider personalised
service requirements reflected by the evacuees’ own capabilities, such as mobility, resistance to hazards
and physical strength. This aggravates “nonadaptive crowd behaviours” (such as herding, crushing,
knocking, etc.), which contribute considerably to the fatalities and injuries in densely-populated
disasters [5]. In this paper, we present a novel routing algorithm that uses diverse goal functions to choose
appropriate routes for the associated class of evacuees. The approach is based on the cognitive packet
network (CPN) framework, which uses cognitive packets to search [6–9] for optimised routes rapidly and
adaptively with regard to user-defined quality of service (QoS) goals. Congestion has various negative
impacts on an evacuation process. For example, it can temporarily block evacuee flows and cause
long-time latency. Evacuees in electric powered wheelchairs may create an extra consumption of energy
due to the slowing down and acceleration effects caused by jamming. To minimise the total number
of congestion situations encountered by civilians, a congestion-aware algorithm, which combines the
real-time congestion level and the average arrival and service rate, is embedded in goal functions to
distribute evacuees to unoccupied routes. However, because sensitive metrics [10], such as congestion,
are involved in the routing protocol, the “direction oscillation problem” [11] may occur, due to delays in
the available information. This may confuse evacuees and reduce their confidence in the emergency
response system. Hence, we set a path switch probability to ease direction oscillations. Although
evacuees with portable devices retrieve a whole path to a suitable exit each time they communicate with
the system, the suggested route should be updated periodically, due to the fast-changing path situation.
Therefore, “movement depth” is introduced to facilitate the evacuees to renew their routes after traversing
certain hops.

The rest of the paper is organized as follows. Section 2 presents the related studies of emergency
navigation algorithms and congestion management. In Section 3, we recall the concept of CPN. Then, we
introduce the congestion-ease algorithm and the QoS metrics designed for diverse categories of evacuees
in Section 4 and discuss the issue of oscillations that arise in adaptive networks and their alleviation
in Section 5. The simulation model and assumptions are introduced in Section 6, and the results of
experiments are discussed in Section 7. Finally, Section 8 presents the conclusion and future work.

2. Related Work

2.1. Emergency Navigation

Because evacuation drills are high-priced, time-consuming and cannot be reproduced, most research
employs macroscopic or microscopic simulation models to characterise real evacuations. However, the
diversity in the physical attributes of occupants is rarely taken into account. For example, cellular
automata models, such as [12], discretize given structures into uniform “cells” that can hold one person.
This approach can precisely model the influence of an individual’s physical dimensions, but is ineffective
in depicting the movement speed and direction, due to the discrete spatial structure [13]. Moreover,
evacuees are assumed to have identical physical conditions, and the movement rules are determined by
cells. Flow-based models [14–19] hypothesise evacuee movement as continuous flows, and civilians are
assumed to have identical physical attributes. Potential maintenance approaches [20–22] concentrate
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on establishing safe escape paths and do not take individual ability into consideration. Particle-based
algorithms, such as the “magnetic model” in [23], make use of the analogy between particle motions and
evacuee movements, but ignore personal requirements, as well as the effect of crowd behaviours. The
multi-agent models can customise physical attributes for individuals and imitate complex phenomena
efficiently. However, a majority of previous work has focused on studying crowd dynamics. Although
simulations in [24] are based on a multi-agent framework that employs evacuation agents with physical,
psychological and moving attributes, health factors, such as initial health values and resistance to hazard,
which are influenced by gender, age, etc., are not considered.

Current emergency navigation algorithms explore paths with a single characteristic, such as safest
paths, shortest paths or quickest paths. Reference [20] uses “artificial potential fields” to establish a
self-organizing sensor network with artificial forces and directs users to the safest path. Exits and
dangerous zones generate attractive forces and repulsive forces, respectively, and evacuees move under
the actuation of the resultant force. In [22], a multi-path routing protocol is proposed based on the
temporally ordered routing algorithm [25] to guide evacuees to egresses through safer paths. Each
actuator is assigned with an altitude in accordance with its hops to the nearest exit, and egress routes
are formed along actuators with a higher altitude to actuators with a lower altitude. In addition, a
manual navigation map is defined to eliminate the impractical paths caused by the radio’s penetration
capacity. Combining the definition of effective length with Dijkstra’s algorithm, [26] presents a
decentralized evacuation system with decision nodes (DNs) and sensor nodes (SNs) to compute the
shortest routes in real time, while opportunistic communications-based [27] emergency evacuation
systems [28] have the advantage of being more robust to network attacks [29] that often accompany
emergencies caused by malicious acts. By considering the evacuation planning problem as a minimum
cost network flow problem [30,31], EVACNET+[14–16] converts the original evacuation network to a
time-expended network to obtain the quickest routes. The optimal solution is produced by using linear
programming methods. To reduce the computational cost of this kind of approach, [32] replaces the
linear programming algorithm with a heuristic A*algorithm.

2.2. Congestion Management

Current congestion-aware algorithms in emergency evacuation can be divided into congestion-free
algorithms and congestion-ease algorithms. Congestion-free algorithms, such as [19], take node and
edge capacity into account and assign a time and routes schedule to evacuees with regard to capacity
constraints. This approach can efficiently avoid congestion, but it is not very realistic, because some
civilians may have to wait for a certain time before evacuating. Congestion-ease algorithms employ
mathematical models to estimate the time delay on a path and to redirect evacuees accordingly. For
example, [33] proposes a distributed navigation protocol based on the artificial potential field model to
guide evacuees to exits with minimal congestion. Each sensor holds a potential, which is determined by
flow velocity, distances to all exits and the weights of exit capacity. Exits are assigned with the maximal
value, and paths are constructed from lower potential values to higher potential values. However, the
spread of hazards is not considered, and therefore, evacuees can actually be directed to a hazardous
area. An egress dynamic feedback control model is proposed in [34] to balance the crowd among exits.
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Actuators at each egress build a graph, which is classified as safe, alert and danger regions. If an egress
evolves in a danger region, a control algorithm will be performed to reduce the number of evacuees
that choose the related exit to regress the state to the safe/alert region. However, some parameters to
delimitate the graph are difficult to know in reality, such as the maximum available time for a safe
evacuation. Furthermore, this approach only considers the congestion around the exits, but does not
take the jamming on the path into account. Reference [35] establishes a macroscopic probabilistic
model to mimic the chaotic collective motion with respect to fire status, passage capacity, psychological
factors and crowd flow rates. Simulations are performed on a traditional network-flow model, which
incorporates the above crowd model, and fire propagation is imitated by a cellular automation model.
The evacuation planning problem is then translated to a Markov decision problem, which aims to
maximise the total number of evacuees and minimise the relevant risks. To solve this optimisation
problem, a divide-and-conquer approach is used to divide evacuees into different groups, and multiple
groups are coordinated within a Lagrangian relaxation framework. Queueing models can also be used
to evaluate congestion in such systems [36,37]. A M/M/1queueing model [38] is employed in [1] to
analyse the time needed to exit with respect to congestion. Compared with closed queueing network
models, this open model-based approach is more computationally efficient and can avoid long time
simulations. The “time to exit” is over-estimated due to the assumption of the highest arrival rate and
deterministic service times. However, this analytical model is useful in emergency procedure design and
densely-populated evacuations.

In summary, regarding the aforementioned literature, most experiments in the previous work employ
simulated evacuees with identical physical attributes. Hence, the analysis based on those experiments
may not reflect the real situation, where evacuees actually have different velocities and health conditions.
Furthermore, previous emergency navigation algorithms provide routes with the same property (shortest,
safest or quickest) to civilians and ignore their specific service requirements. Therefore, evacuees tend
to congregate in the main channels and cause a stampede or congestion, due to the limited space and
diverse mobility. Moreover, injuries and fatalities are likely to be increased owing to the dissatisfaction
of the unique service needs of evacuees. In addition, although jamming has a significant impact on the
performance of emergency navigation algorithms, the previous congestion management algorithms or
models are either not very realistic or too computational complex.

3. The Cognitive Packet Network

The cognitive packet network (CPN) introduced in [39–41] was originally proposed for multimedia
networks with diverse end users [42]. As different classes of users may require different QoS, the
traditionally best effort Internet, which satisfies a single QoS need, is difficult to adapt and can impede the
performance. Therefore, CPN is presented to provide QoS-driven routing and realise self-improvement
by using cognitive packets. Contrary to conventional routing protocols, in the CPN, “cognitive packets”
play a predominant role in routing and flow control, other than routers and protocols. For example,
cognitive packets can discover optimised routes with their predefined goals and improve QoS by learning
from their own investigations and experience from other packets.
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Each node within a CPN hosts a recurrent random neural network, which has been applied to many
domains [43] to determine the cognitive packets’ next hop among neighbour nodes, and it maintains a
routing list to reserve the routes discovered by cognitive packets. CPN carries three types of packets:
smart packets (SPs), acknowledgements (ACKs) and dumb packets (DPs). SPs are responsible for
information collection and routing discovery with respect to a specific QoS goal. They can either choose
the neighbour node decided by random neural networks as the next hop or drift randomly to explore and
update routes. When a SP reaches the destination, an ACK, which stores all the gathered information,
will be generated and sent back to the source node through the reverse path. Because loops may be
produced during route exploration, a loop remove algorithm is enacted on the reverse path to take out
any sequences of nodes with the same origin and destination. When an ACK reaches a node, it will
update the routing list and train the random neural network [44] by performing reinforcement learning
(RL) with the neural networks [45,46]. DPs are the packets that actually carry the payloads. It always
selects the best path at the top of the routing list as the next hop.

In the context of emergency evacuation, because the environment is highly dynamic, SPs are used to
resolve the “optimised QoS routes” and collect information, such as the hazard intensity or congestion
level of a node. ACKs backtrack with collected information and update the excitation level of neurons
at the traversed nodes. Evacuees are considered as DPs and always follow the top ranked path in the
routing list. To apply the concept of CPN to emergency evacuation, the following requirements must
be satisfied: a predefined graph-based layout of a confined place with information, such as the length of
edges and node capacity, are available. The edges of the graph depict the paths, and the vertices represent
the physical areas where sensors are installed. The sensors could communicate with their neighbour
nodes and detect typical hazards, such as fire, smoke, water, etc. Additionally, in order to perform the
congestion-aware algorithm, we also assume that the sensors can sense the arrival of a civilian and record
the number of evacuees congested in proximity.

4. QoS Metrics

The simplest metric used in the CPN-based algorithm in [47] is distance based, and it resolves the
path with the shortest effective length, which is a compound metric with respect to path length and
safety. Other novel metrics considered in this paper are the time metric, the energy efficiency metric and
the safety metric. Previous work in [1] has proven that congestion formed at bottlenecks can temporally
block evacuee fluids and has a severe impact on the performance of evacuation routing algorithms in high
occupancy rates. Furthermore, congestion can impede QoS implementation by causing undesired time
latency and extra energy consumption for electric powered wheelchairs. Hence, we include congestion
in the new QoS metrics.

Unlike previous congestion-aware algorithms, the algorithm that we proposed evaluates if the current
congestion located at a certain node will affect an evacuee by comparing the duration of the congestion
and the potential arrival instant of the evacuee. The congestion situation at a node when an evacuee
reaches it depends on the current situation of the node and the total number of arrivals and departures
before the evacuee arrives. To estimate the total number of arrivals and departures, we use the average
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arrival rate and departure rate recorded by each node. The details are given in Algorithm 1, and we
assume that if the queue length of a node is larger than one, then congestion will occur.

Algorithm 1 Predicting the potential amount of congestion encountered by an evacuee during the
evacuation process.
Data: A path π explored by SPs from a node, π(0)

Result: The potential number of congestion situations encountered by an evacuee traversing across the
path, π

1: Set the total number of congestion situations, Ctotal, to zero
2: Set the total travel time, Ttotal, to zero
3: for all the edges, e(π(i), π(i+ 1)) ∈ path π do
4: /* Calculate the time cost on the edge, e(π(i), π(i+ 1)) */
5: tedge ← Ee(π(i),π(i+1))

Vspeed
,

where Ee(π(i), π(i+ 1)) is the effective length of e(π(i), π(i+ 1)), π(i) is the source node of the
edge, π(i+1) is the destination node of the edge, Vspeed is the average speed of a class of civilians.

6: /* Compute the time cost at the node, π(i) */
7: if qi0 + λ̄ · Tπ(i) − µ̄ · Tπ(i) > 0 then
8: /* If the congestion will remain there when the evacuee reaches the node, π(i), then plus the

time delay caused by congestion */
9: tnode ←

qi0+λ̄·Tπ(i)−µ̄·Tπ(i)
λ̄

,
where qi0 is the current queue length of the node, π(i), λ̄ is the average arrival rate of the node,
π(i), µ̄ is the departure rate of the node, π(i), Tπ(i) is the potential time cost to reach the node,

π(i). Term qi0+λ̄·Tπ(i)−µ̄·Tπ(i)
λ̄

is the average time calculated by Little’s formula.
10: /* If the predicted queue length when the evacuee reaches it is larger than zero, the arrival of

the evacuee will trigger congestion */
11: Ctotal ← Ctotal + 1

12: end if
13: Ttotal ← Ttotal + tedge + tnode

14: end for
15: Return Ctotal

The time-oriented goal function pursues the shortest time cost to reach an exit and satisfies the QoS
need of normal evacuees. The path traversal time is predicted as follows:

Gt =
n−1∑
i=1

{E
e(π(i), π(i+ 1))

Vspeed
+K[

qi0 + λ̄ · Tπ(i) − µ̄ · Tπ(i)

λ̄
]} (1)

where π represents a particular path; n is the number of nodes on the path, π; and π(i) is the i-th node on
the path, π. Ee(π(i), π(i + 1)) is the effective length of the edge between node π(i) and node π(i + 1).
Vspeed is the average speed of this category of civilians. K[X] is a function that takes the value zero if
X is smaller than zero or X if X is larger than or equals zero, respectively. Term qi0 is the current queue
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length of the node, π(i); λ̄ is the average arrival rate of the node, π(i); µ̄ is the departure rate of the node,
π(i); Tπ(i) is the potential time cost to reach the node, π(i).

Energy efficiency-oriented goals will search for the path with minimum energy consumption, because
the depletion of power for specific evacuees, such as disabled people in electric-powered wheelchairs,
can be fatal. The maximum theoretical range with regard to different models of wheelchairs is
approximately 28.98 kilometres, with an average energy consumption of 2.27 ampere-hours [48].
However, due to the unpredictability of disasters and daily driving behaviours [49], electric-powered
wheelchairs can hardly be full-charged when an evacuation starts and, therefore, increase the likelihood
for a disabled civilian to get stranded. The congestion ease algorithm is embedded in the energy
efficiency-oriented goal function, as the acceleration and deceleration process can cause significant
energy consumption when a braking event occurs. This function can be applied to electric powered
wheelchairs or robots with battery power limitation.

Ge = cb · Ctotal +
n−1∑
i=1

cs · Ee(π(i), π(i+ 1)) +
n−1∑
i=2

ct · θ(π(i− 1), π(i), π(i+ 1)) (2)

If Ctotal is the total congestion calculated by Algorithm 1, then cb is the energy consumption of a
wheelchair when a braking event happens, and cs is the energy consumption per centimetre when
moving straight on an edge. Ee(π(i), π(i + 1)) is the effective length of the edge between node π(i)

and node π(i + 1). Term ct is the energy consumption per degree when a turning event happens, and
θ(π(i− 1), π(i), π(i+ 1)) is the rotation angle between edge E(π(i− 1), π(i)) and E(π(i), π(i+ 1)).

The safety-oriented goal function discovers the safest path. It can be used for sick people or
children, as they are more likely to faint due to the impact of poisonous smoke in a fire. To estimate
the hazard intensity of a node, we assume the hazard spread rate is a (cm/s) and the hazard growth rate
at a node is b.

Gs =
n−1∑
i=1

1[tπ(i+1)
evacuee + tcurrent < t

π(i+1)
hr ] · b · (tπ(i+1)

evacuee + tcurrent − tπ(i+1)
hr ) + Es(π(i), π(i+ 1)) (3)

where 1[X] is a function that takes a value of one or twp if X is false or true, respectively. The term,
t
π(i+1)
evacuee, is the time for an evacuee to reach node π(i+1), and tcurrent is the time elapsed since the hazard

occurred. The term, tπ(i+1)
hr , is the time for the hazard to reach node π(i+ 1); it can be estimated with the

hazard spread rate, a. Es(π(i), π(i + 1)) is then the effective safety value between node π(i) and node
π(i + 1). We employ Es(π(i), π(i + 1)) to ensure that the value of Gs is not nil if the hazard does not
reach the path during a civilian’s evacuation process.

The details of this approach are shown in Algorithm 2.
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Algorithm 2 Predicting the potential hazard of a path.
Data:A path π explored by SPs from a node
Result:The potential hazard of the path, π

1: for all the nodes, n, in the environment do
2: Find the shortest path, D, from n to the fire source by using the built-in map
3: thr ← D/a,

where thr is the time cost for the hazard to reach n
4: end for
5: Set the total potential hazard, Htotal, of path π to zero
6: for all the nodes π(i) ∈ path P do
7: /* Calculate the potential time cost, tπ(i)

evacuee, for an evacuee to reach π(i) from the source node of
π */

8: t
π(i)
evacuee can be calculated by Algorithm 1

9: /* Calculate the potential hazard, hnode, when an evacuee arrives, π(i), from the source node of π
*/

10: hnode ← b · (tπ(i)
evacuee + tcurrent − thr) + Es(π(i), π(i+ 1)),

where Es(π(i), π(i+ 1)) is the effective safety value of the edge between node π(i) and π(i+ 1)

11: Htotal ← Htotal + hnode

12: end for
13: Return Htotal

5. Alleviation of Oscillations

Path oscillations will occur when a sensitive metric [10] is used or the process of updating sensor
readings, and the arrival of ACKs are asynchronous when the hazard spreads quickly. This phenomenon
does not affect evacuees with portable devices, as they will receive a whole path, but it confuses civilians
using visual indicators, because the guiding direction oscillates. In [41], several ways to mitigate
oscillations in packet networks are discussed, such as using a path switch probability or a minimum
QoS gain threshold to switch routes or ensuring the usage of a path by a minimum number of packets
before a path switch can occur, though this last choice would not make sense if “packets” are human
beings and the path switch is being caused by a deterioration of the safety of certain paths. In our
system, we set a path switch probability to ease the direction oscillation on the visual indicators.

Moreover, because CPN is a source routed algorithm, each evacuee with a portable device will obtain
a route to exits when they begin to evacuate. However, some evacuees cannot stick to the original route
as the path condition varies (hazard, congestion, etc.). A simple method for the evacuees to use the up-to-
date suggestion is to adopt the top ranked route at each hop. However, this may cause oscillations when
successive decisions vary frequently. Hence, we use “movement depth” to ensure that evacuees only
accept a new path choice suggestion after traversing a certain number of nodes. To prevent movement
depth from hindering the flexibility of the evacuation routing and from directing civilians to hazards, the
sequential decisions will be checked periodically to verify if the hazard has reached a particular node. If
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the hazard has reached any hop or edge related to these decisions, they will be discarded immediately,
and an alternate path will be used. However, this approach can also be very dangerous, since evacuees
may get close to a hazard and then have no remaining time or possibility to change to a safe path. Thus,
such approaches need to be evaluated in the context of varying degrees of risk, which include random
rates of movement of the hazard (fire, smoke, gases, etc.) itself.

Ten randomized iterations have been conducted for movement depth from one to 10 in a scenario with
a normal fire spreading rate and 120 evacuees. We use this scenario, because the effect of oscillation is
more obvious in high density environments due to the larger variation of congestion. As QoS metrics
can be divided into sensitive metrics and insensitive metrics [10], we employ the time metric and the
distance metric as a representative of the sensitive metric and insensitive metric, respectively, to examine
the influence of movement depth. Figure 1 shows that the performance of the time metric-based system
reaches the peak mean value when the movement depth is three and then decreases gradually with the
increase of the movement depth. This is because when movement depth is small (one or two), though
it uses the up-to-date suggestion, some evacuees may be temporarily trapped by the puzzled suggestion.
Meanwhile, CPN evaluates the QoS metric of a whole path other than a single edge. In other words,
the evacuees should finish the whole path to satisfy their QoS needs if the condition does not change.
If they continuously change paths, they will not follow the optimal path, but a collection of the first
edge of optimal paths. If the movement depth is too large, evacuees will use the outdated decisions
and, therefore, increase the possibility of guiding evacuees near the hazard and backtracking. Figure 2
presents the influence of movement depth in the distance metric-based system. Comparing with the time
metric, the distance metric is less sensitive to the variation of movement depth and takes on a fluctuant
state when the movement depth is smaller than or equals six. However, the system performance decreases
evidently when the movement depth is larger than six. This is because a relatively larger movement depth
value will hinder the flexibility of CPN and may direct an evacuee near the spreading hazard. Therefore,
victims may have no remaining time to egress with an alternate route. According to the results of the
above experiments, we set the movement depth to three in our system.

Figure 1. Average number of survivors out of 120 evacuees with different movement
depths in the time metric-based system. The error bars show the standard deviation of
10 experiments.
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Figure 2. The average number of survivors out of 120 evacuees with different movement
depths in the distance-based system. The error bars show the standard deviation of
10 experiments.
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6. Simulation and Experiments

The Distributed Building Evacuation Simulator (DBES) [2] that we use is an agent-based discrete
event simulator, where each entity is modelled as a process, and the physical world is represented by a set
of “points of interest” (PoI), which are significant locations, such as doorways and corridors, and links,
which are physical paths. To improve the level of realism, we employ the congestion model introduced
in [50,51] to simulate the chaotic collective motion. Each PoI where evacuees can congregate is modelled
as a single server with one queue. This mimics a narrow space where only one civilian can depart at a
specific time. The service time represents the time cost for a civilian to obtain the suggestion from
portable devices or visual indicators. In the simulations, we set the service time to one second. When an
evacuee arrives a the PoI, it will not be served until all the evacuees that came earlier have departed.

The environment is the lower floors of Imperial College’s EEEbuilding shown in Figure 3. SNs
and DNs are deployed in proximity to the PoI. SNs collect hazard information, and DNs execute the
decision support algorithms. Real-time decisions can be transformed to evacuees with visual indicators
that are installed at the POI or portable devices carried by the civilians. To evaluate the performance and
adaptability of decision algorithms, we assume a fire outbreaks near the eastern staircase on the ground
floor that blocks a main channel. Initially, evacuees are randomly scattered in the building, and they
can hear or see fire alarms and evacuate immediately. Five routing algorithms are employed: Dijkstra’s
shortest path algorithm, the CPN-based algorithm with the distance metric, CPN with the time metric,
CPN with the safety metric and CPN with the energy metric. In first scenario, when the fire spreads,
global hazard information will be synchronized in the network, and Dijkstra’s shortest path algorithm
will be executed at each decision node to obtain the up-to-date shortest path. The other scenarios are
similar to the first one, but use the CPN based algorithm to collect information and make decisions.
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Figure 3. The graph-based layout of the building. The black stars represent the exits on the
ground floor.

7. Results and Discussion

The experiments are conducted on scenarios with 30, 60, 90 and 120 evacuees, respectively. Dijkstra’s
shortest path algorithm and original distance-oriented goal function-based algorithm are performed for
comparison purposes. In the first experiment, we evaluate the performance of three novel metrics,
while in the second experiment, we route diverse evacuees with the relevant metric. To exclude the
interferences of other factors, the evacuees in the first experiment are homogeneous with an identical
velocity and initial health value. In the second experiment, we employ four types of simulated agents
with different speeds, initial health and resistance to hazards.

The results of ten randomised experiments are presented in Figure 4. The error bars show the highest
and lowest percentage of survivors in the ten simulations. In low occupancy rate (30 evacuees), all the
CPN-based algorithms reach the performance of Dijkstra’s algorithm, which can be considered as an
optimal algorithm, because it has full knowledge of the environment and the level of congestion is low.
As the population density increases, congestion occurs more and more frequently and gradually becomes
a predominant success factor for evacuation. In this case, CPN-based algorithms outperform Dijkstra’s
algorithm for different reasons: CPN with the distance metric overcomes Dijkstra’s algorithm, due to
the nature of a decentralized system in which each decision node acts as a sub-system and updates its
path recommendation at a different time. This tends to distribute evacuees to different routes and slightly
ease congestion. CPN with the time metric and the energy metric embed the congestion ease algorithm,
because congestion can induce a time delay and extra energy consumption (braking). CPN with the
safety metric outperforms Dijkstra’s algorithm mainly because it directs evacuees to the future safest
path and reduces the probability of re-routing. Although CPN with the safety metric does not seek to
ease congestion, it predicts the time to reach a certain location regarding the potential congestion that
will be encountered. Figure 4 also indicates that CPN with the safety metric performs best in relatively
low population densities (30 and 60 evacuees), while the CPN with the time metric has the largest mean
percentage of survivors in high occupancy rates (90 and 120 evacuees).
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Figure 4. The percentage of survivors for diverse path-finding algorithms in scenarios with
homogeneous evacuees. The results are the average of 10 randomized simulation runs, and
the error bars show the min/max result in any of the 10 simulations.
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Figure 5 shows the average number of congestion situations encountered by civilians in the above
evacuation processes. The results imply that CPN with the time metric can effectively alleviate
congestion in comparison with other algorithms. This is because CPN with the time metric can disperse
evacuees to several channels, while other algorithms tend to insist on one main channel to the exits.
Although CPN with the energy metric also adopts the same congestion aware algorithm as CPN with the
time metric, it produces more congestion, owning to the energy utilisation on a path largely depending
on the length and sinuosity of the path. Hence, electric powered wheelchairs tends to stick to an energy
efficiency route, unless a large amount of jamming occurs on the path or the hazard reaches them. CPN
with the safety metric causes comparable congestion as the energy metric. This is because this algorithm
not only considers a node’s current fire intensity, but the situation when it reaches that node. Actually,
the safety-oriented goal function is a tradeoff between the number of congestion situations encountered
and the probability of being blocked by the hazard and switching to a detour path.

Figure 5. The average number of congestion situations appears in each scenario for different
path finding algorithms. Congestion is assumed to happen when an evacuee reaches a node
with a non-zero queue length.
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To evaluate if the novel goal functions improve the QoS for different categories of evacuees, we
compare the results with Dijkstra’s algorithm and the original CPN algorithm with the distance metric.
Figure 6 shows the average evacuation time of the three algorithms, and the error bars represent the
maximum and minimum egress time of ten experiments. The results confirm that CPN with the time
metric achieves the average shortest evacuation time among the three metrics. Furthermore, both CPN-
based algorithms can accomplish an evacuation process faster than Dijkstra’s algorithm in low occupancy
rates (30 and 60 evacuees), while gaining a similar number of survivors. However, the three metrics
achieve comparable results in high population densities (90 and 120 evacuees), with a slight advantage
to CPN with the time metric. This is mainly caused by the congestion formed at the bottlenecks of the
network. A large amount of evacuees have to queue for a long time at the central staircase between the
ground floor and the first floor before they can reach the ground floor. The maximum queue length at this
staircase can attain 25 for Dijkstra’s algorithm and 20 for CPN with the distance metric. Interestingly,
although the value for CPN with the time metric is 16, alternate congestion will form near the exits as
the egress becomes a new bottleneck. It indicates that in a high density environment, the bottlenecks in
the system can significantly affect the average evacuation time. In other words, though the CPN with the
time metric can accelerate the process for civilians to arrive in the vicinity of exits, it cannot significantly
reduce the average evacuation time under the equivalent departure rate of the exits. Figure 7 shows the
average health value of survivors among Dijkstra’s algorithm, CPN with the distance metric and CPN
with the safety metric. The initial health value of each evacuee is 100 units, and if a civilian perishes,
its health value will become zero. The results show that CPN with the safety metric achieves the highest
mean health value among the three algorithms, while gaining the greatest number of survivors. The
average energy consumption of each electric powered wheelchair is shown in Figure 8. Compared with
Dijkstra’s algorithm and CPN with the distance metric, CPN with the energy metric consumes the least
energy on average. This metric is useful for evacuation in both emergency and standard conditions.

Figure 6. The average evacuation time of ten iterations in arbitrary time units. The error
bars represent the min/max values found in the 10 simulations.
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Figure 7. The average health value of survivors in ten iterations. The error bars represent
the min/max values found in the 10 simulations.
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Figure 8. The average energy consumption for each electric powered wheelchair of ten
iterations in energy units. The error bars represent the min/max values found in the
10 simulations.
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In order to evaluate the performance of routing diverse categories of evacuees with different metrics,
we develop a scenario that contains four types of evacuees: aged people, young people, children or ill
people and disabled people in electric powered wheelchairs. The population ratio of the four categories
of civilians is 2:5:2:1, and the speed ratio is 0.8:1:0.8:1.5. The aged people are set to a distance threshold
to mimic their limited physical strength. If the displacement exceeds the distance threshold, the moving
speed will reduce to one half of the initial velocity. Disabled people in wheelchairs are set at an analogous
battery power limitation. If the battery power depletes, the wheelchairs will stop. In addition, the
initial health value of children or ill people is 80 percent of the health level of other categories. Besides
Dijkstra’s algorithm and CPN with the distance metric, CPN with the time metric is also employed as a
comparison for its good performance in the first experiment. The results in Figure 9 show that CPN with
four metrics performs best, because it provides routes that suffice the QoS needs of different categories
of evacuees. Hence, fewer evacuees will perish, due to the lack of physical strength and the depletion
of battery power. Furthermore, it can form channels for different kinds of evacuees and reduce the
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total evacuation time. Compared with scenarios with homogeneous evacuees, less congestion occurs in
Dijkstra’s algorithm and CPN with the distance metric owing to the effect of different speeds, which
is similar to the “faster-is-slower effect” [52]. This slightly improves the performance of Dijkstra’s
algorithm and CPN with the distance metric. CPN with the time metric guides evacuees to the quickest
path at the cost of displacing a longer distance. Hence, some aged people or wheelchairs that originate
on the second floor may deplete their physical strength or energy and, therefore, causing fatalities.

Figure 9. The percentage of survivors for scenarios with heterogeneous evacuees. The
results are the average of 10 randomized simulation runs, and the error bars show the
min/max result in any of the 10 simulations. “CPN with four metrics” depicts the CPN-based
algorithm to route four kinds of evacuees with the related metric.
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Figures 10–14 show the number of visits of each edge in a scenario with 120 homogeneous evacuees.
The thickness of the solid line is proportional to the number of visits. The edges that have not been
traversed are shown as dotted lines. Figures 10 and 11, which use the shortest path routing metric,
show that the shortest egress path on the ground floor is overused by evacuees. Most evacuees select the
identical main channel to egress and cause continuous congestion. In both Dijkstra’s algorithm and CPN
with a distance metric, 96% of the evacuees use the main exit in the middle, and only 4% of the evacuees
escape from the alternative exit. Figure 12, which employs the shortest time routing metric, shows that
several channels are formed on the ground floor to transmit evacuees. This phenomenon does not appear
on the other floors, because the corridors on the first and second storey are narrow. Meanwhile, the
distribution of evacuees is more balanced between the two exits, with 79% of the evacuees departing
from the main exits and 21% of the civilians choosing the alternate exit. Therefore, the probability of
congestion is reduced, and the latency in the evacuation process is decreased. Figure 13 shows that
CPN with the safety metric initially directs most evacuees on the first and second floors to the central
staircases, which are part of the future safest route, because the fire starts near the eastern staircase on
the ground floor. The safety metric also adapts the safest path with the spread of the hazard. As can be
seen from the ground floor, the main channel is gradually pushed away from the fire source as the fire
propagates. Figure 14 confirms that although CPN with the energy metric also employs the congestion
ease algorithm, it does not switch routes as frequently as CPN with the time metric. This is because
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an energy efficiency route depends not only on the predicted congestion that will be encountered on the
path, but also on the length and sinuosity of the path.

Figure 10. Dijkstra’s algorithm routing.

Figure 11. CPN shortest-path metric routing.

Figure 12. CPN shortest-time metric routing.
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Figure 13. CPN safety metric routing.

Figure 14. CPN energy efficiency metric routing.

8. Conclusions

We have proposed a CPN-based multi-path routing algorithm to customise routes for diverse
categories of evacuees by making use of SP’s characteristic that each SP can explore routes based on
its own interests. Compared with other optimal algorithms, this algorithm is particularly efficient in
resource-limited wireless sensor network-based systems, as CPN allocates overhead in proportion to the
possibility of finding a desired path. We have proven that the three novel goal functions can improve
the QoS level, as well as increase the total number of survivors by considering the effect of potential
congestion. The experiment with heterogeneous evacuees indicates that the CPN-based algorithm with
diverse metrics can distribute evacuees to multiple routes and achieve better performance. Due to the
multi-domain sensing information required to provide evacuees with specific QoS routes, conventional
wireless sensor network-based emergency response systems with limited computational power and
battery power may become a bottleneck to the system performance. Hence, future research will be
directed to establish an infrastructure-less evacuation system framework based on cloud computing
and smart handsets. Because of the powerful computing capacity and the ability of the gathering
multi-domain information of cloud-enabled systems, technologies, such as augmented reality, wisdom
of the crowd and image-based localization, can be adopted for this framework.
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