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Abstract: The high costs of acquiring and maintaining high-performance computing (HPC)
resources pose significant barriers for medium-sized enterprises and educational institu-
tions, often forcing them to rely on expensive cloud-based solutions with recurring costs.
This paper introduces CommC, a multi-purpose commodity hardware cluster designed to
reduce operational expenses and extend hardware lifespan by repurposing underutilized
computing resources. By integrating virtualization (KVM and Proxmox) and container-
ization (Kubernetes and Docker), CommC creates a scalable, secure, and cost-efficient
computing environment. The proposed system enables seamless resource sharing, ensur-
ing high availability and fault tolerance for both containerized and virtualized workloads.
To demonstrate its versatility, we deploy big data engines like Apache Spark alongside
traditional web services, showcasing CommC’s ability to support diverse workloads ef-
ficiently. Our cost analysis reveals that CommC reduces computing expenses by up to
77.93% compared to cloud-based alternatives while also mitigating e-waste accumulation
by extending the lifespan of existing hardware. This significantly improves environmental
sustainability compared to cloud providers, where frequent hardware turnover contributes
to rising carbon emissions. This research contributes to the fields of cloud computing, re-
source management, and sustainable IT infrastructure by providing a replicable, adaptable,
and financially viable alternative to traditional cloud-based solutions. Future work will
focus on automating resource allocation, enhancing real-time monitoring, and integrating
advanced security mechanisms to further optimize performance and usability.

Keywords: cloud computing; big data; commodity hardware; cost-efficient processing;
Apache Spark; Kubernetes; proxmoxve; environmentally conscious infrastructure

1. Introduction
The cost of owning and maintaining high-end supercomputers capable of dealing

with large-scale problems is usually too high for medium-sized companies or educational
institutions. This problem is addressed by modern big data engines such as Apache
Spark [1] that are designed to run on commodity hardware, which is efficiently combined
to create computing clusters. The common practice is to lease the hardware that is necessary
for executing analyses in the form of virtual machines that reside in the cloud (IaaS). In
this way, an organization can greatly reduce its running costs, as it pays for hardware only
when it uses it. However, the majority of organizations still have to purchase and maintain
personal computers for their employees. This hardware remains largely underutilized as
it is only used during working hours, and even when it is in use, most of the available
resources (CPUs, RAM, etc.) are in an idle state. The work of Abdulghafour Mohammad
and Yasir Abbas [2] identifies 11 major barriers that hinder small and medium enterprises
from effectively utilizing cloud computing resources.
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Such barriers can be categorized into technological, organizational, and environmental
barriers. Technological issues include security and privacy concerns, integration difficulties
with existing infrastructure, and unreliable cloud service performance. Organizational
challenges stem from limited IT expertise, financial constraints, and resistance to change,
which hinder smooth adoption. Environmental barriers involve regulatory compliance,
vendor lock-in, market pressure for rapid adoption, unreliable internet connectivity, and
lack of trust in service providers. To overcome these obstacles, organizations must adopt
strategic planning, invest in training, and carefully select cloud providers to maximize the
benefits of cloud computing.

Moreover, the current trend of research in this area is concentrated on high-
performance systems, focusing on optimizing resource allocation, minimizing latency, and
improving scalability in dynamic and heterogeneous environments. Advanced frameworks
like EVRM [3] leverage cutting-edge technologies such as deep reinforcement learning to
manage multiple virtual resources, ensuring efficient utilization of CPUs, memory, and
bandwidth while adapting to fluctuating workloads. These innovations aim to address the
limitations of traditional resource management approaches, enhancing system performance
and reliability, especially in the context of virtualization and cloud computing.

The Elastic Virtual Resource Management (EVRM) framework, which is the work of
Wang et al. (2025) [3], incorporates four modules—monitor, analyzer, planner, and execu-
tor—to dynamically manage virtual instances. The framework employs a deep reinforce-
ment learning-based resource allocation method, Deep Deterministic Policy Gradient-based
Resource Allocation (DDPG-RA), to optimize the allocation of CPUs, memory, and band-
width. This approach learns the complex dependencies between resources and application
performance, enabling better adaptation to fluctuating demands.

The demand for high-performance computing has increased dramatically, fuelled
by advancements in big data analytics, artificial intelligence, and other computation-
intensive workloads [4]. However, acquiring and maintaining specialized hardware, such
as supercomputers, remains financially challenging for many medium-sized organizations
and educational institutions [5]. This limitation has led to a growing interest in utilizing
commodity hardware and virtualization technologies to achieve scalable and cost-effective
computing solutions.

We developed a system that integrates cutting-edge open-source virtualization and
cluster management technologies to address this need. Our approach involves deploying
a hypervisor stack, virtualization management software, and a desktop environment on
standard personal computers. This setup enables the creation of virtual machines (VMs) on
each physical host, which users can seamlessly access through a VNC-based application.
This ensures that users can perform their daily tasks without realizing they are interacting
with a virtualized system rather than one running on physical hardware. This configuration
also empowers system administrators with precise control over resource allocation for VMs
on each host, allowing them to run additional tasks on the same machines.

The use of virtual machines instead of physical machines provides significant security
enhancements by isolating workloads effectively [6]. Each VM operates within its own
sandboxed environment, ensuring that a compromise in one VM does not impact others or
the host system. This isolation reduces the risk of malware propagation or unauthorized
access. Additionally, VMs enable secure snapshots and rollbacks, allowing administrators
to quickly restore systems to a known safe state in the event of a security breach. Virtualized
environments also support advanced monitoring and access control mechanisms, simplify-
ing real-time threat detection and response. Features like virtual network segmentation
and controlled resource sharing further enhance the security and manageability of the
infrastructure compared to traditional physical systems.
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For enhanced flexibility and easier maintenance, the physical machines are intercon-
nected to form a cluster. This cluster setup provides numerous benefits for managing
virtualized environments efficiently. By pooling resources such as CPU, RAM, and storage
across multiple nodes, the cluster enhances scalability and ensures optimal utilization [7].
It facilitates seamless VM migration between nodes with minimal downtime, ensuring high
availability and robust disaster recovery capabilities to maintain service continuity even
during hardware failures [8]. Centralized cluster management simplifies administration
by offering a unified interface to monitor and control the entire infrastructure. Moreover,
shared storage solutions improve data redundancy and accessibility. With integrated
tools for backup, restoration, and resource allocation, clustering enables organizations to
maintain highly efficient, flexible, and reliable virtualized infrastructures.

This cluster, as mentioned before, can also be exploited to run big data engines like
Apache Spark. However, this cannot be achieved without a specialized cluster manager
for these kinds of jobs. Our solution is to host (in the same physical machines) some
additional virtual machines that form a Kubernetes [9] cluster. Using Apache Spark
with Kubernetes (K8s) offers powerful advantages for managing big data workloads.
Kubernetes provides a flexible, scalable, and containerized environment that simplifies
deploying and orchestrating Spark applications. Unlike Spark’s Standalone mode, which
lacks the breadth of ecosystem integrations and advanced scheduling features, Kubernetes
provides fine-grained control over resource allocation and integrates natively with DevOps
workflows, CI/CD pipelines, and monitoring tools. By leveraging Kubernetes’ built-in
resource management, Spark clusters can scale dynamically to handle varying workloads
efficiently. The integration allows seamless containerization, ensuring consistency across
development, testing, and production environments. Additionally, Kubernetes enhances
fault tolerance by automatically rescheduling Spark executors in case of failures. Its native
support for multi-cloud and on-premises environments ensures flexibility in infrastructure
choices, while unified logging and monitoring tools streamline performance tracking
and debugging. This container-centric approach reduces overhead, ensures portability,
and simplifies management compared to provisioning and maintaining dedicated Spark
Standalone clusters. Together, K8s and Spark enable robust, scalable, and efficient big data
processing pipelines.

Compared to Mesos or YARN, Kubernetes benefits from a wider adoption and more
active development community, which translates into better support, frequent updates,
and rich plugins for networking, storage, and security. While YARN is tailored to Hadoop
ecosystems and Mesos is known for generalized cluster management, Kubernetes embraces
a broader cloud-native philosophy that lets Spark coexist seamlessly with other container-
ized workloads, ultimately delivering greater flexibility and efficiency. In CommC’s case,
this setup allows for running a series of services in the same Kubernetes environment. Run-
ning web services on Kubernetes enhances scalability, reliability, and operational efficiency
by automating scaling to handle traffic fluctuations, ensuring consistent performance,
and optimizing resource use. Its self-healing capabilities replace failed containers and
restart unresponsive services, boosting uptime. Kubernetes simplifies deployments with
declarative configurations, enabling seamless updates and rollbacks while minimizing dis-
ruptions. Moreover, Kubernetes natively provides both Layer 4 (TCP/UDP) load-balancing
through its Service abstraction (e.g., ClusterIP, NodePort, and LoadBalancer Services) and
Layer 7 (HTTP/HTTPS) load-balancing via the Ingress resource, which ensures even traffic
distribution for better performance and resilience. Its platform-agnostic design supports
deployments across on-premises, cloud, or hybrid environments, avoiding vendor lock-
in. Robust networking features, including service discovery and secure communication,
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combined with integrated monitoring and logging, make Kubernetes an ideal platform for
deploying, managing, and scaling modern web applications.

Nonetheless, the architecture that was described in the previous paragraphs comes
with some drawbacks, too. Some jobs are inherently difficult to parallelize, and the ma-
chines used in this scenario are very limited, so it is of great importance to extract every bit
of available performance without sacrificing the ease of managing the system. Our pro-
posed solution for serial performance-oriented tasks is to run Linux containers alongside
the full virtual machines. This enables us to have a high-level production orchestration
system for managing our cluster and, at the same time, maintain full control over the
resources allocated by the nodes participating in it.

However, apart from the technological advantages, this approach challenges envi-
ronmental issues. It is common knowledge that the rapid growth of electronic waste
(E-waste) [10] has been noted as an issue by various resources and organizations. The work
of Jain et al. (2023) [10] highlights that E-waste generated by the disposal of electronics
like laptops, mobile phones, and televisions contains hazardous materials posing signif-
icant risks to human health and the environment. The study explores global and Indian
E-waste production trends, identifying factors such as industrialization, technological
advancements, and poor recycling practices as key contributors. E-waste arises not only
from the end of a product’s lifespan but also from consumer behavior and technological
obsolescence. Despite its rapid growth (3–4% annually), only 15% of E-waste is recycled,
highlighting a significant environmental and health concern due to toxic substances [11].
Our proposed system architecture expands the lifespan of systems deemed obsolete and
will eventually deteriorate the E-waste issue that our planet suffers from.

Our contribution: The CommC system introduces a novel approach to leveraging
commodity hardware for cost-effective, scalable, and multi-purpose computing. Unlike tra-
ditional cloud-based or high-performance computing (HPC) cluster solutions, CommC in-
tegrates virtualization (Proxmox VE) and container orchestration (Kubernetes and Docker)
within the same physical infrastructure, optimizing resource utilization while maintain-
ing workload isolation. This hybrid model allows organizations to repurpose under-
utilized hardware, providing a low-cost alternative to expensive cloud services while
retaining flexibility.

One of the core contributions of CommC is its cost-efficiency. By utilizing open-source
technologies, CommC offers a self-managed cloud-like environment without incurring
vendor lock-in or recurring subscription fees. Our benchmarking results demonstrate
significant cost reductions compared to cloud providers such as Google Cloud, AWS,
and Microsoft Azure, making it an ideal solution for medium-sized enterprises, research
institutions, and educational organizations. Additionally, CommC ensures scalability and
adaptability, dynamically adjusting resource allocation based on workload demands. In the
current system state, an administrator is responsible for the resource allocation task. Our
real-world experiments validate its ability to handle machine learning, big data analytics,
and web services efficiently.

Beyond cost and performance benefits, CommC contributes to environmental sus-
tainability by extending the lifespan of older hardware. By repurposing existing systems,
the platform helps mitigate electronic waste (E-waste), offering a greener alternative to
cloud computing, which relies on energy-intensive data centers. Furthermore, CommC
enhances security and fault tolerance by leveraging KVM-based virtualization and Kuber-
netes security policies, ensuring workload isolation, access control, and resilience against
cyber threats.

Our novelty: The CommC system was developed as a direct response to the high cost
of cloud infrastructure, which often makes large-scale computing inaccessible to medium-
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sized enterprises, research institutions, and educational organizations. Even though cloud
platforms like Google Cloud, AWS, and Microsoft Azure offer scalable computing solutions,
their recurring costs, data transfer fees, and vendor lock-in present significant financial
and operational challenges. Many organizations face the dilemma of either investing in
expensive cloud services or struggling with underutilized local hardware, which remains
idle for large portions of the day. CommC bridges this gap by providing a scalable,
cloud-like environment that repurposes existing hardware into a cost-efficient and high-
performance computing cluster. Additionally, CommC enables cost savings of up to 6×–8×
compared to cloud platforms by eliminating compute instance rental fees, storage costs, and
network egress charges. Instead of paying for cloud infrastructure that scales with usage,
organizations using CommC can leverage their own underutilized hardware, transforming
idle machines into an efficient computing cluster.

Beyond cost efficiency, CommC promotes sustainability by extending the lifespan
of commodity hardware, reducing electronic waste (E-waste), and lowering energy con-
sumption compared to large cloud data centers. Unlike hyperscale cloud providers, which
operate energy-intensive facilities, CommC runs on local infrastructure, offering a greener
alternative without sacrificing computational power.

In summary, the proposed architecture was designed to eliminate the financial and
operational barriers of cloud computing by offering an affordable, scalable, and secure
alternative that enables organizations to fully utilize their existing hardware investments.

The remainder of this paper is structured as follows: Section 2 reviews related tech-
nologies and services, highlighting their roles within the proposed system. Section 3 details
the system architecture, and Section 3.1 describes the main cluster components. Section 3.2
discusses the network requirement for the system. The software used for creating CommC
is analyzed in Section 4 while the physical implementation of the cluster, supported appli-
cations, use cases, and cost analysis are described in Sections 5 and 5.2. Finally, conclusions,
limitations, and future directions are outlined in Section 6.

2. Preliminaries
2.1. Hypervisors

A hypervisor, or Virtual Machine Monitor (VMM), is a foundational technology that
enables multiple virtual machines (VMs) to run on a single physical machine by abstracting
hardware resources. Hypervisors are categorized into two types: Type 1 (bare-metal),
which operates directly on hardware for high performance (e.g., VMware ESXi, Hyper-V),
and Type 2 (hosted), which runs on an existing operating system and is commonly used for
development and testing (e.g., VirtualBox [12] and VMware Workstation [13]).

Hypervisors enable resource sharing, secure isolation, and workload flexibility, and
they leverage technologies like Intel VT-x and AMD-V for hardware-assisted virtualization.
They provide essential functionalities such as live migration, snapshots, and virtualized
hardware components, facilitating resource optimization and high availability. However,
they pose challenges such as performance overhead, security vulnerabilities, and the need
for skilled management [14].

Even though the terms “hypervisor” and “VMM” are often used interchangeably,
distinctions exist in specific contexts. The hypervisor oversees overall resource allocation
across VMs, whereas the VMM focuses on managing individual VMs. Together, they
form the backbone of modern IT, enabling cloud computing, enterprise data centers, and
hybrid environments. Despite challenges like resource competition and operational costs,
hypervisors remain critical for scalable, cost-effective, and flexible IT infrastructure. Recent
research [15–17] focuses on improving energy efficiency and resource management in
cloud data centers, addressing critical challenges such as high energy consumption, carbon
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footprint, and the operational costs associated with virtualized environments. One study
highlights strategies for virtual machine (VM) consolidation to optimize resource usage
and minimize power consumption while maintaining service-level agreements (SLAs). It
explores techniques like dynamic voltage and frequency scaling (DVFS), soft scaling, and
resource throttling to balance energy efficiency with performance requirements.

On the other hand, the second delves into holistic approaches to cloud resource
management, leveraging advanced algorithms and predictive techniques to adapt resource
allocation dynamically. This includes handling heterogeneous workloads, minimizing VM
migration overhead, and enhancing system reliability. The research emphasizes reducing
SLA violations and energy consumption while proposing new metrics and methodologies
for assessing consolidation strategies.

Kernel-based Virtual Machine (KVM) [18] and Quick Emulator (QEMU) [19] are two
widely used open-source virtualization tools that serve distinct yet complementary roles
in enabling efficient and flexible virtualized environments. KVM and QEMU are comple-
mentary yet distinct tools in the virtualization ecosystem. KVM is a Type 1 hypervisor
integrated into the Linux kernel, offering near-native performance by leveraging hardware
virtualization extensions like Intel VT-x [20] and AMD-V [21–23]. It excels in scalability,
security, and reliability, making it a preferred choice for enterprise-grade virtualization
and cloud computing platforms. In contrast, QEMU is a versatile open-source tool that
functions both as an emulator and a virtualization solution. While it can emulate hard-
ware for cross-platform development, its full potential is realized when paired with KVM,
where it provides device emulation and virtualized hardware, enabling high-performance
virtual machines.

The key difference lies in their core focus and use cases. KVM is optimized for large-
scale production environments requiring robust performance and advanced features like
live migration and container integration. QEMU, on the other hand, shines in develop-
ment and testing scenarios, particularly where hardware emulation or cross-architecture
compatibility is needed. Together, KVM and QEMU offer a powerful combination—KVM
providing the performance and scalability of hardware-assisted virtualization, and QEMU
adding flexibility and comprehensive emulation capabilities, making them indispensable
for hybrid and diverse workload requirements.

2.2. Containers and Their Impact on Virtualization

Containers are lightweight and portable units of software that encapsulate an applica-
tion along with all its dependencies into a single entity. This packaging ensures consistent
performance across diverse environments, making containers highly reliable for modern
computing needs. Unlike virtual machines (VMs), which emulate an entire hardware stack
and require individual operating systems, containers share the host operating system’s ker-
nel. This architectural difference makes containers faster to start and more resource-efficient,
as they isolate processes at the OS level.

The primary distinction between containers and VMs lies in their design. Containers
are optimized for lightweight, agile operations, making them ideal for microservices [24]
and cloud-native applications. In contrast, VMs provide stronger isolation by running full
operating systems, making them better suited for legacy applications, untrusted workloads,
or scenarios requiring diverse OSs. Containers excel in portability and scalability, whereas
VMs offer comprehensive flexibility and robust isolation.

Container technologies such as Docker and Kubernetes have transformed the manage-
ment and orchestration of containerized workloads. Docker simplifies container creation
and deployment, and Kubernetes automates the scaling, management, and operation of
containers across clusters. Containers are integral to modern development workflows,
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particularly in Continuous Integration/Continuous Deployment (CI/CD) pipelines and mi-
croservices architecture. Conversely, VMs remain the preferred solution for running legacy
systems, multi-tenant environments, and workloads requiring diverse operating systems.

Linux Containers (LXC)

Linux Containers (LXC) [25] is one of the earliest containerization technologies, en-
abling multiple isolated Linux environments to run on a shared Linux kernel. Introduced
in 2008, LXC leverages kernel features like namespaces for process isolation and control
groups (cgroups) for resource management. Each container operates as a process on the
host system, making LXC lightweight and efficient compared to traditional virtualization.
LXC has influenced the development of modern container tools and remains a foundational
technology for Linux-centric environments

2.3. Reverse Proxies

A reverse proxy is a server that acts as an intermediary between client devices and
backend servers. It forwards client requests to the appropriate backend server and returns
the server’s response to the client. Unlike a forward proxy, which accesses resources on
behalf of clients, a reverse proxy operates on behalf of servers, simplifying and managing
server interactions for the client. Reverse proxies are a key component in modern web
architectures, offering benefits such as enhanced scalability, security, and performance.

One of the primary functions of a reverse proxy is to serve as a Layer 7 load balancer
that distributes the incoming traffic across multiple backend servers. This ensures optimal
resource utilization, prevents server overload, and improves overall system responsiveness.
Additionally, reverse proxies can cache responses from backend servers, speeding up client
interactions and reducing redundant processing. Security is another critical advantage,
as reverse proxies mask the identity and IP addresses of backend servers, minimizing the
attack surface and protecting against direct cyberattacks.

Reverse proxies are extensively used in content delivery networks (CDNs) to cache
static content closer to users, facilitating faster delivery. They also centralize SSL/TLS
termination, offloading encryption and decryption tasks from individual servers, which
simplifies certificate management and enhances performance. Moreover, reverse proxies
support advanced functionalities such as URL rewriting, request filtering, and authentica-
tion enforcement, making them indispensable for managing and optimizing web traffic in
complex network infrastructures.

3. System Architecture
The high-level architecture of our proposed system is illustrated in Figure 1. Our

cluster is composed of multiple physical nodes that are equipped with a similar set of
components, and they collectively form a cohesive virtualized environment managed
through a centralized cluster management layer.

The Virtualization Cluster is represented at the top, symbolizing the unified virtualized
environment that spans across all physical nodes. This centralized layer ensures that all
nodes work in harmony, managing resources and Virtual Machines (VMs) across the entire
cluster. By linking multiple nodes together, the cluster provides redundancy, load-balancing,
and scalability, allowing the virtualized environment to handle varying workloads and
ensure high availability. In its current state, CommC operates under a hierarchical resource
management structure. At a higher level, an administrator is responsible for allocating
the necessary resources for each virtual machine, similar to how resource management
is handled in cloud-based environments. The actual distribution of tasks and resource
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assignment within the system is managed by the cluster orchestrator, which, in this case,
is Kubernetes.

Figure 1. High-level architecture schema.

Each physical node contains three main components:

1. GUI (in yellow): This provides a graphical user interface for interacting with the
node locally. The GUI offers a user-friendly way to interact with the virtual machines
running on the cluster.

2. Cluster Manager (in blue): This component handles the orchestration of resources
within the node and coordinates with the other nodes in the cluster. The Cluster
Manager communicates with the centralized Virtualization Cluster layer, ensuring
that resources are allocated effectively and that VMs can be managed across nodes.

3. Virtual Machines (in green): These are the actual virtualized instances running on
each physical node. VMs are isolated environments that simulate separate operating
systems, allowing multiple applications to run concurrently on a single physical
server. The hypervisor on each node allocates resources to these VMs and ensures
their isolation from each other.

At the bottom of the diagram, the Kubernetes icon indicates that some of the VMs
within the cluster are running a separate Kubernetes cluster. This setup enables Kubernetes
to orchestrate containerized applications on top of virtualized infrastructure, providing
an additional layer of flexibility. By running Kubernetes within VMs, the architecture can
support containerized workloads alongside traditional virtualized applications, enabling a
hybrid environment within each physical node.

In summary, each node is equipped with local management and monitoring capa-
bilities, and virtual machines provide isolated environments for running both standard
applications and a Kubernetes cluster.

3.1. Cluster Node Stack

Figure 2 presents a comprehensive architecture of the main interconnected components
that comprise a single node in our cluster design. The architecture is organized into three
main sections: the Local User’s GUI, the Virtualization Stack, and the Operating System, all
unified under the Cluster Node.
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Figure 2. Architecture of cluster’s single node.

On the left, the Local User’s GUI serves as the interface through which users seamlessly
interact with the virtual environment. Key components, including the Controller and VNC
Client within the VM Viewer, provide direct control and monitoring capabilities for virtual
machines, enabling local users to manage the VMs intuitively and effectively. A Desktop
Environment is required for these components to function properly.

At the heart of the diagram, the Virtualization Stack drives the entire virtualization pro-
cess. A Web Application layer at the top enables remote access and management, offering a
centralized web-based interface for streamlined control. Directly beneath, the Virtualization
Management layer orchestrates the entire virtual infrastructure, overseeing the deployment,
monitoring, and administration of both virtual machines and containers. This central-
ized management ensures cohesive and efficient control over all virtualized resources and
provides the functionality for connecting each node to the Virtualization Cluster.

Within the Virtualization Stack, the Hypervisor and OS Virtualization components repre-
sent the two main virtualization technologies powering the system. The Hypervisor facili-
tates the creation of Virtual Machines (VMs), each operating as an independent, fully isolated
environment with its own dedicated resources and operating system. This design is ideal
for use cases requiring high levels of isolation and security. In contrast, OS Virtualization
supports Containers, which are lightweight and efficient and share the host OS kernel while
remaining securely isolated from one another. Containers are well-suited for rapid scaling
and microservices architectures, allowing for agile and resource-efficient deployments.

The Operating System layer at the base underpins the entire setup, providing essential
resources such as CPU, memory, and storage for both VMs and containers. As the foun-
dation for the Virtualization Stack, it establishes a stable and reliable environment that
enables seamless operation and scalability across all virtualized workloads.

Overall, this cluster node architecture provides a robust, flexible framework that
integrates user-friendly interfaces, powerful virtualization management, and efficient
resource allocation. Its dual support for VMs and containers ensures that diverse workload
requirements are met with precision and agility, making it an ideal solution for modern
cloud, data center, and enterprise environments.
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3.2. Network Schema

The network configuration requirements for the proposed setup are quite complex and
intricate. The users’ virtual machines should remain isolated, whereas those that form the
Kubernetes cluster must communicate with each other. Every virtual machine should be
able to access the internet but should not be directly accessible from it. However, a selected
few services must be exposed to the World Wide Web; otherwise, the system’s functionality
will be rather limited. To satisfy all those needs, we came up with the architecture that is
demonstrated in Figure 3.

Figure 3. Network schema.

This network architecture is designed specifically to combine traditional virtual ma-
chines with containerized workloads, such as a hybrid infrastructure running both simple
VMs and Kubernetes clusters.

At the edge of the network, traffic from the internet passes through a reverse proxy,
which intermediates requests and forwards them to appropriate resources within the cluster.
A gateway sits between the reverse proxy and the cluster, handling the routing to ensure
that external traffic is appropriately directed to internal systems.

Within the cluster, each node contains both physical and virtual networking layers.
The physical network interface card (NIC) provides the hardware connection between
the node and the broader network, and virtual network interfaces enable communication
within the node and across the cluster. Two main types of virtual interfaces are used: NAT
interfaces and VXLAN interfaces. NAT interfaces allow internal workloads, such as virtual
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machines and containers, to access external networks while masking their internal IP
addresses, providing security, simplifying routing, and saving static IPs. VXLAN interfaces
create an overlay network, allowing seamless communication between workloads across
different nodes as if they were on the same local network.

Inside each cluster node, a mix of virtualized environments operates, including simple
virtual machines and Kubernetes-managed nodes that host containerized applications or
pods. These workloads rely on the virtual network interfaces to interact both within the
node and across the cluster. By combining these networking layers, the system provides
a secure, flexible, and scalable environment for managing hybrid workloads that include
both traditional VMs and containerized applications. This configuration enables smooth
communication between distributed components while maintaining efficient and secure
access to external networks.

3.3. Security

A publicly accessible cluster requires stringent measures to minimize its attack surface
and protect against unauthorized access. In the configuration that we propose, the firewall is
set to allow only a small number of ports, which have been intentionally randomized, rather
than using the default well-known ports. SSH access via the root account is completely
disabled, and VNC functionality is restricted to the local network to reduce external
visibility. All internet-bound traffic is routed through Cloudflare, which serves as a reverse
proxy and secures data transmissions with SSL encryption. Furthermore, user accounts
are grouped according to role-based permissions, ensuring that privileges are granted
only as needed and preventing inadvertent or malicious misuse. Multi-tenancy challenges
are managed by allocating separate virtual machines with dedicated storage to each user,
thereby containing any potential security incidents within isolated environments.

4. Technologies and Services
4.1. Proxmox Virtual Environment (Proxmox VE)

Proxmox Virtual Environment (Proxmox VE) [26] is an open-source platform for
efficiently managing virtual machines (VMs) and containers. Built on Debian Linux, it
integrates Kernel-based Virtual Machine (KVM) for full virtualization and Linux Containers
(LXC) for lightweight containerization, providing flexibility to handle diverse workloads.
Proxmox VE supports both single-node setups and scalable cluster deployments, making it
suitable for various infrastructure requirements.

The platform features a centralized management interface accessible through a web-
based graphical user interface (GUI), which simplifies tasks such as live migration, back-
ups, and high-availability configurations. Advanced users can utilize a RESTful API, a
command-line interface, and role-based access control for more granular management. The
GUI is designed for ease of use, featuring a resource tree, real-time log monitoring, and
secure SSL-encrypted access. It also supports multi-factor authentication and integrates
with authentication sources like LDAP and Microsoft Active Directory.

Proxmox VE offers a flexible storage model, supporting both local and shared storage
solutions such as NFS, SAN, Ceph RBD, and ZFS. This flexibility enables live migration
and efficient management of storage resources across cluster nodes. An integrated backup
tool, vzdump, is included to create consistent snapshots of running VMs and containers,
ensuring data integrity and simplifying restoration processes.

In comparison with other similar systems, like OpenStack, Proxmox is a more
lightweight and straightforward platform, making it well-suited for labs or small-to-
medium enterprises (SMEs), where simplicity and ease of setup are key. Its intuitive
web interface, which bundles virtualization (KVM) and containers (LXC) into one cohesive
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system, minimizes the need for multiple specialized services and extensive configuration.
This makes Proxmox faster to deploy and easier to maintain, especially for teams with
limited time or resources. In contrast, OpenStack is a full-fledged private cloud solution
that offers a rich ecosystem of components for large-scale, multi-tenant environments.
However, it is typically more complex to install, operate, and scale, requiring specialized
expertise. For lab environments or SMEs that value a more direct, out-of-the-box virtualiza-
tion solution without extensive overhead, Proxmox’s simplicity, resource efficiency, and
robust feature set present a compelling choice.

4.2. Docker

Docker [27] revolutionized containerization by making it accessible and user-friendly.
It packages applications and their dependencies into standardized containers, ensuring con-
sistency across development, testing, and production environments. Docker’s integration
with tools like Docker Hub and orchestration platforms like Kubernetes has cemented its
position as a cornerstone of modern DevOps practices. Its focus on portability, scalability,
and efficiency makes Docker essential for cloud-native application development.

4.3. Kubernetes (K8s)

Kubernetes [9] is a robust orchestration platform designed to manage, scale, and
automate containerized applications. It organizes containers into pods, enabling seam-
less communication and scaling across clusters. Kubernetes’ features, such as rolling
updates, self-healing, and persistent storage integration, have made it the industry stan-
dard for container orchestration in cloud-native and distributed systems. While its com-
plexity presents a learning curve, Kubernetes remains essential for managing complex,
large-scale applications.

4.4. Desktop Environments

Desktop environments offer a graphical workspace that abstracts the complexities
of command-line interfaces, providing users with a visually appealing and customizable
experience. They are designed to cater to diverse needs, from resource-efficient options like
Xfce to more feature-rich and visually intensive alternatives. These environments support
extensive customization, enabling users to personalize layouts, themes, and workflows,
and they typically come with integrated tools like file managers and system settings to
streamline usage.

Xfce is a lightweight desktop environment known for its balance of performance,
functionality, and resource efficiency. Built on the GTK toolkit, Xfce is modular in design,
allowing users to replace or customize components. Its low system requirements make it
ideal for older hardware or resource-constrained environments. Xfce supports extensive
theming and customization, offering a user-friendly and stable desktop experience suitable
for both personal and professional use.

4.5. Graphical Desktop-Sharing Systems

Graphical desktop-sharing systems enable remote access to and control of computers
over networks, facilitating tasks like troubleshooting, collaboration, and telecommuting.
These systems use a client-server model, with protocols such as Remote Desktop Protocol
(RDP) and Virtual Network Computing (VNC) enabling secure and seamless interactions.
Desktop-sharing technologies are widely adopted in modern hybrid work environments,
offering real-time collaboration and remote system management.

VNC is a cross-platform remote desktop protocol that uses the Remote Framebuffer
Protocol (RFB) found in [28] to share graphical desktops between devices. Its simplicity
and compatibility across operating systems make it a popular choice for remote access.
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VNC operates via a client-server model, capturing the host desktop environment and
transmitting it to a remote client, and bandwidth-intensive advancements like compression
and adaptive quality have improved its performance. VNC is widely used in IT support,
education, and system administration.

TigerVNC Client [29] is high-performing and uses secure software to access remote
desktops. It supports modern graphics capabilities, high-resolution displays, and en-
cryption protocols like TLS, ensuring smooth and secure remote desktop connections. Its
cross-platform compatibility and intuitive interface make it an efficient tool for remote work,
system management, and troubleshooting, catering to both novice and advanced users.

4.6. Cloudflare

Cloudflare is a prominent web infrastructure and security platform that functions as
a powerful reverse proxy server. By sitting between client requests and backend servers,
Cloudflare intercepts, optimizes, and secures web traffic while protecting backend servers
from direct exposure to the internet. This intermediary role enables Cloudflare to deliver
enhanced performance, robust security, and flexibility in managing web applications.

Cloudflare secures web traffic with signed SSL/TLS certificates, offering end-to-end
encryption to protect data from eavesdropping and tampering. By terminating SSL con-
nections at the edge of its global network, Cloudflare reduces the computational load on
backend servers. It supports various SSL configurations, such as flexible SSL for basic
encryption and strict SSL for maximum security, catering to diverse business needs.

Cloudflare also provides extensive customization options through its rules engine.
Users can create firewall rules to block malicious traffic, implement rate-limiting to prevent
abuse, and use page rules to optimize performance or redirect visitors. Advanced features
like Workers and Transform Rules enable scripting and dynamic customization, allowing
businesses to deploy serverless applications, rewrite requests, and adapt content on the fly.
These capabilities make Cloudflare a versatile and essential tool for securing and optimizing
web applications, enhancing user experiences, and simplifying traffic management.

5. Applications, Use Cases, and Cost Analysis
The deployment of a cluster of commodity hardware provides an affordable and

scalable solution to run various workloads, including hosted services, machine learning
experiments, and big data processing. This section highlights the primary applications and
use cases supported by the cluster, which demonstrate its versatility and resource efficiency.
In addition, a cost analysis will be conducted to evaluate the economic benefits of utilizing
commodity hardware, emphasizing its cost-effectiveness compared to traditional high-end
computing solutions.

We implemented our proposed architecture in a research laboratory at the University
of Patras equipped with 16 personal computers (PCs), each powered by an Intel® Core™ i7-
10700 CPU @ 2.90 GHz processor, except for two systems that are equipped with an intel i7-
3770K processor at 2.50 GHz and one that uses an Intel® Core™ i7-4770 @ 3.40 GHz. Fifteen
of these PCs are configured with 16 GB of memory, and one has 24 GB. In terms of storage,
the systems are equipped with 512 GB Solid State Drives (SSDs). Detailed specifications are
shown in Table 1. Additionally, the three systems with different processors feature RAM
and storage components of varying speeds and manufacturers, allowing us to evaluate
CommC’s performance under heterogeneous hardware conditions. The first version of
our system is publicly available on GitHub and can be accessed using the GitHub link,
accompanied by a detailed installation tutorial and troubleshooting documentation.

https://github.com/abompotas/commc


Future Internet 2025, 17, 121 14 of 20

Table 1. System specifications.

Model Number of PCs Processor RAM Storage

Dell OptiPlex
5090 13

Intel® Core™ i7-10700
@ 2.90 GHz (Intel

Corporation, Santa
Clara, CA, USA)

16 GB 512 GB

Custom System
1 2

Intel® Core™ i7-3770K
@ 2.50 GHz (Intel

Corporation, Santa
Clara, CA, USA)

16 GB 2 × 512 GB

Custom System
2 1

Intel® Core™ i7-4770
@ 3.40 GHz (Intel

Corporation, Santa
Clara, CA, USA)

24 GB 2 × 512 GB

Total 16 240 Threads 266 8.5 TB

5.1. Application and Use Cases

The cluster serves as a backbone for various hosted services that support research,
collaboration, and operational needs. These services include APIs, web hosting, and
collaborative platforms, which leverage the cluster’s distributed architecture for reliability
and performance. DiscMycoVir is an elegant and user-friendly web platform for biological
analysis, emphasizing a comprehensive and detailed result-reporting user experience. The
Overleaf Server is a collaborative LaTeX editing platform within a Kubernetes environment
tested specifically on a MicroK8s cluster, utilizing NFS for persistent storage. Table 2
summarizes the hosted services and their respective types.

Table 2. Services hosted in the Lab’s cluster.

Description Type Hardware
Reservations Software

HypeRec’s backend [30] API 2 CPUs, 4 GB
of memory Python 3.11 (sklearn, keras, Flask), MongoDB 7.0

DiscMycoVir Platform
12 CPUs,
16 GB of
memory

Docker, Python 3.11 (Flask), MySQL 8.0,
Trimmomatic 0.36, FastQC 0.12, Trinity

RNA-Seq 2.11
Lab’s Website Web

Hosting
1 CPU, 1 GB
of memory Wordpress 6.7, PHP 8.3, MariaDB 11.6

Lab’s Overleaf Server Platform 1 CPU, 1 GB
of memory Sharelatex 5.3, MongoDB 7.0, Redis 7.4

VMs for Lab Staff IaaS Varies Varies

The cluster is extensively utilized for Apache Spark experiments, enabling distributed
computing for tasks such as natural language processing, graph analytics, and community
detection. These experiments make full use of the cluster’s computational and memory
resources, as shown in Table 3. It should be noted here that the RAM shown in Table 3
expresses the memory usage for each experiment and does not account for the necessary
RAM that the operating system and the containers need. Therefore, an overhead of 10–20%
exists, which our system is more than capable of handling.

The SparkNLP experiment leverages Spark for natural language processing tasks. It
utilized seven nodes, consuming 28 CPUs and 68 GB of RAM over a total duration estimate
of 80 h. Neural Networks with Torch Distributor integrates Spark with TorchDistributor
to run distributed neural networks. The resources for the experiment were four nodes,
16 CPUs, and 32 GB of RAM over 80 h. The Spark Bayesian Networks [31] experiment is
focused on implementing Bayesian networks in Spark. It used seven nodes, consuming
28 CPUs and 68 GB of RAM over 40 h.

https://github.com/abompotas/DiscMycoVir
https://ai.imslab.gr
https://github.com/abompotas/k8s-overleaf
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Table 3. Resource allocation and usage exclusively for Apache Spark experiments.

Description
Apache
Spark

Version(s)
Nodes CPU RAM

(GB)
Usage

(h)
Avg.

RAM
Usage

Research on NLP 3.4.1 7 28 68 80 92%
Research on NNs with TorchDistributor 3.5.3 4 16 32 80 95%
Spark Bayesian Networks [31] 2.4.3, 3.4.1 7 28 68 40 87%
Triangle Counting in Large Historical
Graphs [32] 3.5.3 9 36 104 192 78%

Community detection in large social
networks (part 1) 3.5.3 13 28 80 144 91%

Community detection in large social
networks (part 2) 3.5.3 11 44 148 240 96%

The next series of experiments form part of ongoing research on graph analytics,
with objectives like counting triangles in graph communities [32]. The algorithms under
evaluation were implemented in three phases. The first one utilized nine nodes, 36 CPUs,
and 104 GB of RAM, running for a total of 192 h. The second and third phases have a
broader aim to detect community structures within graphs, and the resource usage was
adjusted accordingly. The second phase was executed on 13 nodes with 28 CPUs and 80 GB
of RAM for 144 h, and the third one required significant resources, with 11 nodes, 44 CPUs,
and 148 GB of RAM, making it the most resource-intensive experiment, lasting for 240 h.

5.2. Cost Analysis

In the previous subsection, several applications of the cluster were presented, show-
casing its versatility and utility. In this subsection, we will focus on conducting a detailed
cost analysis by estimating the expenses associated with running the same experiments on
prominent cloud platforms, namely Google Cloud, Amazon Web Services (AWS), and Mi-
crosoft Azure. This analysis aims to compare the resource requirements of each experiment
and their corresponding costs on these industry-leading platforms, providing insights into
the economic efficiency of utilizing a commodity hardware cluster versus well-established
cloud services.

The analysis will focus on three key aspects: computational resources, storage, and the
network. The computational resources aspect includes the number of required instances,
the core count, and the RAM necessary for each experiment. Regarding storage, each
experiment was allocated 512 GB, and this will be factored into the cost analysis for each
cloud platform. However, network traffic costs—both inbound and outbound—will be
excluded from the analysis, along with any additional costs associated with disk read and
write operations enforced by certain services. This simplification will result in a slightly
lower overall estimated cost for the experiments, but it ensures a more streamlined and
focused cost comparison.

Each cloud platform provides a cost estimator tool that allows users to estimate the
necessary funds for their system based on the specific requirements of an experiment.
However, this approach often results in a rough estimation of the cost, or a “guestimate”,
due to variations in how each service calculates expenses. For instance, differences in
pricing models, regional availability, instance types, and additional fees for features, such
as data transfer or specialized hardware, can cause discrepancies in the estimations. As a
result, although these tools offer a useful starting point, they may not always reflect the
precise costs incurred during actual usage. Therefore, we will analyze each axis separately.

Firstly, for each cloud service, we selected the appropriate configuration and virtual
machine (VM) type based on the resource requirements of each experiment. Table 4 presents
the chosen specifications for each platform. It is evident that, in some cases, the RAM
requirements slightly exceed the experiment’s actual needs. However, we opted for the
configuration that most closely aligned with the resource demands of the experiments

https://spark.apache.org/docs/latest/api/python/reference/api/pyspark.ml.torch.distributor.TorchDistributor.html
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while ensuring the necessary computational capacity was met. This pragmatic approach
balances cost efficiency and functionality, leveraging the most suitable VM types available
on each platform.

Table 4. Cost comparison of VM types across different cloud services.

GC Azure AWS

VM Type c4a-standard-4 B4as t4g.xlarge
Cores 4 4 4
RAM (GB) 16 16 16
Base Core Frequency (Ghz) 3 2.45 2.5
Cost Rate (€) 0.21 0.165 0.13

Cost rates and specifications may vary depending on the time of access.

Table 4 provides details about the cost rate per hour of usage for each selected configu-
ration. It is important to note that these rates may vary depending on the date of access or
the user’s geographic location. For this analysis, the cost rates were retrieved on 22 January
2025, from Greece, with the servers hosted in the Central Europe region. These factors may
slightly influence the overall cost and should be taken into consideration when interpreting
the results.

Cost = Number of Instances · Cost Rate · Usage Hours (1)

The costs of each experiment regarding the computational aspect were calculated
as shown in Equation (1). The results are depicted in Table 5. The table summarizes the
estimated costs for running the experiments on three major cloud platforms: Google Cloud,
Azure, and AWS. Each experiment is listed, along with its corresponding cost on each
platform, calculated based on the VM configurations and usage hours. The total cost for
all experiments is also provided, highlighting the differences in cost efficiency among
the platforms.

Table 5. Estimated costs for running experiments on Google Cloud, Azure, and AWS.

Description Google (€) Azure (€) AWS (€)

Research on NLP 117.6 92.4 75.26
Research on NNs with TorchDistributor 67.2 52.8 43.00
Spark Bayesian Networks [31] 58.8 46.2 37.63
Triangle Counting in Large Historical Graphs [32] 362.88 285.12 232.24
Community detection in large social networks (part 1) 393.12 308.88 251.59
Community detection in large social networks (part 2) 554.4 435.6 354.81

Total 1554.00 1221.00 994.56
Total + Storage 1 1564.24 1343.88 2 1006.34

1 Total cost, including a 512 GB Standard SSD across cloud platforms. 2 Azure costs might include additional
features or configurations.

The aforementioned cost is considered the monthly cost of the service used to conduct
each experiment. Each service offers various storage options. However, we chose a
persistent storage SSD of 512 GB, with the cost depicted in the last row of Table 5.

Our cluster comprises 16 computers, each with a maximum power supply of 200 watts.
This results in a total energy consumption of 3.2 kWh for the entire cluster per hour. In a
worst-case scenario, where all systems operate at full capacity continuously for 24 h a day
over a month (720 h), the total cost would amount to 3.2 · 24 · 30 · 0.15 = 345.6€, where 0.15
is the average cost of 1 kWh in Greece. This duration is more than sufficient to complete
the required experiments, and the overall cost remains significantly lower compared to
alternative cloud platforms.

If commodity hardware were not utilized, the alternative approach would require the
acquisition of pre-configured enterprise systems from major vendors, which comes with

https://spark.apache.org/docs/latest/api/python/reference/api/pyspark.ml.torch.distributor.TorchDistributor.html
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significantly higher costs. Systems such as the Dell PowerEdge R7525, HPE ProLiant DL385
Gen10 Plus, Lenovo ThinkSystem SR645, and Supermicro A+ Server offer high-performance
configurations, typically featuring 128 to 240 threads, 256–512 GB RAM, and 8–16 TB of
SSD storage. However, these solutions come at a steep price, ranging from EUR 15,000 to
over EUR 30,000, depending on CPU configurations, memory capacity, storage options,
and vendor support packages. For instance, a Dell PowerEdge R7525 with 128 cores,
256 GB RAM, and 8 TB NVMe storage can cost between EUR 18,000 and EUR 25,000, while
an HPE ProLiant DL385 Gen10 Plus with similar specifications ranges from EUR 20,000
to EUR 30,000. These prices vary further based on warranties, performance tiers, and
additional enterprise support options. In contrast, CommC leverages existing commodity
hardware, significantly reducing upfront investment costs while providing a scalable and
flexible computing environment. This cost-effective approach makes high-performance
computing more accessible to organizations that may otherwise struggle with the financial
burden of traditional enterprise solutions.

Discussing the performance of our design among popular cloud alternatives is a
difficult task. The reason that gave birth to the proposed system design, apart from
sustainability, was the high cost one must face in order to take advantage of such structures.
However, when observing the hardware specifications of our implemented cluster and
the alternatives in Table 4, one would expect that our approach should outperform Azure
and Amazon Web Services due to higher CPU clock speed, and Google Cloud would be
the best performer regarding tackling the tasks shown in Table 3. This statement by itself
might be wrong. There are multiple factors that affect the performance of such systems,
such as disk read/write speeds and network transfer speeds. In this study, we chose that
each design would contain similar a SSD disk, in order to minimize the speed difference
and the cost of the alternatives. Finally, in terms of networking, our commodity hardware
is connected to a local network, which can sometimes be slower than virtual machines
running on a single physical system. However, cloud providers do not guarantee that their
virtual machines will be hosted on the same physical machine. They offer network plans
for a fixed fee or based on the amount of transferred data, which will further elevate the
cost. To sum up, this study does not attempt to compare the performance of our design
versus cloud alternatives but offers a sustainable, highly customizable solution that can
satisfy the needs of at least medium-sized organizations and enterprises.

6. Conclusions and Future Work
The proposed CommC system effectively demonstrates the potential of repurpos-

ing commodity hardware into a high-performing, multi-purpose cluster. By integrating
advanced virtualization and containerization technologies, including KVM, Docker, and
Kubernetes, CommC provides a scalable, flexible, and cost-efficient solution tailored to di-
verse workload demands. This hybrid architecture optimizes underutilized hardware and
significantly reduces operational costs while offering enhanced fault tolerance and security.

The use of commodity hardware extends the lifecycle of existing systems, contributing
to sustainability by addressing the growing concern about E-waste. Through strategic
resource allocation and innovative management approaches, CommC empowers medium-
sized enterprises and educational institutions to adopt high-performance computing solu-
tions without incurring prohibitive costs.

However, we were unable to find any recent (2024–2025) peer-reviewed publica-
tions specifically addressing the energy consumption and environmental impact of cloud
providers. Many articles [33–35] exist, revealing the fact that over the past five years, the
operation of data centers by major tech companies has led to more than USD 5.4 billion
in public health costs due to air pollution. In 2023 alone, these costs were estimated at
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USD 1.5 billion, marking a 20% increase from the previous year. Google’s data centers
were identified as the largest contributors, accounting for USD 2.6 billion in health-related
expenses between 2019 and 2023. The energy consumption of these centers, often reliant
on fossil fuels, has been linked to air pollution’s contribution to ailments such as cancer
and asthma.

Furthermore, popular cloud service providers do not offer a carbon emission estimator
based on a chosen configuration, making it challenging to accurately assess the environ-
mental impact of different setups. As a result, a direct comparison of energy consumption
between our system and cloud-based alternatives remains difficult without standardized
emission metrics. However, one of the key sustainability advantages of our approach is that
it extends the lifespan of existing hardware, preventing it from being discarded as electronic
waste. By repurposing commodity hardware instead of decommissioning it, our system
reduces E-waste accumulation and contributes to a more sustainable computing model.

The CommC system offers a cost-effective and scalable solution for leveraging com-
modity hardware, but it is not without its limitations. One significant challenge lies in
the complexity of maintaining the architecture. The system integrates multiple advanced
technologies, including KVM, Kubernetes, Docker, and Proxmox, which, while offering
flexibility and functionality, introduce a level of operational complexity. Organizations
with limited technical expertise or small IT teams may find it difficult to manage and
troubleshoot such a setup. The steep learning curve associated with configuring and main-
taining these tools could require considerable time and effort, potentially offsetting the
system’s benefits.

Another limitation of CommC that is related to the underlying systems, mainly Prox-
mox, is the number of nodes that can be added to a single cluster. Proxmox relies on
Corosync for synchronization, which can introduce overhead when achieving consensus.
According to Proxmox’s official documentation, “There is no explicit limit for the number
of nodes in a cluster. In practice, the actual possible node count may be limited by the host
and network performance. Currently (2021), there are reports of clusters (using high-end
enterprise hardware) with over 50 nodes in production”. However, other accounts indicate
that Corosync may exhibit communication issues in clusters with more than 30 nodes. The
primary bottleneck and root of these types of problems lies in the computers’ network in-
terface controllers, which, unfortunately, cannot be remedied without a hardware upgrade.
Our own deployment, consisting of 16 physical nodes, has not encountered any noticeable
delays or discrepancies.

The cost analysis presented in this paper highlights the significant financial advantages
of the CommC system over cloud services, even when factoring in additional costs, such
as operational expenses and hardware failures. While the comparison primarily focuses
on initial expenses and general operational costs, it is important to note that long-term
factors like power consumption, cooling, periodic hardware upgrades, and occasional
hardware failures do not substantially diminish the cost-efficiency of the CommC system.
Even when accounting for these additional expenses, the overall affordability remains
superior to cloud-based alternatives, where recurring costs such as subscription fees and
data transfer charges often accumulate rapidly over time. Furthermore, the flexibility to
avoid vendor lock-in and the ability to use open-source tools further enhance the system’s
financial viability. By carefully managing operational expenses and leveraging commodity
hardware, the CommC system provides a robust and cost-effective alternative to traditional
cloud services, even when considering the potential for additional costs.

In the future, we aim to enhance the CommC system by focusing on two primary
areas of improvement. First, we aim to enhance resource allocation through intelligent
automation powered by machine learning algorithms. These algorithms will dynamically
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analyze workload patterns to optimize resource distribution, ensuring higher efficiency and
improved utilization of the underlying hardware. This approach will minimize the need for
manual intervention, making the system more adaptable to varying demands. Additionally,
we plan to develop an API that securely integrates with the laboratory’s Proxmox cluster to
automate processes, generate telemetry, and efficiently manage resources for multiple users.
Furthermore, we intend to implement a machine learning model capable of predicting
future resource utilization based on historical usage trends, leveraging auto-regressive and
moving average techniques to enhance forecasting accuracy.

Second, we intend to develop a user-friendly platform for monitoring and accessing
the various services hosted within the CommC environment. This platform would simplify
administrative tasks by providing an intuitive interface for visualizing resource usage,
managing services, and configuring system parameters. It would also enhance the user
experience by allowing seamless access to hosted services, thereby lowering the technical
barrier for end-users. These enhancements are expected to improve the scalability, usability,
and overall efficiency of the CommC system, paving the way for broader adoption across
diverse organizational settings.
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