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Abstract: This paper investigates, applies, and evaluates state-of-the-art Large Language
Models (LLMs) for the classification of posts from a dark web hackers’ forum into four cyber-
security categories. The LLMs applied included Mistral-7B-Instruct-v0.2, Gemma-1.1-7B,
Llama-3-8B-Instruct, and Llama-2-7B, with zero-shot learning, few-shot learning, and fine-
tuning. The four cyber-security categories consisted of “Access Control and Management”,
“Availability Protection and Security by Design Mechanisms”, “Software and Firmware
Flaws”, and “not relevant”. The hackers’ posts were also classified and labelled by a
human cyber-security expert, allowing a detailed evaluation of the classification accuracy
per each LLM and customization/learning method. We verified LLM fine-tuning as the
most effective mechanism to enhance the accuracy and reliability of the classifications. The
results include the methodology applied and the labelled hackers’ posts dataset.

Keywords: large language model; mistral; gemma; llama; cybersecurity; dark web; text
classification; few-shot learning; fine-tuning

1. Introduction
In the current interconnected digital landscape, cybersecurity threats have grown

in volume and sophistication. Unregulated data sharing and informal communication
channels empower malicious actors to rapidly spread harmful techniques that threaten
system integrity. Identifying vulnerabilities and correlating them with attack patterns is
critical for proactive cybersecurity management and defence. Artificial Intelligence (AI)
and, more recently, Large Language Models (LLMs) have emerged as powerful tools for
automating cybersecurity tasks, including phishing detection, malware analysis, and threat
intelligence extraction [1,2]. These models are very effective in processing complex and
unstructured textual data—like those found in hacker forums. The dark web is a valuable
source of threat intelligence, offering insights into exploits and emerging attacks. However,
its informal, coded, and unstructured nature presents unique challenges for automatic
classification and analysis. Manual processing is impractical, and existing rule-based or
traditional machine learning (ML) approaches often miss the nuance of texts coming from
the dark web.

Deep net and dark web data, although useful to extract hints on emerging or even
imminent threats, have two-fold challenges: (a) access to the content involving scraping,
decryption and preprocessing [3] and (b) its analysis, which is to a large extent, automated,
so that useful information, such as categorized threat indications, can be extracted. The
analysis of the content, which is unstructured, informal (slang-based), and even codified,
using AI and specifically LLM-based techniques, defines the aim of this work. Currently,
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efforts on proactive security, involving sources from the dark web and employing state-of-
the-art AI tools, have been intensified, both from an academic and commercial perspective,
involving white hats, government agencies, and independent labs. Specifically, AI and
LLMs are increasingly used in cybercrime forums [4] to extract cyber threat intelligence
and support detection [5], and there have been initial efforts to understand content from
opaque and not easily accessible sources [6]. Additionally, there have been efforts based on
the collection and consolidation of CTIs [7]. These approaches are aligned with legislative
efforts, including NIS2 [8] and the resilience of critical entity directives [9] in the EU.
Furthermore, the market currently offers real-time CTI info from the dark web, including the
monitoring of attack surfaces, threat intelligence feeds, and insights into dark web activities.

The present research aims to enhance existing analyst-driven intelligence strategies
with an open, LLM-based methodology. Specifically, the use of open-source LLMs is em-
ployed to categorize posts from hacker forums into four distinct cybersecurity vulnerability
groups. The posts are collected by the University of Arizona [10], and they are of an
informal and unstructured format, involving security and other thematic areas. In this
context, zero- and few-shot, as well as parameter-efficient fine-tuning strategies (LoRA),
are evaluated in scenarios with limited resources and labelled data. The LLM behaviour
is investigated in small, high-quality datasets where data collection is constrained by do-
main specificity, sensitivity, or access. This integration enhances our ability to analyze and
categorize complex informal communications more accurately.

Our methodology enables the scalable classification of such content into cybersecurity-
relevant categories, supporting tasks like vulnerability tracking, trend mapping, or risk
detection, contributing to the “Identify” function within the NIST cybersecurity frame-
work [11], enhancing threat intelligence and improving the identification and categorization
of cybersecurity threats. These advancements can yield actionable insights for future threat
detection and prevention. Additionally, our work bridges cybersecurity and AI by ad-
vancing methodologies, which typically rely on pre-trained embedding models and cosine
similarity metrics [12].

The main contributions of this work include the following:

• The novel classification of dark web resources for proactive security: We introduce
a novel, automatic classification mechanism involving posts from dark web hackers
into specific cybersecurity categories identified by a domain expert.

• The evaluation of state-of-the-art models and fine-tuning methods: This classification
is performed using four state-of-the-art open LLMs, namely Mistral, Gemma, Llama2,
and Llama3. We perform comparative and experimental assessments of the zero-shot,
one-shot, three-shot, and fine-tuned versions of each LLM. The results demonstrate
that fine-tuned models consistently outperform prompt-based approaches, even with
minimal data.

• The expert-annotated dataset: Using cosine similarity to match posts with cybersecu-
rity vulnerability descriptions, we curated a high-quality, expert-annotated dataset
comprising 670 of the hacker’s filtered posts.

The paper is organized as follows: Section 2 reviews the current state of the art,
focusing on the application of LLMs in cybersecurity, prompt engineering techniques, and
methods for customization and fine-tuning. Section 3 discusses the selection of LLMs and
learning approaches. Section 4 presents the experimental results for four different LLM
deployment strategies, including zero-, one-, three-shot and fine-tuning strategies, using
a selection of carefully chosen models. Section 5 provides an aggregated discussion and
comparative analysis of these findings, and Section 6 concludes with key takeaways and
suggestions for future work.
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2. Related Work
The increasing complexity of cyber threats and the fact that traditional rule-based

and signature-based systems often fall short in detecting new threats have necessitated the
adoption of AI-driven security solutions. The use of ML and Natural Language Processing
(NLP) techniques has improved threat intelligence processing, malware analysis, and in-
trusion detection. However, challenges persist, particularly in managing the unstructured
cybersecurity-related content from underground communities and hacker forums. LLMs
are paving the way for innovative cybersecurity automation, particularly for in-text clas-
sification, threat intelligence, and vulnerability detection. Currently, their deployment in
cybersecurity faces challenges, such as the limited availability of domain-specific labelled
data and bounded or even constrained computational resources.

2.1. AI and Machine Learning in Cybersecurity

Traditional rule-based systems and signature-based detection techniques struggle to
identify zero-day attacks, polymorphic malware, and changing cyberattack tactics [13–15].
AI-powered security solutions, on the other hand, showcase advancements in malware
analysis, intrusion detection systems (IDSs), threat intelligence, and network anomaly
detection [16]. ML models, like Support Vector Machines (SVMs), Random Forests, and
Artificial Neural Networks (ANNs), have been widely used in cybersecurity for event
classification, anomaly detection, and malicious activity identification [17]. Additionally,
genetic algorithms have been explored to develop adaptive cybersecurity defences, which
adjust dynamically to changing attack patterns. Despite these developments, traditional ML
approaches often rely on manually engineered features and cannot be readily generalized
in novel and unidentified attack types. Polymorphic and invisible malware can elude
conventional antivirus signatures. The work in [18] proposes an automated signature
extraction method that leverages ML to effectively detect malicious code variants, including
those generated by mutation engines. Similarly, ref. [19] introduces Andromaly, an ML-
based malware detection framework for Android smartphones that continuously monitors
system data to identify unusual activity, which could indicate potential infection.

While AI-driven IDS solutions improve detection accuracy and reduce computing
complexity, they still rely on structured datasets and often produce high false positive rates,
especially when faced with adversarial or noisy inputs [17]. Traditional machine learning
models—such as Decision Trees, Bayesian Networks, and Convolutional Neural Networks
(CNNs)—have been widely applied in cybersecurity tasks, like network traffic monitoring,
authentication, and anomaly detection [20]. However, these models typically require large,
labelled datasets and may not effectively cope with unstructured and dynamic cyber threats,
such as conversations on underground web groups.

Recent advances in deep learning have led to the exploration of Generative Adver-
sarial Networks (GANs) and Recurrent Neural Networks (RNNs) for dynamic malware
detection and attack simulation [21]. Additionally, adversarial ML, in which AI models
are trained to detect subtle alterations in cyber threats, has gained attention as a defence
mechanism against evasion attacks. However, these approaches still face challenges related
to interpretability, scalability, and computational efficiency, which limit their adoption in
resource-constrained environments.

AI-driven text classification extends beyond traditional applications like malware
detection and intrusion prevention. By analyzing threat intelligence reports, system logs,
and discussions on hacker forums, security experts can forecast emerging risks. Traditional
text classification methods, such as TF-IDF, Naïve Bayes, and even NLP models like
BERT [19], have been employed to analyze large-scale cybersecurity data. However, these
approaches have challenges confronting informal, aggressive, and unstructured language.
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The work in [22] proposes an AutoML-based framework that can automatically build,
optimize, and deploy IDS without human intervention. It combines intelligent search,
model selection, and tuning to create self-adaptive cybersecurity defences, aiming toward
fully autonomous security systems that can respond to evolving threats.

2.2. Large Language Models (LLMs) in Cybersecurity

In contrast to traditional AI methods that frequently rely on structured threat intelli-
gence and predefined attack signatures [23], LLMs are engineered to process unstructured
textual data, such as threat reports, security advisories, and informal communications [2].
Identifying unusual patterns within vast amounts of network traffic and security records,
LLMs play a crucial role in cyber threat detection [5,24]. They also support identifying
zero-day threats by automating vulnerability assessments and exploit detection during
malware analysis [1]. Furthermore, LLM-driven email classification models can effectively
distinguish phishing attempts from legitimate emails [25]. Beyond detection, LLMs en-
hance cybersecurity policy compliance by automating risk evaluations and generating
security protocols tailored to corporate environments [24].

Researchers have introduced a range of benchmarking tools to assess LLM perfor-
mance in cybersecurity applications. Domain-specific benchmarks, such as CyberBench and
CyberInstruct, evaluate LLMs’ capabilities in automated code analysis, threat intelligence
processing, and Named Entity Recognition (NER) [2]. Notably, CyberInstruct integrates
instruction-based fine-tuning and has shown performance comparable to closed models
like GPT-4. In addition, the CyberMetric dataset—developed using Retrieval-Augmented
Generation (RAG) and consisting of over 10,000 cybersecurity-related questions—evaluates
the broader cybersecurity expertise of LLMs [1]. A review of 25 cutting-edge LLMs shows
that larger models, like GPT-4 and Mixtral, consistently outperform smaller ones in domain-
specific cybersecurity tasks [26]. These benchmarks emphasize both the potential and
limitations of LLMs in cybersecurity, providing standardized methods to evaluate their
effectiveness. When it comes to cybersecurity, general-purpose LLMs have limitations
stemming from the fact that they are pre-trained on broad internet data rather than special-
ized cybersecurity texts, resulting in a low comprehension of domain-specific terminology.
Consequently, fine-tuning with cybersecurity-focused datasets is essential to mitigate issues
such as hallucinations or insufficient threat assessments.

While LLMs can automate tasks, such as social engineering attacks, penetration testing,
and vulnerability detection, they are not without risks. Attackers can manipulate LLM-
generated outputs to bypass security measures, raising concerns about their reliability
in high-stakes cybersecurity applications. Additionally, scalability and computational
costs remain significant obstacles to broader adoption. Many state-of-the-art models, like
GPT-4 and Mixtral, demand extensive GPU resources, making them less accessible for
organizations with limited computational resources. This situation underscores the need for
open-source, streamlined models that are specifically optimized for cybersecurity tasks [1].

The work in [27] investigates using LLMs to generate counterfactual examples in a
zero-shot manner to evaluate NLP models more thoroughly. By prompting LLMs without
fine-tuning, they create diverse, label-consistent variations that expose model weaknesses.
The obtained results show that LLM-generated counterfactuals are effective for stress
testing and improving model robustness.

2.3. LLMs for Cybersecurity Text Classification and Threat Intelligence

Threat intelligence, malware descriptions, phishing content, and hacker forum dis-
cussions are types of text that must be categorized/classified as an initial step in risk
assessment. Traditional approaches, like rule-based classifiers and SVMs, are less effective
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at processing the vast, unstructured, and dynamic nature of cybersecurity texts because
they require extensive manual feature engineering and domain-specific tuning [28].

LLMs have proven effective in addressing various cybersecurity text categorization
challenges. For instance, they enhance phishing detection by identifying fraudulent URLs
and misleading emails [2]. They also facilitate the processing of diverse security-related
content, including threat intelligence, vulnerability reports, security warnings, and dark
web communications [28,29]. Additionally, LLMs provide support in classifying malware
and exploits by analyzing malware signatures and cyberattack methods [1]. They also
contribute to anomaly detection by uncovering unusual patterns in network logs and HTTP
requests [2].

According to the CyberBench benchmark, optimized LLMs significantly outperform
traditional methods in cybersecurity-specific classification tasks [2]. Furthermore, incor-
porating RAG enhances LLM accuracy by enabling more context-aware threat insights.
To further address existing challenges, recent studies have explored domain-specific fine-
tuning, model compression techniques, and hybrid AI systems that integrate LLMs with
conventional cybersecurity frameworks [30].

Fine-tuned lightweight models have demonstrated high efficiency with minimal
computational overhead, making them practical for real-world applications. As large-
scale LLMs demand substantial computational resources, smaller, optimized models that
maintain high accuracy are becoming more popular. Techniques such as parameter-efficient
fine-tuning (PEFT) and low-rank adaptation (LoRA) further reduce hardware requirements
by eliminating the need for full-scale model retraining [30].

The work in [31] proposes a method where LLMs are augmented with external tools
(like web searches, APIs, and databases) to improve open-source intelligence (OSINT)
gathering. Instead of relying only on the LLM’s internal knowledge, they let the model
decide when and how to use tools to retrieve fresh, accurate, and verifiable information.
Their method shows that tool-augmented LLMs can outperform standard LLMs in complex,
real-world intelligence tasks.

3. Materials and Methods
3.1. Selection of LLMs

The selected LLMs are up to date, of an adequate level of sophistication, and have
comparable architectural complexity (as measured by the number of parameters) to ensure
meaningful comparisons. Additionally, models are open source, with weights available
under an open licence to promote repeatability and transparency. The selection is also
guided by computational resource constraints and insights from previous studies [26].

Selected LLMs include Llama3-8b-Instruct, Mistral-7b-Instruct-v0.2, Gemma-1.1-7b,
and Llama-2-7b-Instruct. These open-source models are largely comparable in terms of
complexity (with Llama3 having the highest parameter count), as depicted in Table 1. The
inclusion of Llama2 and Llama3 enables a direct comparison of consecutive versions of the
same core design, showcasing their evolutionary improvements. Although the Mixtral-
8x7B-Instruct was initially considered as a baseline model [26], it was excluded due to
hardware limitations; its 56 billion parameters require roughly 128 GB of GPU memory,
which exceeds the capacity of our NVIDIA A4500 GPU (20 GB VRAM).
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Table 1. Characteristics of the selected LLMs.

Name (Origin) Min. Gpu RAM Num of Parameters Vocab Size

Mistral-7b-v0.2 16 GB 7.3B 32K tokens
Gemma 14 GB 6.8B 64K tokens

Llama2-7b 14 GB 7B 32K tokens
Llama3-8b 16 GB 8B 128K tokens

To address the GPU VRAM constraints, the models were deployed in a quantized
format using a 4-bit quantization technique. Specifically, we applied the NF4 quantization
method alongside the ‘BitsAndBytesConfig’ library set to 4-bit precision, ensuring both
scalability and efficiency. Additionally, to reduce the computational cost, we disabled the
double quantization option and carried out computations using the half-precision floating
point format.

3.2. Zero-Shot, Few-Shot, and Fine-Tuning

Although LLMs are primarily trained on general web content, they can adapt to
specific tasks by leveraging their broad knowledge in new contexts [29]. This practice,
known as zero-shot learning, relies on carefully crafted prompts that guide the model
to perform tasks without any additional labelled training data. In this approach, the
model generates output based solely on its understanding of the prompt and its pre-
existing knowledge.

To further enhance their performance, especially when adapting to new contexts or
tasks, these models can be customized. However, even in their quantized form, LLMs
consist of billions of parameters, making full retraining highly resource-intensive. Con-
sequently, techniques like prompt engineering and fine-tuning are often used as more
efficient alternatives.

According to [32], a range of prompt engineering techniques has been developed to
address diverse tasks and applications. These methods aim to enable models to handle new
tasks without extensive retraining, improve reasoning and logical capabilities, reduce hallu-
cination, enhance user interactions, support knowledge-based reasoning, better understand
user intent, and foster metacognitive processes and self-reflection. For example, few-shot
learning—a simple yet effective prompt engineering approach—provides context through
exemplary questions and responses, guiding the model in generating appropriate outputs.

In addition to prompt engineering, model fine-tuning can refine performance by
adjusting only a subset of the LLM’s parameters, using pre-existing (possibly human-
generated) input. Techniques such as PEFT optimize this process through selective, additive,
re-parameterized, and hybrid fine-tuning strategies [33].

3.3. Dataset and Categories
3.3.1. Hacker’s Posts Dataset

The Arizona State University dataset includes an extensive collection of data gathered
from various dark web sources, including forums, IRC chats, marketplaces, and phishing
websites [1]. The dataset contains approximately 500K posts, covering thematic areas
related to illegal activities, including drug trafficking, weapons sales, stolen data, and
hacking tools. The posts vary significantly in length and format, but they share a common
characteristic: an informal style of communication.

A subset has been selected for further classification based on each post’s thematic
relevance to the identified vulnerabilities. Specifically, Google’s Universal Sentence Encoder
(USE) [34] was used to calculate the cosine similarity between each post and the vulnera-
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bility descriptions. Posts exceeding a similarity score of 0.75 were included, resulting in a
refined subset of 670 posts.

As the original form of the dataset consisted of raw IRC-like chat logs, including
timestamps, user handles, connection metadata and interleaved system messages, prepro-
cessing was needed. Specifically, a custom cleaning pipeline was developed to extract only
substantive, human-authored messages from these logs. Specifically, regular expressions
have been utilized to perform the following:

• Remove timestamps and nicknames (e.g., 15:12 <usename>).
• Eliminate system noise and like join/leave messages (e.g., !—user joined/quit

the chat).
• Remove duplicated messages, chat clutter, or channel announcements.
• Concatenate multi-line posts, where appropriate, to reconstruct complete sen-

tences/discussions.

The interventions have been as minimal as possible so that the format of each post is
not altered and, more importantly, its meaning is not distorted.

3.3.2. Selection of Categories and Post Categorization

The cybersecurity vulnerabilities considered, as detailed in [35], focus on critical
infrastructures and draw upon the following resources: (a) the NISTIR [36] hierarchical
structure enriched with vulnerabilities from NESCOR electric sector failure scenarios,
(b) the Common Vulnerabilities and Exposures (CVEs) Dictionary of publicly known
vulnerabilities, (c) the National Vulnerability Database, and the (d) ISO/IEC 27005 risk
management standard [37]. These vulnerabilities have different levels of granularity,
informational depth, and levels of specificity. Vulnerability description examples include
the “System relies on communications that are easy to jam”, “insufficient maintenance”,
“Weaknesses in Authentication Process or Authentication Keys”, and “Use of weak SSL
cipher and other cryptographic design flaws”.

To establish a practical and manageable set of categories, we initially defined a broader
set of ten categories, as depicted in Table 2. The initial expert-based classification of posts
produced uneven results, and early experiments proved challenging for LLMs to handle
this level of granularity (as presented in Table 2).

Table 2. The initial set of vulnerability categories.

Vulnerability Categories Num of Distinct Posts % of Distinct Posts

SW and firmware flaws 151 21.51%
Availability protection and

security by design mechanisms 228 32.48%

Access control and management 113 16.10%
Not relevant 123 17.52%

Data integrity mechanisms 18 2.56%
Patch management 12 1.71%

Security awareness and training 13 1.85%
Data encryption at rest, in motion,

and in use 14 1.99%

Misconfiguration 14 1.99%
Governance, ICT security policies,

and procedures 11 1.57%

Security information/log
management and monitoring 10 1.42%

Total 702 100%
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Considering the above, we focused on the first three vulnerability types, namely
“Software and firmware flaws”, “Availability protection and security by design mecha-
nisms”, and “Access control and management”, which together account for most posts
(approximately 70%). Including the “Not relevant” category brings the total coverage to
approximately 88%. Consequently, our classification relies on these four categories.

As presented in Figure 1, each selected post is categorized by the LLMs employing
zero-shot, one-shot and three-shot prompt engineering, as well as fine-tuned LLM variants.
The resulting inferences are then compared to those provided by a human expert.
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Figure 1. The steps performed.

The manual assignment of posts to the categories (labelling) was performed empiri-
cally through the gradual filtering of possible categories. Mapping posts to the categories
has not always been straightforward. Criteria included the content, the keywords included
(as mapped according to dark web slang) and most importantly, the identification of the
intent of the writer. The concept of confidence level was included in our experimentation,
but it proved that it did not improve the accuracy of the LLMs. Proof by contradiction logic
was also employed by an expert if assigning a post to other categories led to contradictions.

The experiments, including both training and inference, were conducted on a prede-
fined computational setup with limited resources, specifically using an NVIDIA A4500
GPU (manufactured by TSMC, Hsinchu, Taiwan) of 20 GB VRAM.

4. Results
In the following subsections, we present the accuracy, precision, recall, and f1-scores for

each of the four LLMs (Mistral-7B-Instruct-v0.2, Meta-Llama3-8b-Instruct, Google-Gemma-
1.1-7b, and Meta-Llama2-7b), across four approaches of prompt engineering: zero-shot,
one-shot, three-shot, and fine-tuning strategies.

4.1. Zero-Shot Approach

In the zero-shot approach, each LLM was prompted to classify the selected posts in the
four cybersecurity-related categories without any prior examples or additional contextual
information. To ensure consistent and reliable classification, we employed a precise and
specific prompt template. In line with core prompt engineering principles—specificity,
clarity, and structured outputs—the template was carefully designed to guide the model
effectively [38].

The final prompt template emerged from an iterative refinement process driven by
systematic experimentation and trial and error:

You are a sentence classifier. You will receive posts from hacker forums and categorize
them into one of the following categories: ‘Access control and management’, ‘Availability
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protection and Security by design mechanisms’, ‘Software and Firmware Flaws’, ‘Not
relevant’. Just generate the category of the following sentence, without anything else.

The prompt was crafted according to established prompt engineering best practices,
including structured input–output formatting [39], clearly defined goals, and the removal
of extraneous information. To reduce ambiguity, the prompt explicitly states the following:

• The classification objective.
• The exact category labels.
• The expected response format (“just generate the category without anything else”).

Additionally, the classification task was decomposed into a single, well-defined opera-
tion to optimize the model’s reasoning efficiency. By clearly defining the scope of the task
(i.e., classification and not text generation), this approach minimized cognitive load and
simplified the generation of structured and deterministic outputs.

The accuracy, precision, recall and f1-score per LLM, employing zero-shot learning,
are presented in Figures 2–5.
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Although Mistral demonstrates higher overall classification accuracy, there is an
asymmetry in the accuracy achieved per category in all models when starting from their
initial state.

4.2. One Shot

In the one-shot classification approach, we augmented the prompt by providing a
single representative example for each of the cybersecurity categories. A cybersecurity
expert carefully selected these examples to ensure that they were effectively capturing the
essence of each category while maintaining clarity, specificity, and relevance. Each example
consists of a concise and unambiguous hacker forum post alongside its correct classification
label. By incorporating such labelled examples directly into the prompt, the model gains
a clearer grasp of how inputs map to outputs, enhancing its ability to generalize from
minimal data. Unlike zero-shot classification, which relies solely on pre-trained knowledge,
the one-shot approach utilizes in-context learning, providing a concrete reference point for
decision-making.

To maintain consistency in data formatting, each selected example was appended to
the prompt using a structured pipeline. The core instruction template remained largely the
same as the zero-shot scenario, with the addition of examples to guide the classification
process. The examples reflect the diverse and often unconventional nature of hacker forum
posts, offering concrete references for the model’s decision-making. They include the
following points:

• Access Control and Management: “& don’t forget to google [password recovered] to
find passwords captured by keyloggers”.

• Availability Protection and Security by Design Mechanisms: “A ddos required more
than one person/computer for attacking a website”.

• Software and Firmware Flaws: “For example, cracking drm of popular window
games, especially new releases, then packaging your malware inside”.

• Not Relevant: “I believe they are using a method related to traffic shaping on a
world scale”.

By integrating these labelled examples within the prompt, the model can derive classi-
fication patterns from a single reference, creating a more structured report and minimizing
ambiguity during decision-making. The accuracy, precision, recall, and f1-score per LLM,
employing the one-shot strategy, are presented in Figures 6–9.
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4.3. Three Shot

The three-shot approach extends in-context learning by including three representative
examples per category in the prompt. This is particularly beneficial when dealing with
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ambiguous phrasing or specialized jargon in hacker forum posts. As in the one-shot
approach, a cybersecurity expert selected the examples to ensure that they accurately
represented each category while maintaining specificity and clarity [40,41]. By expanding
the number of examples, the model develops a stronger contextual understanding and
achieves greater classification accuracy without relying on external retrieval or fine-tuning.
The accuracy, precision, recall, and f1-score per LLM, employing the three-shot approach,
are presented in Figures 10–13.
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4.4. Fine-Tuning with LoRA

The LLMs were fine-tuned using LoRA [42] optimizing task-specific parameters while
preserving the pre-trained model weights. All models utilized 4-bit NF4 quantization for
memory efficiency and exhibited optimal performance under the following LoRA settings:

• lora_alpha = 64 (optimal scaling factor);
• lora_dropout = 0.1 (preventing overfitting);
• r = 8 (best rank of updated matrices);
• Bias = “none”;
• task_type = “CAUSAL_LM”.

Each model was further tailored for its architecture, including specific target LoRA
modules:

• Mistral-7B-Instruct: Applied standard LoRA configurations for efficient adaptation.
• Llama-2-7B: Utilized “all-linear” target modules for broader weight adaptation.
• Llama-3-8B: Standard LoRA adaptation was applied for causal language modelling.
• Gemma-1.1-7B: Fine-tuned with target modules, [“q_proj”, “k_proj”, “v_proj”,

“o_proj”, “gate_proj”, “up_proj”, “down_proj”], ensuring more precise control over
weight updates.

Fine-tuning was performed using the Supervised Fine-Tuning Trainer (SFTTrainer)
with dynamically generated, task-specific prompts. This approach ensured a fair compari-
son across the models by preserving consistent domain-specific classification performance
and leveraging each model’s architectural strengths.

The accuracy, precision, recall and f1-score per LLM, employing the three-shot ap-
proach, are presented in Figures 14–17.
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for fine-tuned Mistral inference.

For all vulnerability categories, the results are smoother in the case of fine-tuning and
accuracy fluctuations are flattened with continued training. Furthermore, Table 3 includes
an estimate of the training time for fine-tuning using LoRA on our 20 GB VRAM setup.
These figures confirm the lightweight nature of the tuning process. We also noted the
typical inference times per post for the zero-shot and few-shot runs.

Table 3. Time estimates for inference (zero/few-shot) and training (LoRA).

Model Name Zero-Shot (Inf) One-Shot (Inf) Three-Shot (Inf) Fine-Tunning
(Train/Test)

Mistral-7B 0.41 s 0.59 s 0.77 s ~7.97 min/0.57 s
LLaMA-2-7B 0.48 s 0.66 s 0.85 s ~8.75 min/0.64 s
LLaMA-3-8B 0.53 s 0.74 s 0.96 s ~9.96 min/0.72 s

Gemma-1.1-7b 0.50 s 0.70 s 0.91 s ~9.17 min/0.66 s
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4.5. Generalization

To assess the applicability and generalizability of the proposed approach across differ-
ent domains, we applied our methodology to the GoEmotions dataset [43,44]. This dataset
comprises Reddit comments, which are manually annotated with 27 distinct emotion labels.
Similarly to the hacker’s posts dataset, GoEmotions contains noisy, user-generated content
with heterogeneous lengths and formats. To simulate comparable conditions, we selected
a subset of the GoEmotions dataset [44] comprising four emotion categories—joy, anger,
sadness, and neutral—and ensured a balanced distribution of samples across these classes.
For our generalization experiments, we employed the Mistral LLM, which previously
demonstrated the highest accuracy in the hacker’s posts classification task.

We investigated two experimental settings: (a) prompts constructed using examples
that are representative of each target category and (b) prompts constructed using randomly
selected examples. Model performance in both settings was evaluated based on the accuracy
metrics reported in Table 4.

Table 4. Comparison of accuracy between GoEmotions and hacker’s posts using Mistral.

Model Name GoEmotions Dataset Hacker’s Posts Dataset

Zero-Shot 0.65 s 0.52 s

One-Shot 0.70 s (0.61 s if randomly
selected)

0.62 s (0.57 s if randomly
selected)

Three-shot 0.72 s (0.63 s if randomly
selected)

0.62 s (0.58 s if randomly
selected)

Fine-Tunning 0.79 s 0.82 s

As shown in Table 4, the accuracy achieved by the proposed method in the emotion
recognition domain exhibits a pattern consistent with that observed in the hacker’s posts
experiment. More specifically, fine-tuning yielded the highest performance, followed by
three-shot prompting, which slightly outperformed the one-shot approach, both of which
surpassed zero-shot performance. When prompt examples are selected randomly, accuracy
declines across all configurations, falling below the few-shot and zero-shot baseline in
both domains. These observations provide a strong indication of the applicability and
robustness of the proposed methodology across diverse domains and varying levels of
data noise.

5. Discussion
The heterogeneity of the posts and their informal language, coupled with the special-

ized nature of the categories, makes classification especially challenging. This difficulty is
amplified by the need to discern the author’s intent behind each post, i.e., whether the post
indicates preparation for an attack or merely discusses a malicious threat.

Figure 18 illustrates how the LLM customization and training methods affect classifi-
cation accuracy, consolidating the findings from Section 3. In general, few-shot learning
demonstrates superior performance compared to zero-shot approaches, and fine-tuning
outperforms all prompt engineering techniques.
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The improvement in accuracy is further evidenced in the confusion matrices, as de-
picted in Figure 19, for the Mistral LLM, where the darker the colour, the better the accuracy.
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By providing one example per category, the one-shot prompt offers a minimal yet
effective demonstration of the classification task. This approach enhances the LLM’s ability
to produce accurate classifications by fostering a nuanced understanding of the context.
Although having more than one sample per category might seem beneficial for the context,
the results sometimes indicate decreased accuracy. This can occur because LLMs become
overwhelmed with too many instances, leading to confusion or misalignment as they
attempt to identify the most relevant patterns. As the number of samples increases, the
models have difficulties in generalizing effectively, especially if the additional examples
introduce noise or semantic overlap.

In hackers’ forum posts, adding more examples does not necessarily improve the
model’s understanding of the content. As shown in Figure 18, the three-shot prompting
accuracy is equivalent or worse (in three out of four LLMs) than a single representative
example for each class. For Gemma, in particular, additional examples seem to bias
the model toward “Not relevant” (Class 3). This is because Gemma-1.1-7b, unlike the
other models, is pre-trained predominantly on mathematical texts, datasets and extensive
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programming codes from various sources. This decrease in performance has been even
more apparent in 5-shot prompting, a method we tested but decided against using due to
its inefficacy.

Figure 20 illustrates the performance of LLMs across different types of prompting.
While Mistral consistently shows the highest accuracy across all customization methods,
there is also a noticeable improvement in the performance metrics of Llama3 compared to
Llama2. This improvement highlights the advancements performed in the updated version
of the model.
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Mistral-7b was initially trained using online data, encompassing a broad spectrum of
general internet text and common knowledge, rather than a diverse mix of web documents,
scientific or academic papers, or specialized datasets in mathematics and coding. This
training approach may explain why Mistral consistently outperforms other models across
various prompting techniques.

Figure 21 depicts the accuracy achieved per LLM and prompting technique.
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Figure 22 depicts the accuracy achieved per class for the different models employed.
We observe that Mistral’s performance in Class 3 (“Not Relevant”) improved progressively
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from the zero-shot to one-shot to three-shot approaches, thanks to its general-purpose
pre-training corpus. Mistral has been extensively trained on diverse general knowledge
datasets, so it excels at identifying unclear or irrelevant text. This capability allows the
refinement of classification boundaries in few-shot scenarios by incorporating more in-
stances. The improvement in Class 3 demonstrates how contextual examples can diminish
ambiguity and help general-purpose models, such as Mistral, align their predictions more
closely with the desired label. A possible over-reliance on broad corpus patterns, however,
may lead to incorrect classifications for more complex technical categories like Class 1 or
Class 2.
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Additionally, Classes 1 and 2 are prone to misclassification due to possible contextual
ambiguity and overlapping terminology. For instance, posts about “software patching” or
“redundant backups” may be interpreted as either software defects or availability protection.
These fine-tuned models have shown moderate improvement in disambiguating such
cases, demonstrating their enhanced ability to differentiate between closely related terms
and contexts.

LoRA selectively fine-tunes specific model layers, such as q_proj and k_proj, to enhance
the model’s ability to capture token relationships effectively. This targeted approach is
particularly beneficial for models like Gemma and Mistral in technical categories like Class
2 (“Software and Firmware Flaws”), although it may be less effective in broader categories
like Class 1 (“Availability Protection”). Similarly, both Llama2 and Llama3 are configured
to use this method, with Llama3’s larger scale (8 billion parameters) providing more robust
contextual embeddings. This advantage makes Llama3 especially effective in handling
categories with a high ambiguity, such as Class 0 (“Access Control and Management”).

The accuracy of classifying technical posts is influenced by features such as the number
of words, syntactic correctness and complexity, structure, and the usage of coded language.
Specifically, posts that contain shorter sentences or informal language, including slang,
abbreviations, and technical jargon, have been more difficult to classify. This challenge
is particularly observed in zero-shot and few-shot prompting scenarios, where limited
contextual information hampers the models’ ability to accurately interpret and classify
the content.

In terms of limitations and defining the aim of our work, we draw attention to the
following points:
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• Computational resources: The experiments were performed within an infrastructure
of dedicated but bounded resources, employing quantized versions of LLMs.

• Restricted dataset: The absence, to our knowledge, of labelled datasets on the dark
web, combined with their informal nature and the format of the posts, necessitated
the generation of a labelled dataset annotated by the domain expert, which included a
relatively small population (as we expect this to be typical in similar realistic cases),
high quality, and limited noise.

• The subjectivity of human-based labelling: The understanding and manual annotation
of the expert may also introduce variance in the classification.

• Carefully selected examples: the randomness of example selection for prompt engi-
neering is proven to decrease the overall accuracy.

The limitations of the current work reflect the boundaries of realistic situations and
deployments and do not influence the methodological approach of this study and its
application within the perimeter of the system. In this respect, a practical implementation
could involve the (near) real-time classification of dark web posts, generating alerts for
potential cyber-security threats. This requires the continuous feeding of dark web data into
the classification mechanism of our solution.

6. Conclusions and Future Work
In this work, we have explored the use of AI for the effective recognition and classifica-

tion of informal text (hackers’ posts). Hackers’ posts were classified into four cybersecurity
vulnerability categories, employing four different LLM customization techniques: zero-
shot, one-shot, three-shot and fine-tuning approaches. We have contributed to advancing
traditional techniques, such as cosine similarity and keyword-based analysis, by employing
state-of-the-art LLMs, namely Gemma-1.1-7b, Llama3-8b-Instruct, Mistral-7b-Instruct-v0.2,
and Llama-2-7b-Instruct, in their quantized versions. The classification results were evalu-
ated according to their accuracy, precision, recall, and f1-score, comparing them against
the assessments made by a human cybersecurity expert. The classification accuracy varied
with the customization technique, with results reaching up to 80%.

The classification task has proven challenging due to the complex nature of the text,
language and terminology coming from the dark web. This task demands a deep compre-
hension of language, a nuanced understanding of the context, and the ability to learn in
context. To overcome these challenges, both fundamental and advanced capabilities of
LLMs are required [24].

The analysis highlighted the importance of balancing and optimizing example selec-
tion to enhance the language model’s performance without adding unnecessary complexity.
Our work has produced a labelled dataset of hacker posts, which aligns hacker texts with
categorized cybersecurity vulnerabilities, thus enriching the resources available to the
cybersecurity community.

Moving forward, a key area for future research is examining the performance of larger
LLMs, such as Mixtral, GPT-4, and other models with more than 8 billion parameters,
and assessing the impact of using models without quantization (full precision) in terms of
classification accuracy. This study has also underscored the importance of fine-tuning for
cybersecurity text classification. In this view, further efforts should explore advanced fine-
tuning methods, such as domain-specific continual learning, parameter-efficient fine-tuning
(PEFT), and low-rank adaptation (LoRA), to enhance model accuracy while maintaining
computational efficiency. Additionally, self-supervised learning techniques may improve
the flexibility of LLMs without relying on extensive human-labelled datasets.

While this work is primarily focused on evaluating prompt engineering and fine-
tuning techniques for LLMs, the expert-annotated dataset of cybersecurity vulnerabilities
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and hacker forum posts could serve as a valuable benchmark for various deep learning
architectures, including CNNs, RNNs, and Transformer-based models, as well as traditional
ML models, like SVMs, Random Forests, and Decision Trees. Future research should assess
these models in terms of computing costs, interpretability, and efficiency in comparison
with LLMs. Additionally, the dataset could be enriched by incorporating more posts, threat
intelligence reports, and metadata, including geographical threat landscapes, multilingual
content aspects, and the confrontation/mitigation of identified vulnerabilities [45].
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