

Future Internet 2025, 17, 467 https://doi.org/10.3390/fi17100467

Article

Beyond Accuracy: Benchmarking Machine Learning Models for

Efficient and Sustainable SaaS Decision Support

Efthimia Mavridou, Eleni Vrochidou, Michail Selvesakis and George A. Papakostas *

MLV Research Group, Department of Informatics, Democritus University of Thrace, 65404 Kavala, Greece;

emavridou@cs.duth.gr (E.M.); evrochid@cs.duth.gr (E.V.); miselve@cs.duth.gr (M.S.)

* Correspondence: gpapak@cs.duth.gr; Tel.: +30-2510-462321

Abstract

Machine learning (ML) methods have been successfully employed to support decision-

making for Software as a Service (SaaS) providers. While most of the published research

primarily emphasizes prediction accuracy, other important aspects, such as cloud deploy-

ment efficiency and environmental impact, have received comparatively less attention. It

is also critical to effectively use factors such as training time, prediction time and carbon

footprint in production. SaaS decision support systems use the output of ML models to

provide actionable recommendations, such as running reactivation campaigns for users

who are likely to churn. To this end, in this paper, we present a benchmarking comparison

of 17 different ML models for churn prediction in SaaS, which include cloud deployment

efficiency metrics (e.g., latency, prediction time, etc.) and sustainability metrics (e.g., CO2

emissions, consumed energy, etc.) along with predictive performance metrics (e.g., AUC,

Log Loss, etc.). Two public datasets are employed, experiments are repeated on four dif-

ferent machines, locally and on the cloud, while a new weighted Green Efficiency

Weighted Score (GEWS) is introduced, as steps towards choosing the simpler, greener and

more efficient ML model. Experimental results indicated XGBoost and LightGBM as the

models capable of offering a good balance on predictive performance, fast training, infer-

ence times, and limited emissions, while the importance of region selection towards min-

imizing the carbon footprint of the ML models was confirmed.

Keywords: machine learning; Software as a Service (SaaS); decision support systems;

churn prediction; carbon footprint; CO2 emissions; sustainable AI; green AI;

benchmarking; machine learning

1. Introduction

SaaS refers to cloud-based application services without the need for installation or

local maintenance [1]. The applications are, therefore, hosted by providers, can be ac-

cessed from any device as long as there is an internet connection, and are typically under

a recurring subscription. SaaS has empowered businesses and individuals with flexibility,

lower costs and fast deployment [2]. Yet, billing issues, low engagement, lack of product

fit to customer needs and vivid competition between different SaaS tools may lead to

churn [3,4]. Customers cancel or fail to renew their subscription, which directly impacts

providers’ revenue, growth and long-term viability.

In a SaaS environment, machine learning (ML) models are often employed towards

real-time decision support. In this context, ML models repeatedly analyze users’

Academic Editors: Demetris

Trihinas and Alexandros

Karakasidis

Received: 15 September 2025

Revised: 8 October 2025

Accepted: 9 October 2025

Published: 11 October 2025

Citation: Mavridou, E.; Vrochidou,

E.; Selvesakis, M.; Papakostas, G.A.

Beyond Accuracy: Benchmarking

Machine Learning Models for

Efficient and Sustainable SaaS

Decision Support. Future Internet

2025, 17, 467. https://doi.org/

10.3390/fi17100467

Copyright: © 2025 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license

(https://creativecommons.org/license

s/by/4.0/).

Future Internet 2025, 17, 467 2 of 38

engagement metrics and behavior, along with transactional data, to determine potential

churn risks and provide actionable recommendations such as running reactivation cam-

paigns for users that are likely to churn [3,5]. For the latter task, speed and cost-efficiency

are considered crucial for sustainable SaaS ML models; real-time inference is essential to

timely provide information for signs of disengagement, while efficient models are re-

quired to reduce overheads, considering the related costs to run ML models at scale in

cloud resources. Thus, it is important to ensure that ML models are able to provide accu-

rate, fast and cost-efficient predictions to assure sustainability in cloud environments [6].

The environmental footprint of cloud-based ML in SaaS is also a great concern, since now-

adays, sustainability is a competitive edge, influencing decisions of customers that in-

creasingly tend to favor SaaS providers with green AI practices [1,7]. Sustainable AI refers

to the development and use of AI systems in ways that minimize their environmental

impact, promoting long-term ecological and social well-being [8]. Sustainability in cloud

environments focuses on the optimal cloud infrastructure so as to reduce energy con-

sumption and carbon emissions [9]. Moreover, it should be noted that, especially in Eu-

rope, regulations regarding carbon accountability, such as the EU AI Act [10], are becom-

ing obligatory.

To this end, this work examines ML in SaaS for churn prediction. The aim is to bench-

mark several ML models, regarding speed, efficiency and emissions. In this work, a total

of 17 ML models are tested, and two public datasets are employed for transparency and

reproducibility. Results on energy consumption, emissions, training time and prediction

time (latency, Throughput), are provided, as well as predictive performance measures

AUC (classic) and Log loss, which are valuable for SaaS providers. Moreover, experiments

in different cloud settings are performed to show how it affects the generated emissions.

In this context, we introduce a Green Efficiency Weighted Score (GEWS) to evaluate ML

models based on all these aspects towards choosing simpler and greener alternatives

while not sacrificing predicting performance. More specifically, the contributions of this

work can be summarized in the following points:

1. The benchmarking of 17 ML models in SaaS for churn prediction. Related works also

focus on benchmarking ML models in SaaS for churn prediction, yet, the proposed

work is the first to examine such an extended set of ML models; Sanches et al. [4]

examined seven ML models, Rahman et al. [11] examined four models, Tékouabou

et al. [12] examined six models, De Lima Lemos et al. [13] examined six models, Al-

Najjar et al. [14] examined five models, Suh [15] examined one model, Lalwani et al.

[16] examined four models, Rautio [17] used three models and Maan et al. [18] used

four models. Moreover, a literature review on ML in SaaS [6] highlights that the re-

cent literature on ML methods used for decision support in SaaS, including churn

prediction, has not reported a single work benchmarking more than 12 ML models.

2. An exhaustive evaluation using predictive, efficiency and sustainability measures for

SaaS churn prediction, which, to the best of our knowledge, is first reported in the

literature covering all those aspects in such an exhaustive experimental setup.

3. Employment of two public datasets, KKBOX and Telco. Related works mainly use

private datasets; while working with public sets, no benchmark results have been

presented together for both datasets, KKBOX and Telco. KKBOX has been used sep-

arately [19–22]; the same applies to the Telco dataset [23–26].

4. Presentation of multiple experiments (PC, Google Cloud VMs, different Regions), fo-

cusing on cloud-based environments in realistic circumstances for SaaS applications.

Specifically, experiments are performed in three different regions (the United States

(US), Europe and Asia) in Google Cloud VMs, with both datasets. The differences

when using VMs in different regions and times have already been investigated by

Dodge et al. in [27]. The authors explicitly measured operational emissions across

Future Internet 2025, 17, 467 3 of 38

different cloud regions and times of day (on Microsoft Azure) and concluded that

region choice had the largest impact. It should be noted that most of the related re-

search focused solely on the accuracy of the predictions, neglecting aspects such as

cloud deployment efficiency and environmental impact.

5. Calculation of carbon emissions and energy consumption. Together with Dodge et

al. [27], there is only one work, that of Sanchez Ramirez et al. [28], that assessed the

carbon footprint of machine learning models for SaaS decision support. The authors

examined the use of usage data for churn prediction and assessed the carbon foot-

print of five different machine learning models. Yet, the calculation of carbon foot-

print was conducted based on the estimation of energy consumption rather than real-

time computation.

6. Benchmark against training time, prediction time (latency) and Throughput in cloud-

based systems that are important for production-ready systems.

7. Benchmark relative gain in predictive performance over energy consumption and

emissions again to identify the most eco-friendly ML models to use for churn predic-

tion in SaaS (AUC/Emissions, Log Loss/Emissions).

8. Exhausting investigation of trade-offs between performance–efficiency based on the

Pareto frontier analysis.

9. Introduction of a novel metric, namely the GEWS, defined as a weighted sum of nor-

malized metrics AUC, Log Loss, training time, Total Emissions and Mean Latency,

aiming to evaluate ML models based on all these aspects towards choosing simpler,

greener and efficient ML models.

While the proposed methodology uses well-known ML models, its scientific novelty

mainly lies in its multi-dimensional and sustainable-aware benchmarking framework, fo-

cused on ML-based churn prediction in SaaS environments. The proposed methodology

includes an unprecedented range of models’ benchmarking, a holistic evaluation frame-

work, a realistic cloud-based experimental deployment and a novel metric to guide the

selection of greener and more efficient ML models. Based on the above, this work aims to

provide a framework that combines AI performance, cloud engineering and environmen-

tal sustainability, a combination not previously fully explored in the academic literature.

The rest of the paper is structured as follows. Section 2 presents materials and meth-

ods used in this work. Results for all experiments are included in Section 3. Section 4 dis-

cusses the results, while Section 5 concludes the paper.

2. Materials and Methods

2.1. Proposed Methodology

The proposed methodology is illustrated in Figure 1. First, the data used for the ex-

periments were acquired. Two public datasets were used for our experimentation process

to make our work more transparent and reproducible, as most of the related work uses

private datasets, making it harder to evaluate the relative performance of different ML

methods on SaaS decision support. In the next step, preprocessing of the datasets took

place and they were split into a train and holdout set. The preprocessing involved the

steps of handling missing values, encoding categorical variables and feature scaling (after

splitting the datasets into folds and train/holdout). The data were split into two parts, 80%

and 20%, using stratification based on the class variable that represents whether a user

would churn or not. The percentage of 80% was used for performing 10-fold cross-valida-

tion (CV), while the 20% was used as a holdout set. For handling a class imbalance of the

target variable, sample weighting was used, which computes a per-instance weight by

giving the minority class larger weights.

Future Internet 2025, 17, 467 4 of 38

A total of 17 different ML algorithms were tested on the same folds and train/holdout

set. The selection of models was based on their reported performance for churn prediction

as indicated in [6], while classic ML methods were also considered. For each of the ML

methods tracked we calculated performance, efficiency and sustainability metrics. All ex-

periments were conducted on four different machines, on a PC and on three Google Cloud

Virtual Machines (VMs), each in a different geographical region.

Figure 1. Flow of the proposed methodology.

2.2. Datasets

The Telco Customer Churn dataset [29], available at https://www.kaggle.com/da-

tasets/blastchar/telco-customer-churn (accessed on 12 September 2025), is a public dataset

widely used in churn prediction research [30]. It contains data from a telecommunication

company operating on a subscription basis. Although it is not exactly SaaS, its subscrip-

tion nature offers quite a similar structure, and thus it has been used in research for SaaS

churn prediction [30,31]. In particular, Telco operates on a subscription basis similar to

SaaS. The profitability of subscription-based companies generally depends on customer

retention. So even small changes in churn rate can significantly impact the generated rev-

enue. Telco contains features such as tenure, contract type, payment method and service

usage, which resemble SaaS feature variables such as subscription length, plan type, pay-

ment method and product usage. Specifically, it consists of 7043 rows, each one represent-

ing one customer, and 21 columns (features) containing information regarding customer

attributes, services’ content and subscription.

The second public dataset employed in this study is the one provided by KKBOX’s

Churn prediction challenge [32], available at https://www.kaggle.com/competi-

tions/kkbox-churn-prediction-challenge/ (accessed on 12 September 2025). KKBOX is a

music streaming service provider with millions of users. It provides a generous, free sub-

scription plan, by the end of which users either churn or renew. The challenge provided

data up to March 2017 and asked the participants to predict churn for April 2017. Since

the ground truth for April 2017 is not provided in the dataset, we used data up to February

(28 February 2017) and used it to predict churn for March 2017. The provided data are in

Future Internet 2025, 17, 467 5 of 38

the form of four different .csv files containing information regarding user characteristics,

user logs and subscription information, making it suitable to use for benchmarking churn

prediction models. Specifically, the KKBOX dataset contains raw data in four different

.csv files:

• train_v2 file, contains the user IDs and whether they have churned (97.0961 records);

• transactions_v2 file, contains information regarding users’ membership, payment

plans and payment details (1.048.575 records);

• user_logs_v2 file, contains user logs for daily listening behavior (1.048.575 records);

• members_v3 file, contains user information like city and gender (1.048.575 records).

The dataset was preprocessed so as to obtain data per user, resulting in a dataset of

970.960 records and 35 features, where each row contains information about a specific

user. Although KKBOX was released in 2017, it is one of the largest real datasets publicly

available [30]; therefore, the age of the dataset does not undermine its relevance and does

not limit the practical applicability of our findings.

2.3. Data Preprocessing

The Telco dataset is a relatively clean dataset which contains one row per customer

and no missing values. However, it contains many categorical variables. One-hot encod-

ing was used to represent those features with numeric values. The continuous numeric

features (TotalCharges and MonthlyCharges) were normalized in the [0,1] using

MinMaxScaler, after splitting into train/test to ensure no leakage between them. Finally,

the resulting dataset contained 33 features and 7043 rows.

Regarding the KKBOX dataset, the row data from the four .csv files were merged

with a left joint in order to maintain all data. Then, we kept only data up to 28 February

2017 for training, while data from March 2017 was kept for testing. Thus, no user logs or

transactions for March were contained in the train set. From the transactions file, the most

recent transaction represented the current payment state of each user. Based on this infor-

mation, feature engineering was performed, creating features regarding days since regis-

tration, subscription length, month and weekday of registration and last transaction. The

user logs file contained log events for the users regarding app usage. So, for a user, there

might be more than one row or even none, if the user has no activity. Each row contained

the user ID, date and features regarding listening activity:

• num_25/50/75/985/100, refers to the number of songs played less than 25%, 25–50%,

50–75%, 75–98.5% and 98.5–100% of the song length;

• num_unq refers to unique songs played;

• total_secs refers to the total seconds played.

We grouped those rows per user and computed sums and means for

num_25/50/75/985/100, num_unq and total_secs. From the date column, date_min,

date_max and date_unique were derived from the user’s earliest log date, latest log date

and number of active days. Then, the following features were defined:

• log_span_days, as date_max minus date_min, to represent user lifespan;

• avg_secs_per_song, defined as the sum of total_secs for each user divided by the

number of unique songs played (sum of num_unq);

• days_since_last_log_missing, which is 1 if there are no logs, otherwise it is 0;

• days_since_last_log, for the number of days since the last log.

Following feature engineering, the handling of missing values took place. For the

transactional related features like payment_plan_days and actual_amount_paid, we filled

missing values with zero. Similarly, user log features were filled with zero when there

were no values to show the absence of user activity and the days_since_last_log feature

was filled with 999 since zero would mean very recent activity. Columns of raw dates and

Future Internet 2025, 17, 467 6 of 38

IDs (msno, bd, registration_init_time, membership_expire_date and transaction_date)

were removed. Next, the categorical variable gender was encoded to integer values 1 and

2. For continuous numeric features like “payment_plan_days” and “ac-

tual_amount_paid”, normalization was performed by applying MinMaxScaler, separately

for the train and test sets. The resulting dataset contained 970.960 rows and 35 features.

2.4. Machine Learning Models

Stratified splits of 80–20% were performed for both datasets to formulate the train

and holdout sets. The percentage of 80% was used for performing a 10-fold stratified

cross-validation. The splits were saved, and all ML classifiers were trained and tested in

the same parts. The utility function of sklearn compute_sample_weight with class_weight

= ‘balanced’ was used as a universal way to handle class imbalance [33]. This function

computes sample weights, assigning larger values to the minority class, which is used

when training the ML model.

The ML methods used in our benchmarking study were selected based on the related

research on SaaS decision support in [6], specifically for churn prediction. Therefore, ac-

cording to the literature review conducted in [6], the most reported ML models for churn

prediction in SaaS were selected. In our benchmark, we included Random Forest, which

was proposed for SaaS Churn prediction in [31,34–36], XGBoost, which was efficiently

used in [37,38], Decision Tree used in [5], LightGBM proposed in [39] and Logistic Regres-

sion reported in [28]. Moreover, we used a multi-layer perceptron (MLP) for including

feed-forward neural network (NN) implementation in our experiments, as in [40,41]. Sim-

ilarly, we used a Stacking ensemble (StackGBM), as proposed in the recent publication of

Li [42], which uses Random Forest, XGBoost, LightGBM and CatBoost as base learners

and XGBoost as a meta-learner. We also included an ensemble combination of XGBoost

and LightGBM inspired by the winning solution in the KKBOX Challenge [19]. Two other

ensemble combinations were included in order to test their relative performance,

VoteAllGBM, which used XGBoost, LightGBM and CatBoost in a soft voting scheme and

Vote_Mix, which used XGBoost, Logistic Regression, Decision Tree and Naïve Bayes in a

soft voting scheme. Classic ML models such as Multinomial and Bernoulli Naïve Bayes

were also included in benchmarking in order to compare their performance with the rest

of the selected methods. Finally, the Bagging of Decision Trees, Logistic Regression with

stochastic gradient descent (SGD) learning and an ensemble of SGD with Naïve Bayes

were also included.

At this point, no deep learning (DL) architectures were selected, despite their rele-

vance in large-scale SaaS. The latter was due to the model selection process that was based

on the findings of [6], as well as because DL architectures are not best fitted for tabular

data, such as in our case. The use of DL models would require different preprocessing and

format of the dataset. Considering DL models in our methodology would be technically

possible, yet it would be methodically unfair to compare their results directly with the

results obtained by our ML models in the current setup. Moreover, recall the scope of this

work, which is to provide a methodology for benchmarking ML models for SaaS churn

prediction, focusing on efficiency and sustainability.

Table 1 contains all the ML models used in our benchmarking. The implementation

(in Python 3.11.13) employed Python library scikit-learn 1.7.1 for all ML models except

XGBoost, LightGMB and CatBoost, and XGBoost 3.0.3 for XGBoost models, LightGBM

4.6.0 for LightGBM models and CatBoost 1.2.8 for CatBoost models. For all the models,

random_state = 42 was set. For all the models, the default hyperparameters were used, as

defined in Table A1 of the Appendix A Section. Table A2 of the Appendix A Section also

provides the referenced implementation links for all models, aiming to provide full access

to the readers to source codes towards reproducing the benchmarking process. In case a

Future Internet 2025, 17, 467 7 of 38

specific value of a hyperparameter, different from the default is used, it is mentioned in

Table 1.

In this work, optimization of the models’ hyperparameters is not considered. Hy-

perparameter tuning can enhance model performance and potentially affect comparative

fairness. However, our decision to evaluate all models using default hyperparameters was

intentional, due to the following reasons: (1) to establish a reproducible benchmarking

baseline across all models, allowing for a fair comparison of models in their most accessi-

ble form; (2) to align with our sustainability goals and reflect realistic deployment scenar-

ios where tuning may not be feasible due to resource constrains; (3) to train and evaluate

all models under the same conditions, pursuing fairness through uniformity, ensuring

methodological consistency and avoiding bias introduced by uneven tuning efforts.

Table 1. Parameter setup of ML models used in the benchmarking process.

Model [Ref.] Setup Parameters

XGBoost [43] XGBClassifier (eval_metric =“logloss”) (xgboost library)

LightGBM [44] LGBM classifier (lightgbm library)

CatBoost [45] CatBoost classifier (catboost library)

Logistic Regression [46] LogisticRegression (max_iter = 1000)

Decision Tree [47] DecisionTree

Random Forest [48] RandomForest

Naïve Bayes [49] GaussianNB

MLP [50] MLPClassifier(max_iter = 300)

Vote_XGB_LGBM (Voting of XGBoost and

LightGBM)

VotingClassifier. Estimators: XGBClassifier (eval_metric = “logloss”, LGBMClassi-

fier, Voting = “soft”

Vote_AllGBM (Voting of XGBoost, LightGBM

and CatBoost)

VotingClassifier. Estimators: XGBClassifier (eval_metric = “logloss”, LGBMClassi-

fier, CatBoostClassifier. Voting = “soft”

Vote_Mix (Voting of XGBoost, Logistic Regres-

sion, Decision Tree and Naïve Bayes)

VotingClassifier. Estimators: XGBClassifier (eval_metric = “logloss”),

LogisticRegression(max_iter = 1000), DecisionTreeClassifier, GaussianNB. Voting =

“soft”

StackGBM (Stacking Ensemble of Random For-

est, XGBoost, LightGBM, CatBoost and final es-

timator XGBoost) [51]

StackingClassifier. Estimators: RandomForestClassifier, XGBClassifier (eval_metric

= “logloss”), LGBMClassifier, CatBoostClassifier. Final_estimator: XGBClassi-

fier(use_label_encoder = False, eval_metric = “logloss, passthrough = True))

BernoulliNB [52] BernoulliNB

Multinomial NB [53] MultinomialNB

Bagging (Bagging of Decision Trees) [54] BaggingClassifier. Estimator: DecisionTreeClassifier(n_estimators = 10)

SGD (Logistic Regression with Stochastic Gra-

dient Descent) [55]
SGDClassifier(loss = “log_loss”, max_iter = 2000)

SGD_NB_Ensemble (Voting of SGD and Naïve

Bayes)

VotingClassifier. Estimators: SGDClassifier (loss = “log_loss”, max_iter = 2000,

GaussianNB()), Voting: soft

2.5. Training and Evaluation

The experimentation process was conducted in four different machines by following

the same steps. First, the preprocessing of the datasets was made as explained in Section

2.2, as well as the splitting into train/test (folds) and holdout sets. Then, all the ML models

were trained in the same folds, performing 10-fold CV. Finally, the ML models were

trained in the full training set and tested with the holdout set.

The process was repeated in four different machines, a PC and three Google Cloud

VMs in different regions. The deployment of the SaaS prediction models could be per-

formed in various ways, for example, using serverless containers such as Cloud Run or

platforms like VertexAI. However, those environments offer less control compared to

VMs, making them unsuitable for reliably tracking energy consumption and emissions.

Therefore, for the proposed benchmarking study, VMs were used for reliably measuring

energy consumption and emissions.

Future Internet 2025, 17, 467 8 of 38

More specifically, first, all experiments were conducted on a PC Intel i5-9400F, 64-bit

RAM, 32 GB with Ubuntu 24.04.3 LTS, 64-bit kernel, which runs in Kavala, Greece. In

Google Cloud, we set 3 VMs of type c4-standard-4 [56] (4 vCPUs, 15 GB Memory) in re-

gions in Asia (Tokyo), Europe (Frankfurt) and the USA (Oregon). The generated emissions

differ among different regions due to the way energy is produced. Table 2 includes the

selected regions and grid carbon intensity (gCO2eq/kWh) as reported in the “Carbon free

energy for Google Cloud regions” report, available at https://cloud.google.com/sustaina-

bility/region-carbon (accessed on 12 September 2025). As it is shown in Table 2, VM3 is

the “greenest” option since it is considered “Low CO2”, VM2 is of medium grid carbon

intensity and VM1 is of high grid carbon intensity. This setup aims to measure the relative

differences in the emissions generated by running the same ML models in regions with

different grid carbon intensities.

Table 2. Google Cloud VMs, regions and grid carbon intensity.

VM
Google Cloud Re-

gion
Location

Grid Carbon In-

tensity

(gCO2eq/kWh)

CO2 Intensity Char-

acterization

VM1
asia-northeast1-b

19:00 UTC
Asia (Tokyo) 453 High

VM2
europe-west3

19:00 UTC
Europe (Frankfurt) 276 Medium

VM3
us-west1

19:00 UTC
US (Oregon) >200 High

For all experiments, the evaluation metrics included in Table 3 are calculated. Predic-

tive performance metrics include classic metrics like AUC, accuracy, precision, recall and

F-measure, as well as Log Loss, which is the evaluation metric used in KKBOX challenges,

and it is considered valuable for SaaS providers running reactivation campaigns. For the

calculation of energy consumption and emissions generated, the CodeCarbon library

available at https://codecarbon.io/ (accessed on 12 September 2025) was used. CodeCar-

bon monitors energy consumption when running code and maps it to carbon emissions

based on the carbon intensity of electricity in the region where the code is running. Energy

consumption and CO2 emissions, along with model size and training time, were tracked

for both 10-fold CV and train/holdout experiments. Prediction time, Mean Latency and

Throughput were calculated by loading the saved ML models that were trained in the full

train set, predicting the output for the complete holdout set.

Table 3. Evaluation metrics per objective.

Evaluation Metrics Objective

AUC

Predictive performance

Log-Loss

Accuracy

Precision

Recall

F-measure

Training time

Efficiency
Prediction time

Mean Latency

Throughput

Model Size

Sustainability Energy_consumed

Emissions CO2

Future Internet 2025, 17, 467 9 of 38

3. Results

In this section, the experiment results are presented. Section 3.1 presents the results

regarding the predictive performance of the ML models, efficiency is evaluated in Section

3.2 and sustainability in Section 3.3., either on PC or on the cloud. Trade-offs between

performance and efficiency are discussed in Section 3.4, concluding with the introduction

of a novel Green Efficiency Weighted Score (GEWS) aiming to help identify both the most

efficient and greener alternatives.

3.1. Performance Evaluation

Apart from accuracy, precision, recall and F1-score, a common evaluation metric for

churn prediction is the Area Under the Curve (AUC). AUC shows how well the model

can separate churners from non-churners. Additionally, Log Loss is also calculated, as it

is the evaluation metric used in the KKBOX challenge. Log Loss is considered important

for SaaS providers because it is linked to the reliability of predictions of churn models for

each user. SaaS vendors use them to select which users to target in their retention cam-

paigns. Retention campaigns can become costly, so it is essential to target the right users

to ensure resources are used efficiently and not wasted.

The Log Loss value for an instance with true class label 𝑦 ∈ {0,1} and probability

estimate p for y = 1 is defined as shown in Equation (1) [57]:

𝐿𝑜𝑔 𝐿𝑜𝑠𝑠𝑖(𝑦, 𝑝) = −(𝑦 ∗ (log(𝑝) + (1 − 𝑦) ∗ log (1 − 𝑝) (1)

Then, for N instances, the average Log Loss value is computed.

3.1.1. Performance on 10-Fold CV

Table 4 presents the evaluation results for the 10-fold CV in the KKBOX dataset. As

it is shown, XGBoost, CatBoost, LightGBM and the ensemble approaches Voting and

Stacking (Vote_AllGBM, Vote_XGB_LGBM and StackGBM) achieved an AUC of 0.80.

Similarly, MLP achieved an AUC of 0.79. The rest of the ML models noted an AUC value

of less than 0.75. Specifically, Vote_Mix noted an AUC of 0.74, Logistic Regression of 0.68,

Naïve Bayes of 0.67, MultinomialNB of 0.66 and BernoulliNB of 0.64. Bagging noted an

AUC of 0.64, while SGD and SGD_NB_Ensemble, of 0.68 and 0.66, respectively.

Regarding Log Loss values, the best results were noted by the ensemble approaches

Vote_AllGBM, Vote_XGB_LGBM and StackGBM, which showed Log Loss values of 0.24

and Vote_Mix of 0.27. The ML models SGD_NB_Ensemble showed a relatively good Log

Loss of 0.33, while CatBoost and XGBoost followed with 0.52. MLP noted a similar Log

Loss of 0.54, while the rest of the ML models followed with mediocre results ranging from

0.63 for Logistic Regression to 2.51 for Decision Tree.

Future Internet 2025, 17, 467 10 of 38

Table 4. Evaluation metrics for 10-fold CV on dataset KKBOX (PC).

ML Model
Mean

Accuracy

Mean

Precision

Mean

Recall

Mean

F1-Score

Mean

AUC (CV)

Mean Log Loss

(CV)

XGBoost 0.72 0.21 0.74 0.32 0.80 0.52

LightGBM 0.72 0.21 0.74 0.32 0.80 0.52

CatBoost 0.73 0.21 0.73 0.32 0.80 0.52

Logistic Regression 0.71 0.16 0.53 0.25 0.68 0.63

Decision Tree 0.83 0.24 0.42 0.30 0.59 2.51

Random Forest 0.85 0.27 0.37 0.31 0.64 0.73

Naïve Bayes 0.85 0.18 0.19 0.18 0.67 2.04

MLP 0.73 0.21 0.71 0.32 0.79 0.54

Vote_XGB_LGBM 0.92 0.93 0.16 0.27 0.80 0.24

Vote_AllGBM 0.92 0.92 0.16 0.27 0.80 0.24

Vote_Mix 0.92 0.75 0.16 0.26 0.74 0.27

StackGBM 0.92 0.91 0.16 0.27 0.80 0.24

BernoulliNB 0.75 0.15 0.37 0.21 0.64 0.81

MultinomialNB 0.82 0.17 0.26 0.20 0.66 0.66

Bagging 0.86 0.27 0.36 0.31 0.64 1.16

SGD 0.71 0.16 0.54 0.25 0.68 0.64

SGD_NB_Ensemble 0.85 0.18 0.19 0.18 0.66 0.33

Figure 2 illustrates the AUC for each of the ML models, while Figure 3 illustrates the

Log Loss. Although ensemble approaches Vote_AllGBM, Vote_XGB_LGBM and Stack-

GBM reported the best results in Log Loss, they showed low levels of recall (less than 0.2)

and high precision (0.75–0.92). Thus, those ML models could be characterized as “con-

servative” in terms of predicting churned users. However, when they characterize a user

as churned, their decision is mostly accurate.

XGBoost, CatBoost and LightGBM achieved the best results in recall (0.74, 0.74 and

0.73, respectively), indicating that they can classify most churners correctly. MLP showed

similar results with 0.71 recall. Therefore, for SaaS providers that run expensive cam-

paigns and want to minimize the risk of targeting users that are not likely to churn, ML

models such as Vote_AllGBM, Vote_XGB_LGBM and StackGBM are a better fit (based

only on the predictive performance).

Figure 2. Average AUC for 10-fold CV, on the KKBOX dataset (PC).

Future Internet 2025, 17, 467 11 of 38

Figure 3. Average Log Loss for 10-fold CV, on the KKBOX dataset (PC).

Figure 4 illustrates the corresponding AUC values for all ML models on the Telco

dataset (10-fold CV). As it is observed, Logistic Regression achieved the highest AUC

(0.85). The ML models Vote_AllGBM, Vote_XGB_LGBM, LightGBM and CatBoost re-

ported an AUC of 0.84. Random Forest, Vote_Mix, MultinomialNB and SGD_NB_Ensem-

ble showed an AUC of 0.83. Naïve Bayes, StackGBM and SGD achieved an AUC of 0.82

while MLP and BernoulliDB noted an AUC of 0.81. Bagging followed with an AUC of 0.80

and, finally, Decision Tree with an AUC of 0.65.

Figure 4. Average AUC for 10-fold CV, on dataset Telco (PC).

Figure 5 visualizes the results of the Log Loss values for the Telco dataset.

Vote_XGB_LGBM achieved 0.44 Log Loss while Vote_AllGBM noted the lowest Log Loss

of 0.43. Logistic Regression achieved 0.49 Log Loss, StackGBM had Log Loss of 0.5, while

the rest of the ML models noted Log Loss values higher than 0.50 (Random Forest 0.51,

MLP 0.55, MultinomialNB 0.82, SGD_NB_Ensemble 0.84, Bagging 1.31, BernoulliNB 1.09

and Naïve Bayes 2.88).

Interestingly, Logistic Regression achieved a good AUC of 0.85 and Log Loss of 0.49.

The Telco dataset has many categorical features encoded with one-hot encoding that make

Future Internet 2025, 17, 467 12 of 38

it a good candidate for applying Logistic Regression. Based on the results of the Telco

dataset, which are included in Table 5, the ensemble approaches of Vote_AllGBM and

Vote_XGB_LGBM seem more suitable for SaaS providers looking to obtain more reliable

churn probabilities for their users and thus, targets users that are more likely to churn.

However, those models “catch” fewer churners as opposed to models such as XGBoost,

LightGBM, CatBoost and Logistic Regression, which showed better recall values (0.67,

0.74, 0.75 and 0.80, respectively), as shown in Table 5.

Therefore, SaaS providers that implement less expensive campaigns and are more

concerned with not “missing” churners than targeting users that are more likely to churn,

should prefer models such as XGBoost, LightGBM, CatBoost or even simpler models such

as Logistic Regression.

Figure 5. Average Log loss for 10-fold CV, on dataset Telco (PC).

Table 5. Evaluation metrics for 10-fold CV, on dataset Telco (PC).

ML Model
Mean

Accuracy

Mean

Precision

Mean

Recall

Mean

F1-Score

Mean

AUC (CV)

Mean Log Loss

(CV)

XGBoost 0.76 0.54 0.67 0.60 0.83 0.50

LightGBM 0.76 0.54 0.74 0.62 0.84 0.47

CatBoost 0.76 0.54 0.75 0.63 0.84 0.47

Logistic Regression 0.75 0.52 0.80 0.63 0.85 0.49

Decision Tree 0.73 0.50 0.48 0.49 0.65 9.53

Random Forest 0.79 0.63 0.47 0.54 0.83 0.51

Naïve Bayes 0.65 0.43 0.89 0.58 0.82 2.88

MLP 0.74 0.51 0.73 0.60 0.81 0.55

Vote_XGB_LGBM 0.80 0.65 0.52 0.58 0.84 0.44

Vote_AllGBM 0.80 0.65 0.51 0.57 0.84 0.43

Vote_Mix 0.77 0.57 0.63 0.60 0.83 0.47

StackGBM 0.79 0.62 0.49 0.55 0.82 0.50

BernoulliNB 0.67 0.44 0.87 0.58 0.81 1.09

MultinomialNB 0.73 0.50 0.79 0.61 0.83 0.82

Bagging 0.78 0.61 0.43 0.50 0.80 1.31

SGD 0.77 0.61 0.60 0.58 0.82 2.69

SGD_NB_Ensemble 0.75 0.54 0.72 0.61 0.83 0.84

Future Internet 2025, 17, 467 13 of 38

3.1.2. Performance on Holdout

Comparing the evaluation results of the CV with the holdout evaluation results, there

were noted small differences indicating that the cross-validation process was performed

correctly and the ML models generalize well. Models with strong predictive performance

showed tiny differences (≤0.01) while ML models with less predictive power noted larger

differences such as Decision Tree, which achieved Log Loss of 2.51 in cross-validation and

2.45 in holdout showing a more unstable behavior due to their weak predictive perfor-

mance (AUC 0.59–0.60). Figures 6 and 7 illustrate AUC and Log Loss, respectively, for

holdout versus CV for all models on the KKBOX dataset.

Figure 6. AUC on holdout vs. average AUC for 10-fold CV, on KKBOX dataset (PC).

Figure 7. Log Loss on holdout vs. average Log Loss for 10-fold CV, on KKBOX dataset (PC).

Future Internet 2025, 17, 467 14 of 38

Similar were the results for the Telco dataset, as illustrated in Figures 8 and 9. Most

of the models noted almost identical evaluation metrics except ML models such as SDG

and Decision Tree, which showed low predictive performance and more unstable behav-

ior.

Figure 8. AUC on holdout vs. average AUC for 10-fold CV, on Telco dataset (PC).

Figure 9. Log Loss on holdout vs. average Log Loss for 10-fold CV, on Telco dataset (PC).

3.2. Efficiency Evaluation

3.2.1. Training Time on PC and Cloud

MLP and StackGBM required much more time to train compared to the rest of the

models, as shown in Figure 10, illustrating the training time per ML model when

Future Internet 2025, 17, 467 15 of 38

performing 10-fold CV on the KKBOX dataset, running on PC. Specifically, MLP required

78.88 min, while similarly, StackGBM noted 76.43 min on the same settings. The rest of

the ML models required less than half of the time spent on MLP and StackGBM. Specifi-

cally, Logistic Regression required 11.36 min, CatBoost 6.48 min, Random Forest 8.61 min

and Vote_Mix 6.70 min. Bagging training needed 2.51 min and SGD 1.87 min. The rest of

the ML models (XGBoost, LightGBM, Decision Tree, Vote_XGB_LGBM, BernoulliNB,

MultinomialNB and SGD_NB_Ensemble) reported training times less than 1 min.

Figure 10. Total training time for 10-fold CV, on KKBOX dataset (PC).

Similarly, when training the models on the cloud, the training time for MLP and

StackGBM were quite larger than the rest of the models. As shown in Table 6, MLP noted

the larger training time of 102.13 min on average on the three Google Cloud VMs we used

in the experiments. StackGBM followed with 86.96 min on average. Logistic Regression

required 13.96 min and Vote_AllGBM 9.21 min The rest of the ML models required less

than 10 min to train. In particular, CatBoost, Random Forest and Vote_Mix required 8.77,

7.82 and 8.14 min, respectively. Bagging training lasted 2.34 min. Extremely fast ML mod-

els with less than 1 min to train were Vote_XGB_LGBM (0.87 min), LightGBM (0.47 min),

XGBoost (0.42 min), Decision Tree (0.38 min), SGD (0.37 min), BernoulliNB (0.17 min),

SGD_Ensemble (0.13 min) and MultinomialNB (0.12 min).

Table 6. Training time (min) for 10-fold CV, on dataset KKBOX (Google Cloud VMs).

Model VM1 VM2 VM3 Average Standard Deviation

XGBoost 0.42 0.41 0.43 0.42 0.01

LightGBM 0.47 0.47 0.48 0.47 0.00

CatBoost 8.57 8.50 9.23 8.77 0.33

Logistic Regression 13.53 12.95 15.41 13.96 1.05

Decision Tree 0.36 0.36 0.40 0.38 0.02

Random Forest 7.58 7.40 8.46 7.82 0.46

Naïve Bayes 0.15 0.14 0.16 0.15 0.01

MLP 101.49 102.13 102.76 102.13 0.52

Vote_XGB_LGBM 0.86 0.85 0.92 0.87 0.03

Vote_AllGBM 8.91 8.88 9.82 9.21 0.44

Vote_Mix 7.71 7.56 9.15 8.14 0.72

StackGBM 84.25 83.56 93.06 86.96 4.33

BernoulliNB 0.18 0.16 0.19 0.17 0.01

Future Internet 2025, 17, 467 16 of 38

MultinomialNB 0.12 0.10 0.12 0.12 0.01

Bagging 2.26 2.24 2.54 2.34 0.14

SGD 2.17 2.07 2.90 2.38 0.37

SGD_NB_Ensemble 0.83 0.79 1.09 0.90 0.13

Training times for the Telco dataset, visualized in Figure 11, were much smaller com-

pared to KKBOX, as expected, since it is a much smaller dataset. However, there were still

notable differences among the models. StackGBM had the highest training time of 105.15

s. MLP was next with 34.89 s. Vote_AllGBM followed with 16.61 s and CatBoost with

13.67. Random Forest and Vote_Mix noted 4.37 and 2.32 s, respectively.

Vote_XGM_LGBM’s training lasted 2.08 s. XGBoost and Logistic Regression were very

fast, noting training times less than 2 s (1.34 s and 1.27 s, respectively). LightGBM was

even faster to train, noting 0.91 s of training time quite close to and SGD_NB_Ensemble

(0.95 s). The fastest to train were the simpler models like SGD (0.63 s), Decision Tree (0.36

s), Naïve Bayes (0.16 s), BernoulliNB (0.18 s) and MultinomialNB (0.15 s).

Figure 11. Total Training time (seconds) for 10-fold CV, on Telco dataset (PC).

Table 7 summarizes the training time for each ML model when performing 10-fold

CV on Google Cloud VMs. StackGBM showed the largest training time compared to the

rest of the ML models (129.11 s). MLP followed with 26.72 s, Vote_AllGBM with 19.24 s

and CatBoost with 18.25 s. Random Forest, Vote_Mix and Vote_XGB_LGBM noted train-

ing times of 4.62, 2.23 and 1.55 s, respectively. Extremely fast training with less than 1 s

was noted in the case of XGBoost (0.77 s), SGD_NB_Ensemble (0.77 s), LightGBM (0.75 s),

SGD (0.49 s), Decision Tree (0.33 s), Naïve Bayes (0.12 s), BernoulliNB (0.14 s) and Multi-

nomialNB (0.11 s).

Table 7. Training time (seconds) for 10-fold CV, on the Telco dataset (Google Cloud VMs).

Model VM1 VM2 VM3 Average Standard Deviation

XGBoost 0.75 0.76 0.78 0.77 0.01

LightGBM 0.74 0.74 0.77 0.75 0.01

CatBoost 18.14 18.12 18.50 18.25 0.17

Logistic Regression 0.84 0.84 0.89 0.86 0.02

Decision Tree 0.33 0.33 0.34 0.33 0.00

Random Forest 4.61 4.60 4.68 4.63 0.04

Naïve Bayes 0.12 0.12 0.13 0.12 0.01

MLP 26.89 26.60 26.67 26.72 0.12

Vote_XGB_LGBM 1.54 1.54 1.57 1.55 0.01

Future Internet 2025, 17, 467 17 of 38

Vote_AllGBM 19.09 19.12 19.51 19.24 0.19

Vote_Mix 2.29 2.18 2.22 2.23 0.05

StackGBM 128.47 128.17 130.69 129.11 1.12

BernoulliNB 0.14 0.14 0.13 0.14 0.00

MultinomialNB 0.11 0.11 0.11 0.11 0.00

Bagging 1.69 1.69 1.71 1.69 0.01

SGD 0.49 0.50 0.49 0.49 0.00

SGD_NB_Ensemble 0.77 0.78 0.77 0.77 0.00

3.2.2. Prediction Time, Mean Latency and Throughput on the Cloud

The training time of ML models is important, yet, in order to efficiently use a model

in real-time production, it is important to also consider other factors such the time needed

for generating predictions. For that reason, we conducted another set of experiments in

the three VMs where we trained the ML models in the 80% train set, saved that model in

the VM and called it for generating predictions for the holdout set (the remaining 20%).

The following metrics are calculated for each model:

• Total prediction time for the complete holdout set.

• Mean Latency, referring to the time needed for generating prediction for one sample.

• Throughput, as the number of predictions per second.

Table 8 contains the prediction metrics for each ML model and their average values

across all VMs, on the KKBOX dataset. Results are almost identical for different regions

for the same ML model and the marginal differences can be due to other reasons as well,

ML models can slightly vary even when trained on the same data and same conditions.

However, there are notable differences among the prediction metrics for each ML model.

As shown in Figure 12, StackGBM and Random Forest have much higher Mean Latency

compared to the rest of the models (0.0524 ms and 0.045 ms, respectively). Bagging fol-

lowed with 0.0060 ms, VoteAllGBM with 0.0056 ms and Vote_XGB_LGBM with 0.0049

ms. MLP came next with 0.0039 ms, LightGBM with 0.0037 ms and Vote_Mix with 0.0032

ms. CatBoost and XGBoost were even faster, noting values of 0.008 ms and 0.0014, outper-

forming simpler models like BernoulliNB (0.0017 ms). CatBoost outperformed even Naïve

Bayes and MultinomialNB which achieved a Mean Latency of 0.0012 ms and 0.0011 ms,

respectively. Similarly, SGD_NB_Ensemble noted a value of 0.0012 ms. The fastest ones

where Logistic Regression and SGD with 0.0002 ms followed by the Decision Tree which

noted 0.0006 ms of Mean Latency.

The same conclusions regarding how fast the ML models are on inference can be

drawn when looking at the total prediction time, since it is the Mean Latency multiplied

by the number of instances on the holdout set. The same stands for Throughput. As shown

in Table 8, fast models like CatBoost can provide predictions for more than 1 million rec-

ords in a second, and simple models like Logistic Regression and Decision Tree can give

predictions for more almost 10× million records in one second. On the contrary, models

such as StackGBM and Random Forest can predict on average 19.135 and 22.291 instances

per second, respectively. This is an important aspect to consider when using those ML

models in production, since for SaaS providers with many users, this can cause delays if

they use the ML models frequently. So, ML models like StackGBM and Random Forest

are not among the best options if the models are meant to be used frequently. Comple-

mentary Figure 12 visualizes the Mean Latency (ms) in VMs (average on regions) for all

models, on the KKBOX dataset.

Smaller prediction times were witnessed for the Telco dataset, which was as expected

due to its small size. However, there are still differences among the ML models’ prediction

times. The relative difference among the prediction time of models is similar to the ones

noted for the KKBOX dataset. Table 9 includes the prediction time metrics for all VMs and

Future Internet 2025, 17, 467 18 of 38

models, while Figure 13 illustrates the Mean Latency (ms) in VMs (average on regions)

for all models, on the Telco dataset.

The fastest ML models were Logistic Regression, Decision Tree, MultinomialNB and

SGD with 0.001 ms Mean Latency. MLP, Naïve Bayes and BernoulliNB achieved 0.002 ms

Mean Latency. SGD_NB_Ensemble was fast with 0.003 ms Mean Latency followed by Cat-

Boost with 0.004 ms. Bagging was the next fastest with 0.005 ms followed by XGBoost and

LightGBM, which achieved 0.006 ms Mean Latency. The voting schemes

Vote_XGB_LGBM, VoteAllGBM and Vote_Mix achieved 0.018, 0.021 and 0.010 ms, re-

spectively. StackGBM was again the slowest at 0.054 ms followed by Random Forest and

Multinomial NB with 0.02 ms.

Table 8. Prediction time, Mean Latency and Throughput metrics on different VMs for 10-fold CV,

on the KKBOX dataset.

VM- Region
VM1: Asia -Northeast1-b

19:00 UTC

VM2: EU—West3

19:00 UTC

VM3: US West1

19:00 UTC
Average

Model

Predic-

tion Time

(s)

Mean

Latency

(ms)

Through-

put

(Sample/s)

Predic-

tion Time

(s)

Mean

Latency

(ms)

Throughput

(Sample/s)

Predic-

tion Time

(s)

Mean

Latency

(ms)

Throughput

(Sample/s)

Predic-

tion Time

(s)

Mean

Latency

(ms)

Throughput

(Sample/s)

XGBoost 0.26 0.0014 734,685 0.26 0.0014 738,269 0.27 0.0014 7,173,49 0.27 0.0014 730,101

LightGBM 0.72 0.0037 268,879 0.72 0.0037 271,588 0.73 0.0037 267,240 0.72 0.0037 269,236

CatBoost 0.15 0.0008 1,289,414 0.15 0.0008 1,279,011 0.15 0.0008 1,282,835 0.15 0.0008 1,283,753

Logistic Regression 0.04 0.0002 5,544,422 0.03 0.0002 5,779,359 0.04 0.0002 4,831,150 0.04 0.0002 5,384,977

Decision Tree 0.12 0.0006 1,571,370 0.12 0.0006 1,652,179 0.15 0.0008 1,314,524 0.13 0.0007 1,512,691

Random Forest 8.36 0.0430 23,230 8.42 0.0433 23,076 9.44 0.0486 20,566 8.74 0.0450 222,91

Naïve Bayes 0.20 0.0010 956,918 0.20 0.0010 973,352 0.30 0.0015 650,896 0.23 0.0012 860,389

MLP 0.75 0.0039 259,671 0.72 0.0037 268,738 0.81 0.0042 240,661 0.76 0.0039 256,357

Vote_XGB_LGBM 0.96 0.0049 202,767 0.94 0.0049 205,789 0.98 0.0050 198,943 0.96 0.0049 202,500

Vote_AllGBM 1.08 0.0055 180,425 1.06 0.0055 182,626 1.11 0.0057 175,146 1.08 0.0056 179,399

Vote_Mix 0.61 0.0031 319,971 0.59 0.0030 330,234 0.69 0.0036 281,362 0.63 0.0032 310,522

StackGBM 9.78 0.0504 19,854 9.85 0.0507 19,711 10.88 0.0561 17,840 10.17 0.0524 19,135

BernoulliNB 0.30 0.0015 648,956 0.30 0.0015 656,327 0.41 0.0021 477,180 0.33 0.0017 594,154

MultinomialNB 0.18 0.0009 1,084,657 0.18 0.0009 1,062,531 0.26 0.0013 750,543 0.21 0.0011 965,910

Bagging 1.06 0.0055 183,303 1.05 0.0054 185,121 1.37 0.0070 141,957 1.16 0.0060 170,127

SGD 0.03 0.0002 5,623,307 0.03 0.0002 6,072,912 0.04 0.0002 4,569,442 0.04 0.0002 5,421,887

SGD_NB_Ensemble 0.21 0.0011 938,350 0.19 0.0010 1,024,291 0.28 0.0014 699,297 0.22 0.0012 887,313

Figure 12. Mean Latency (ms) on VMs (average on regions), on the KKBOX dataset.

Future Internet 2025, 17, 467 19 of 38

Table 9. Prediction time, Mean Latency and Throughput metrics on different VMs for 10-fold CV,

on the Telco dataset.

VM- Region
VM1: Asia -Northeast1-b

19:00 UTC

VM2: EU—West3

19:00 UTC

VM3: US West1

19:00 UTC
Average

Model

Predic-

tion Time

(s)

Mean

Latency

(ms)

Through-

put

(Sample/s)

Predic-

tion Time

(s)

Mean

Latency

(ms)

Throughput

(Sample/s)

Predic-

tion Time

(s)

Mean

Latency

(ms)

Throughput

(Sample/s)

Predic-

tion Time

(s)

Mean

Latency

(ms)

Throughput

(Sample/s)

XGBoost 0.0079 0.0056 178,923 0.0078 0.0056 180,002 0.0081 0.0058 173,669 0.0079 0.0056 177,532

LightGBM 0.0088 0.0063 159,260 0.0087 0.0062 161,350 0.0089 0.0063 157,521 0.0088 0.0063 159,377

CatBoost 0.0050 0.0035 282,768 0.0047 0.0033 302,419 0.0053 0.0038 264,270 0.0050 0.0035 283,152

Logistic Regression 0.0017 0.0012 829,499 0.0016 0.0011 872,892 0.0017 0.0012 822,225 0.0017 0.0012 841,539

Decision Tree 0.0020 0.0014 695,009 0.0019 0.0014 727,719 0.0021 0.0015 685,792 0.0020 0.0014 702,840

Random Forest 0.0430 0.0305 32,787 0.0421 0.0299 334,56 0.0455 0.0323 30,939 0.0435 0.0309 32,394

Naïve Bayes 0.0025 0.0018 556,942 0.0025 0.0018 561,396 0.0027 0.0019 516,470 0.0026 0.0018 544,936

MLP 0.0031 0.0022 449,947 0.0027 0.0019 523,212 0.0031 0.0022 460,401 0.0030 0.0021 477,853

Vote_XGB_LGBM 0.0245 0.0174 57,597 0.0264 0.0188 53,283 0.0267 0.0190 52,724 0.0259 0.0184 54,534

Vote_AllGBM 0.0316 0.0224 44,575 0.0280 0.0198 50,403 0.0277 0.0196 50,956 0.0291 0.0206 48,645

Vote_Mix 0.0142 0.0101 99,065 0.0138 0.0098 102,061 0.0148 0.0105 95,424 0.0143 0.0101 98,850

StackGBM 0.0792 0.0562 17,793 0.0740 0.0525 19,035 0.0743 0.0527 18,958 0.0758 0.0538 18,595

BernoulliNB 0.0034 0.0024 418,840 0.0032 0.0023 436,877 0.0036 0.0025 395,853 0.0034 0.0024 417,190

MultinomialNB 0.0020 0.0014 713,098 0.0020 0.0014 720,366 0.0020 0.0015 688,440 0.0020 0.0014 707,301

Bagging 0.0070 0.0049 202,235 0.0069 0.0049 203,858 0.0074 0.0053 189,930 0.0071 0.0050 198,674

SGD 0.0016 0.0012 861,509 0.0016 0.0011 874,215 0.0018 0.0013 796,528 0.0017 0.0012 844,084

SGD_NB_Ensemble 0.0045 0.0032 315,807 0.0044 0.0031 319,760 0.0047 0.0034 297,607 0.0045 0.0032 311,058

.

Figure 13. Mean Latency (ms) on VMs (average on regions), on the Telco dataset.

3.3. Sustainability Evaluation

3.3.1. Energy and Emissions on PC

Figure 14 presents the total energy consumption for a 10-fold CV on the KKBOX da-

taset when running on a PC as measured by the CodeCarbon library, taking into account

the geographical region as detected by the IP address. The experiments took place in Ka-

vala, Greece. The highest energy consumption was noted by the ML model StackGBM

(80.30 × 10−3 kWh). In similar levels, MLP consumed 68.95 × 10−3 kWh. The rest of the ML

models consumed a smaller amount of energy. In particular, Logistic Regression required

14.4 × 10−3 kWh, CatBoost required 9.19 × 10−3 kWh, Vote_AllGBM required 9.33 × 10−3

kWh, Vot_Mix required 8.21 × 10−3 kWh and Random Forest required 6.61 × 10−3 kWh. The

Future Internet 2025, 17, 467 20 of 38

rest of the ML models consumed lower levels of energy. Specifically, XGBoost consumed

0.45 × 10−3 kWh, LightGBM consumed 0.41 × 10−3 kWh, Vote_XGB_LGBM consumed 0.72

× 10−3 kWh, Bagging consumed 1.94 × 10−3 kWh and Vote_Mix (1.13 × 10−3 kWh) and SGD

(0.54 × 10−3 kWh). Even smaller levels of consumed energy were noted for Decision Tree

(0.31 × 10−3 kWh), Naïve Bayes (0.08 × 10−3 kWh), BernoulliNB (0.12 × 10−3 kWh), Multino-

mialNB (0.08 × 10−3 kWh) and SGD_NB_Ensemble (0.54 × 10−3 kWh).

Figure 14. Energy consumption of ML models on the KKBOX dataset (PC).

For the Telco dataset (Figure 15), the levels of energy consumption were much less

than in the KKBOX dataset since it is much smaller, and the ML models completed train-

ing very quickly. However, there were still notable differences among the energy con-

sumption levels that different ML models required and are relatively similar to the con-

sumption levels noted for the KKBOX dataset, with the exception of Logistic Regression,

which had the third highest energy consumption for KKBOX but a very low value for the

Telco dataset. The Telco dataset has only 5634 training records (7043 total). On the con-

trary, the KKBOX dataset is almost 100× times the size of the Telco, with a training set of

551.401 records (745.593 total). So Logistic Regression’s training lasted longer than in

KKBOX since it had many more training records to process. StackGBM consumed the

highest level of energy of 2.179 × 10−3 kWh. The next highest values were noted by MLP,

CatBoost, and VoteAllGBM (0.539, 0.298 and 0.366 × 10−3 kWh). Random Forest came next

with 0.056 × 10−3 kWh, Vote_Mix with 0.046 × 10−3 kWh, Vote_XGB_LGBM with 0.046 ×

10−3 kWh and Bagging with 0.025 × 10−3 kWh. The rest of the ML models followed with

even less energy consumption. Specifically, XGBoost and Logistic Regression noted 0.026

× 10−3 kWh, followed by LightGBM with 0.018 × 10−3 kWh. The least amount of energy

consumption (0.002 × 10−3 kWh) was noted by Naïve Bayes and MultinomialNB. Slightly

higher values of consumed energy were shown by BernoulliNB (0.003 × 10−3 kWh),

Future Internet 2025, 17, 467 21 of 38

Decision Tree (0.005 × 10−3 kWh), SGD (0.008 × 10−3 kWh) and SGD_NB_Ensemble (0.012 ×

10−3 kWh).

Figure 15. Energy consumption of ML models for the Telco dataset (PC).

Figure 16 presents the emissions generated when training the ML models on a 10-

fold CV on PC for the KKBOX dataset. As expected, the ML models that required more

time to complete the training generated higher levels of emissions. CO2 emissions and

energy consumption are interrelated. Cloud computing and ML workloads consume elec-

tricity, resulting in CO2 emissions, this also depends on the energy mix of the grid (coal-

powered grid, renewable-powered grid). The evaluation of ML models should therefore

also be based on energy and emissions data, in the steps towards identifying eco-friendly

options. StackGBM generated the highest value of emissions (27.03 g CO2) compared to

the rest of the ML models. MLP followed at similar levels with a value of 23.21 g CO2. The

rest of the ML models noted much less emissions ranging from 4.76 g CO2 for Logistic

Regression to 0.02 g CO2 for Naïve Bayes and MultinomialNB.

Figure 16. Total Emissions of ML models for 10-fold CV on the KKBOX dataset (PC).

Future Internet 2025, 17, 467 22 of 38

Similarly, for the Telco dataset (Figure 17) the emissions generated were much higher

for MLP and StackGBM than for the rest of the ML models. Thus, the highest emissions

were generated by StackGBM (73.36 × 10−2 g CO2). MLP came next with 18.13 × 10−2 g CO2,

while the smallest values of generated emissions were noted by the Bayes models (Naïve

Bayes 0.07 × 10−2 g CO2, BernoulliNB 0.09 × 10−2 g CO2, MultinomialNB × 10−2 g CO2) fol-

lowed by Decision Tree (0.16 × 10−2 g CO2) and SGD (0.29 × 10−2 g CO2).

Figure 17. Total Emissions of ML models for 10-fold CV on the Telco dataset (PC).

In the case of the Telco dataset, energy consumption values as well as emissions are

small for all models, yet with relative differences. Given the fact that those processes run

repeatedly and by many different SaaS providers, their cumulative effect across runs re-

sults in negligible values to add up, leading to non-trivial energy consumption and emis-

sions at scale. Moreover, the actual values increase as the size of the datasets increases; the

values for the KKBOX dataset are much higher compared to the respective ones for the

Telco dataset. Moreover, it should also be considered that, based on SaaS providers’ busi-

ness policy, churn prediction models are trained and called for inference frequently, so as

to be updated with new data, aggregating in a meaningful carbon footprint.

3.3.2. Energy and Emissions on the Cloud

The same training process was also followed for the three Google Cloud VMs with

the exact same specifications and settings, yet in a different geographical region. The aim

of this experiment is to compare the generated emissions when training ML models in

different regions.

The emissions generated on the cloud are less for all ML models, compared to the

corresponding emissions generated when the models run on the PC, although a one-to-

one comparison is not valid since the PC machine does not have the same specifications

as the VMs.

Figure 18 contains the emissions generated per ML model when running on the three

Google Cloud VMs for the KKBOX dataset. For all the ML models, the emissions gener-

ated when running in VM1 of the Asia-northeast1-b region were found to be higher com-

pared to those of the other two regions. On the contrary, the emissions generated in the

US-west1 region were the lowest when compared to the emissions generated in the other

regions. As is presented in Table 10, the emissions generated in the VM1 region were 3.66×

to 4.87× times higher than the emissions generated in the VM3 region. By comparing the

emissions generated when training the models on VM2 and VM3, we noticed that the

emissions generated for all models were more than 2.5× times higher than in VM3, ranging

from 2.63 for SGD to 3.65 for MLP. Lastly, when comparing the emissions generated by

Future Internet 2025, 17, 467 23 of 38

the ML models in VM1 and VM2, we noticed that VM1 emissions were 1.32× to 1.54× times

the emissions in VM2 for all ML models.

Figure 18. Total emissions for 10-fold CV, on the KKBOX dataset (Google Cloud VMs).

Table 10. Total emissions (g CO2) in different regions for 10-fold CV, on the KKBOX dataset.

Model VM1 VM2 VM3
Emission VM1/

Emissions VM2

Emission VM2/

Emissions VM3

Emission VM1/

Emissions VM3

XGBoost 0.08 0.06 0.02 1.34 3.56 4.78

LightGBM 0.05 0.04 0.01 1.35 3.61 4.87

CatBoost 1.69 1.26 0.37 1.34 3.37 4.53

Logistic Regression 2.69 1.94 0.63 1.39 3.09 4.29

Decision Tree 0.03 0.03 0.01 1.34 3.31 4.43

Random Forest 0.69 0.50 0.16 1.36 3.21 4.38

Naïve Bayes 0.01 0.01 0.00 1.40 3.17 4.43

MLP 9.19 6.95 1.91 1.32 3.65 4.82

Vote_XGB_LGBM 0.12 0.09 0.03 1.35 3.38 4.55

Vote_AllGBM 1.71 1.28 0.39 1.33 3.31 4.42

Vote_Mix 1.47 1.09 0.36 1.35 3.03 4.10

StackGBM 12.23 9.13 2.74 1.34 3.33 4.46

BernoulliNB 0.02 0.01 0.00 1.43 3.19 4.55

MultinomialNB 0.01 0.01 0.00 1.54 3.10 4.77

Bagging 0.20 0.15 0.05 1.34 3.24 4.34

SGD 0.20 0.14 0.05 1.39 2.63 3.66

SGD_NB_Ensemble 0.08 0.05 0.02 1.41 2.69 3.79

Future Internet 2025, 17, 467 24 of 38

Table 11 contains the emissions generated when performing a 10-fold CV on the

Telco dataset on the three VMs. Although the emissions are much less compared to when

training on the KKBOX dataset, there are still noted differences when training on different

regions. The emissions generated when training on VM1 were 4.28× to 4.97× times higher

than the emissions generated on VM3. In comparison with the emissions generated when

training on VM2, we noticed 3.18× to 3.70× times higher emissions than the emissions gen-

erated when training on VM3, as shown in Table 9. Finally, when comparing the emissions

of VM1 to those of VM2, we reported 1.32× to 1.37× times higher emissions for all the ML

models.

Table 11. Total emissions (g × 10−2 CO2) in different regions for 10-fold CV, on the Telco dataset.

Model VM1 VM2 VM3
Emission VM1/

Emissions VM2

Emission VM2/

Emissions VM3

Emission VM1/

Emissions VM3

XGBoost 0.20 0.15 0.04 1.32 3.54 4.68

LightGBM 0.19 0.14 0.04 1.32 3.58 4.74

CatBoost 5.92 4.45 1.22 1.33 3.63 4.83

Logistic Regression 0.27 0.20 0.06 1.35 3.18 4.28

Decision Tree 0.12 0.09 0.03 1.34 3.64 4.87

Random Forest 0.77 0.58 0.16 1.33 3.61 4.81

Naïve Bayes 0.09 0.07 0.02 1.33 3.60 4.79

MLP 4.18 3.11 0.85 1.35 3.66 4.93

Vote_XGB_LGBM 0.36 0.27 0.08 1.34 3.57 4.78

Vote_AllGBM 6.04 4.54 1.23 1.33 3.69 4.91

Vote_Mix 0.74 0.54 0.15 1.37 3.62 4.97

StackGBM 36.73 27.50 7.69 1.34 3.58 4.78

BernoulliNB 0.10 0.07 0.02 1.33 3.68 4.89

MultinomialNB 0.09 0.07 0.02 1.33 3.67 4.87

Bagging 0.33 0.25 0.07 1.33 3.64 4.83

SGD 0.15 0.11 0.03 1.33 3.69 4.89

SGD_NB_Ensemble 0.19 0.14 0.04 1.32 3.70 4.88

3.3.3. Models’ Size

Another interesting aspect to consider for the efficient use and sustainability of the

ML models for SaaS decision support is their size. Large models are harder to maintain in

the cloud since they require more space to be saved. It is important to notice that the mod-

els that were the slowest at inference (StackGBM and Random Forest) showed to have the

largest model size. As is shown in Figure 19 regarding the KKBOX dataset, the slowest

models, StackGBM and Random Forest, had the largest sizes of 862.007 mb and 917.13

mb, respectively. The next largest model was generated by Bagging (81.479 mb). The De-

cision Tree model was 11.783 mb and Vote_Mix 11.346 mb. Vote_AllGBM’s size was 1.774

mb and CatBoost’s size was 1.069 mb. The rest of the models had sizes less than 1 mb.

Similarly, for the Telco dataset (Figure 20), the largest models in size were the slowest

ones, namely StackGBM (20.140 mb) and Random Forest (19.346 mb), as shown in Figure

20. Vote_AllGBM model’s size was 1.675 mb, Bagging’s was 1.229 mb, and CatBoost’s was

1.069 mb. The rest of the ML models had sizes less than 1 mb.

Future Internet 2025, 17, 467 25 of 38

Figure 19. Average model size in VMs (average in regions), on the KKBOX dataset.

Figure 20. Average model size in VMs (average in regions), on the Telco dataset.

3.4. Overall Evaluation

3.4.1. Pareto Frontiers Analysis

In order to select an ML model supporting SaaS providers, multiple objectives should

be considered. Predictive performance is undoubtedly important. However, objectives

like emissions, training time and latency of the ML models should also be considered to

have a sustainable and efficient solution to be used in production.

Figure 21 contains the Mean AUC in the x-axis and the Mean Log Loss in the y-axis

for 10-fold CV when running on a PC on the KKBOX dataset. Each ML model is repre-

sented with a circle. A third parameter, the total emissions (g CO2) in the same settings

(10-fold CV, PC), were added by changing the color and size of the circles. The ML models

that have the best predictive performance fall into the right-bottom side of the figure since

Future Internet 2025, 17, 467 26 of 38

the AUC is higher and Log Loss is lower. When a circle is small and green, it means that

the ML model generated small amounts of emissions. When a circle is larger and redder

(color scale from green to red), it generates higher emissions.

For example, Decision Tree, Naïve Bayes and Bagging are worse than MLP and

LightGBM since they are positioned more to the left and top. MLP, XGBoost, CatBoost,

LightGBM, StackGBM, Vote_AllGBM and Vote_XGB_LGBM noted the best predictive

performance since they are on the right and bottom part of the figure. However, MLP and

StackGBM circles are bigger than the rest and red, indicating that those models generated

higher levels of emissions than the rest of the models. Thus, ML models such as XGBoost,

LightGBM, CatBoost and Vote_XGB_LGBM are better to choose than StackGBM and MLP

since they have similar predictive performance and are more eco-friendly.

Figure 21. AUC vs. Log Loss vs. emissions CO2, on the KKBOX dataset.

Similarly, for the Telco dataset (Figure 22), the ML models LightGBM, Logistic Re-

gression, CatBoost, Vote_XGB_AllGBM, Vote_XGB_LGBM, XGBoost and StackGBM

noted good predictive performance and thus, they are in the bottom right corner of the

figure. However, the StackGBM circle is larger and redder, indicating that it generated

higher emissions, and it is not an eco-friendly option.

Future Internet 2025, 17, 467 27 of 38

Figure 22. AUC vs. Log Loss vs. emissions CO2, on the Telco dataset.

In order to compare the ML models based on multiple objectives such as predictive

performance, generated emissions, training time and inference time, we employed the Pa-

reto frontier analysis [58] to identify the ML models that are the best candidate solutions.

The aim is to determine which ML models have a high AUC, low Log Loss, low training

time and low prediction time. The selected criteria are interrelated; AUC and Log Loss are

interrelated since they both calculate predictive performance. Specifically, the AUC shows

how well the ML model can separate the two classes of churners and non-churners and

Log Loss measures how reliable the predicted probabilities are. Similarly, training time

and emissions are interrelated since the longer the training time, the bigger the emissions.

Latency could also be considered interrelated with training time, considering that an ML

model that takes more time to train, probably needs more time to generate a prediction,

since models’ complexity can affect both training time and inference latency.

To this end, Table 12 contains, for each ML model, the mean AUC, mean Log Loss,

total training time, total emissions and Mean Latency when ML models run on a PC on

the KKBOX dataset. A model is considered a Pareto frontier when it is better than or equal

to all objectives and better than at least one. For example, XGBoost is a Pareto frontier

because there are no other ML models better on all parameters. On the contrary,

VoteAllGBM is dominated by Vote_XGM_LGBM because although they have the same

AUC and Log Loss, VoteAllGBM had higher training time, emissions and latency. The

last column of Table 12 contains “Pareto” if it is a Pareto frontier and “Dominated” if there

are solutions that are better alternatives.

Future Internet 2025, 17, 467 28 of 38

Table 12. Trade-offs between performance–efficiency based on Pareto frontier analysis, on the

KKBOX dataset.

Model Mean AUC
Mean Log

Loss

Total

Training Time

(min)

Total

Emissions

(g CO2)

Mean

Latency (ms)

Pareto

Frontier

XGBoost 0.80 0.52 0.34 0.15 1.37×10-6 Pareto

LightGBM 0.80 0.52 0.30 0.14 3.71×10-6 Pareto

CatBoost 0.80 0.52 6.48 3.09 7.79×10-7 Pareto

Logistic Regression 0.68 0.63 11.36 4.76 1.87×10-7 Pareto

Decision Tree 0.59 2.51 0.40 0.10 6.67×10-7 Pareto

Random Forest 0.64 0.73 8.61 2.23 4.5×10-5 Dominated

Naïve Bayes 0.67 2.04 0.10 0.03 1.2×10-6 Pareto

MLP 0.79 0.54 78.88 23.21 3.91×10-6 Dominated

Vote_XGB_LGBM 0.80 0.24 0.52 0.24 4.94×10-6 Pareto

Vote_AllGBM 0.80 0.24 6.58 3.14 5.58×10-6 Dominated

Vote_Mix 0.74 0.27 6.70 2.76 3.24×10-6 Pareto

StackGBM 0.80 0.24 76.43 27.03 5.24E-05 Dominated

BernoulliNB 0.64 0.81 0.13 0.04 1.72×10-6 Dominated

MultinomialNB 0.66 0.66 0.08 0.03 1.07×10-6 Pareto

Bagging 0.64 1.16 2.51 0.65 5.97×10-6 Dominated

SGD 0.66 0.69 1.87 0.47 1.87×10-7 Pareto

SGD_NB_Ensemble 0.66 0.34 0.69 0.18 1.16×10-6 Pareto

For the Telco dataset, a similar analysis was conducted. Table 13 contains the results,

with the last column indicating the Pareto frontier models. For AUC ≥0.8 and Log Loss

≤0.6, the best candidate solutions are XGBoost, LightGBM, CatBoost, Logistic Regression,

Vote_XGB_LGBM, Vote_AllGBM, Vote_Mix and StackGBM.

Table 13. Trade-offs between performance–efficiency based on Pareto frontier analysis, on the Telco

dataset.

Model Mean AUC
Mean Log

Loss

Total

Training Time

(min)

Total

Emissions

(g CO2)

Mean

Latency (ms)

Pareto

Frontier

XGBoost 0.83 0.50 1.34 0.87 0.000008 Pareto

LightGBM 0.84 0.47 0.91 0.59 0.000005 Pareto

CatBoost 0.84 0.47 13.67 10.02 0.000009 Pareto

Logistic Regression 0.85 0.49 1.27 0.88 0.000001 Pareto

Decision Tree 0.65 9.53 0.36 0.16 0.000002 Pareto

Random Forest 0.83 0.51 4.37 1.88 0.000028 Dominated

Naïve Bayes 0.82 2.88 0.16 0.07 0.000004 Pareto

MLP 0.81 0.55 34.89 18.13 0.000003 Dominated

Vote_XGB_LGBM 0.84 0.44 2.08 1.34 0.000030 Pareto

Vote_AllGBM 0.84 0.43 16.61 12.31 0.000038 Pareto

Vote_Mix 0.83 0.47 2.32 1.56 0.000031 Pareto

StackGBM 0.82 0.50 105.15 73.36 0.000082 Pareto

BernoulliNB 0.81 1.09 0.18 0.09 0.000004 Pareto

MultinomialNB 0.83 0.82 0.15 0.08 0.000002 Pareto

Bagging 0.80 1.31 1.64 0.84 0.000005 Dominated

SGD 0.82 2.69 0.63 0.29 0.000001 Pareto

SGD_NB_Ensemble 0.83 0.84 0.95 0.42 0.000004 Pareto

Future Internet 2025, 17, 467 29 of 38

3.4.2. Green Efficiency Weighted Score (GEWS)

In order to select the best solutions among the best candidates, we defined a Green

Efficiency Weighted Score (GEWS). The GEWS is defined as a weighted sum of normal-

ized metrics, the AUC, Log Loss, training time, total emissions and Mean Latency Equa-

tion (2), and it is based on the Simple Additive Weighting (SAW) method proposed by

MacCrimmon (1968) [59]. The values of the metrics were normalized with the min–max

scaling method.

𝐺𝐸𝑊𝑆 = 𝑤𝐴𝑈𝐶 ∗ 𝐴𝑈𝐶 + 𝑤𝐿 ∗ 𝐿𝑜𝑔𝐿𝑜𝑠𝑠 + 𝑤𝑇 ∗ 𝑇𝑟𝑎𝑖𝑛𝑖𝑛𝑔𝑇𝑖𝑚𝑒 + 𝑤𝑐𝑜2
∗ 𝐸𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠 + 𝑤𝑃𝑟 ∗ 𝐿𝑎𝑡𝑒𝑛𝑐𝑦 (2)

The GEWS is considered a useful performance metric for decision makers, as it aims

to facilitate SaaS providers towards selecting the most suitable ML model for their needs,

based on a set of evaluation metrics, covering (1) predictive performance by considering

AUC and Log Loss, (2) efficiency by considering training time and Mean Latency and (3)

sustainability by considering CO2 emissions.

In our case, weights were set as follows: 𝑤𝐴𝑈𝐶= 0.3, 𝑤𝐿= 0.2, 𝑤𝑇= 0.15, 𝑤𝑐𝑜2
= 0.2 and

𝑤𝑃𝑟 = 0.15. In this way, we gave a higher weight to the AUC performance measure, 0.2 for

Log Loss, 0.2 for emissions and 0.15 for training and latency. The selection of the weights

was defined by our team of computer scientist experts, aiming to represent the case of a

typical SaaS provider who is considering predictive performance as a slightly more im-

portant metric.

The latter selection of weights is indicative; weights can be adjusted based on the

SaaS providers’ preferences. Log Loss is more important for SaaS providers that run ex-

pensive campaigns and therefore, are interested in having churn prediction probability

scores that can be relied on, while training time is more important for SaaS providers that

train churn prediction models frequently. Similarly, latency is more important for SaaS

providers that run retention actions based on triggers and use the models in real time, e.g.,

when a user browses the cancelation page, a personalized discount to appear based on the

user’s likelihood of churn. If the latency of the ML model is high, this will impact on the

end user experience. For SaaS providers that run predictions in bulk to run retention cam-

paigns, latency may not be that important since it does not affect the end user experience.

Finally, emissions may not be of equal importance to all SaaS providers. An SaaS that runs

in low-carbon regions generates much less emissions; thus, the emissions measure would

be more important for an SaaS that runs on high-carbon regions.

Figure 23 contains the computed GEWSs for the best candidate ML models for the

KKBOX dataset on 10-fold CV (as presented in Table 12).

As it is depicted in Figure 23, the best GEWS was achieved by Vote_XGB_LGBM

(0.98). The next best scores were noted by XGBoost, which scored 0.97, followed by

LightGBM, which scored 0.96. CatBoost had the same AUC and Log Loss with LightGBM

but achieved 0.94 GEWS since it had higher training time, emissions and latency. Simi-

larly, Vote_Mix, which noted good AUC and Log Loss measures, but is less eco-friendly

and slower than XGBoost and LightGBM, achieved a lower GEWS of 0.87. Finally, ML

models that had much lower predictive performance but are fast and generated low emis-

sions achieved scores of 0.79 for Logistic Regression, 0.65 for Naïve Bayes, 0.76 for Multi-

nomialNB and 0.79 for SGD and SGD_NB_Ensemble. Acceptance criteria could also be set

in order to exclude solutions that do not meet specific criteria. For example, Multinomi-

alNB, which scored 0.79 because it had a high AUC (0.81), very low values on the training

time, prediction time and emissions, but noted a log loss of 0.87, could be excluded from

the list of candidates before computing the GEWSs (e.g., acceptance criterion of Log-Loss

<0.6).

Future Internet 2025, 17, 467 30 of 38

Figure 23. GEWSs for the best candidate ML models for the KKBOX dataset.

Figure 24 presents the GEWSs for the Telco dataset for the best candidate models.

The best GEWS was achieved by Logistic Regression (0.99), followed by LightGBM with

0.98. On the contrary, Vote_XGB_LGBM, which achieved the highest score in the KKBOX

dataset, achieved 0.90 on Telco, indicating that simpler alternatives like Logistic Regres-

sion are preferable for smaller datasets like Telco. StackGBM, which has a similar AUC

and Log Loss (0.82 and 0.5, respectively), achieved a much lower score of 0.45 due to its

high training time, emissions and latency. The Bayes models (Naïve Bayes 0.90, Ber-

noulliNB 0.92 and MultinomialNB 0.96) also achieved good scores due to their good AUC

and very small training time, emissions and latency. However, if acceptance criteria of

Log Loss < 0.6 are set, those ML models do not qualify since they all noted higher values

of Log Loss.

Figure 24. GEWSs for the best candidate ML models for the Telco dataset.

Future Internet 2025, 17, 467 31 of 38

4. Discussion

The present work focused on decision support systems for SaaS and, more specifi-

cally, for churn prediction, which is of great importance for SaaS providers, on both local

and international levels. For regional markets, churn prediction aims to promote business

sustainability and resource optimization; churn prediction could help small local busi-

nesses to retain their customers through targeted retention strategies and stabilize their

revenue, since they often operate on limited budgets and face intense competition. At the

international level, churn prediction models can be adapted globally across markets to

improve customer retention. Big international firms could benefit from benchmarking to

refine their own ML models and lead to innovative retention strategies. Finally, ML mod-

els that reduce churn as well as cloud usage are preferable towards contributing to greener

AI efforts. To this end, the results of our research are mainly interesting for direct stake-

holders that seek actionable insights to reduce churn, like SaaS companies, as well as for

data scientists and product managers who use ML models to improve customers’ experi-

ence. Moreover, providers of cloud services could also benefit from the presented results,

to gain additional insight into efficient deployment and resource usage. Finally, the pro-

posed methodology aims to contribute to the academic sector, and most specifically, to

the evolving field of applied ML in the business context. The presented benchmarking

should be considered by SaaS developers to refine their churn prediction models, by cloud

infrastructure teams to ensure both ML models’ efficiency and sustainability and by re-

searchers interested in sustainability, to evaluate the environmental impact of ML for SaaS

in cloud environments.

Most of the related research focused on the accuracy of predictions, neglecting as-

pects such as training time, inference time, energy consumption and the carbon footprint

of the training and deployment of churn-prediction ML models. Therefore, with this

work, we benchmarked different ML algorithms in two public datasets and tracked their

predictive performance with well-known metrics such as the AUC and more specific ones

like Log Loss, which is valuable for SaaS providers that run retention campaigns. Moreo-

ver, with our extensive benchmarking process in the cloud, we aimed to determine the

relative differences in ML models regarding their carbon footprint and how these change

when they run in different regions. Finally, we provided a way to quantify the relative

differences and select the best ML models that achieve good trade-offs across the different

metrics by introducing a new weighted score, namely the Green Efficiency Weighted

Score (GEWS).

The experimentation process revealed that in small datasets, like Telco, simple meth-

ods like Logistic Regression can be a good fit, offering a good balance between predictive

performance, efficiency and sustainability. In larger datasets like KKBOX, simple ML

models like Logistic Regression could not capture the underlying relationships well,

showing low AUC and increased energy consumption and carbon footprint, noting the

third highest values. On the contrary, XGBoost, LightGBM and the voting schemes of both

showed better results. Voting schemes such as Vote_XGB_LGBM and VoteAllGBM were

more “conservative” in their predictions, noting low recall values indicating that they

missed a lot of churners. However, they noted much lower Log Loss values than the rest

of the ML models. Therefore, the probabilities that those ML models generated were more

reliable and thus, more suitable for SaaS providers that run expensive campaigns or have

limited resources. ML models like XGBoost, LightGBM and CatBoost showed the capabil-

ity of “catching” more churners; therefore, they seem to be a better alternative for SaaS

providers that look to target as many churners as possible.

More complex ensemble approaches like StackingGBM and Vote_Mix did not out-

perform the simpler voting scheme of XGBoost and LightGBM (Vote_XGB_LGBM) in pre-

dictive performance, which noted the same predictive performance metrics (AUC, Log-

Future Internet 2025, 17, 467 32 of 38

Loss, accuracy, recall, F-measure and a little higher precision (0.93 vs. 0.91)). The Stacking

ensemble (StackGBM) was the most energy-consuming ML model, generating 111 times

higher emissions than Vote_XGB_LGBM when run locally. When run on the cloud, Stack-

GBM’s emissions were reported 102 times higher than the emissions of Vote_XGB_LGBM

in a high-carbon intensity region (VM1), 101 times higher in a “medium” intensity region

(VM2) and 91 times higher in a low-carbon region (VM3). The emissions of training Stack-

GBM in a high-carbon intensity region (VM1) were more than 400 times higher than the

emissions when running Vote_XGB_LGBM in a low-carbon region (VM3). Moreover, the

training time of StackGBM was 100 times higher than Vote_XGB_LGBM, while the latency

was 10 times higher.

Similarly, MLP showed good predictive performance, yet it did not outperform ML

methods such as XGBoost and LightGBM, while it showed the second highest training

and inference time and higher energy consumption and emissions. The emissions gener-

ated were more than five times higher than CatBoost’s emissions, 180 times higher than

LightGBM and 100 times higher than the emissions of XGBoost. CatBoost’s training gen-

erated 20 times higher emissions than XGBoost and 33 times higher than LightGBM. When

MLP was run in a high-carbon intensity region (VM1), it generated 459 times higher emis-

sions than XGBoost, 919 times higher than LightGBM and 25 times higher emissions than

CatBoost when run in a low-carbon region (VM3). The experimentation results showed

that for the same churn prediction models, the generated emissions can be even up to

almost five times higher when running in regions that have higher grid carbon intensity.

Therefore, the selection of the region is very crucial for minimizing the carbon footprint

of the ML models.

XGBoost, LightGBM, CatBoost and MLP showed to be very fast, noting low latency

and high throughput values comparable to the simpler and very fast Bayes models, Deci-

sion Tree and SGD. Voting schemes such Vote_XGB_LGBM, Vote_Mix and VoteAllGBM

showed higher inference times, which was as expected since they generate the final pre-

diction by more than one ML model. The slowest among the voting schemes was

VoteAllGBM, noting 4× Latency than XGBoost, 1.5× latency than LightGBM and 7× latency

than CatBoost for the KKBOX dataset and 3.68× latency than XGBoost, 3.27 × latency than

LightGBM and 5.89 × latency than CatBoost. Finally, Random Forest and StackGBM

showed much higher inference times, indicating that they are not good choices for SaaS

providers that use the churn prediction models frequently and have a large user base. For

example, StackGMB latency for the KKBOX dataset was 37 times higher than XGBoost, 14

times higher than LightGBM, 65 times higher than CatBoost and 10 times higher than

Vote_XGBoost_LGBM. Similarly, for the Telco dataset, StackGBM’s latency was 9.61 times

higher than XGBoost, 8.54 times higher than LightGBM and 15.37 times higher than Cat-

Boost.

For selecting the best ML model to use for SaaS churn prediction, we suggested a

unified metric, the GEWS, that considers different aspects such as predictive performance,

training time, inference time and carbon footprint. This way, SaaS providers can pick the

ML model that is more suitable for their case, balancing predictive performance, efficiency

and sustainability. Based on the experimentation results, the highest GEWS for the Telco

dataset was noted by Logistic Regression, showing that for small datasets, simple models

can be sufficient. For the KKBOX dataset, the highest GEWS was achieved by the voting

ensemble Vote_XGBoost_LightGBM, offering a good balance of predictive performance,

training and inference times along with carbon footprint.

Future work could include experimentation with different hyperparameters for each

ML model. Hyperparameters’ optimization could further refine the models’ performance;

efficient tuning strategies could be explored to balance performance gains with sustaina-

bility concerns. Moreover, the impact of different feature selection, feature engineering

Future Internet 2025, 17, 467 33 of 38

and feature transformation approaches could be examined, as well as the use of more deep

learning architectures. Different resampling and under-sampling techniques could also be

tested, while more state-of-the-art SaaS native datasets could be used.

Most of the ML models in this benchmarking are CPU-based. However, ML models

like XGBoost, LightGBM and CatBoost can be trained while using GPU resources. Future

work could examine the impact on training time and generated emissions when using

GPU compared with CPU training, and how this is consumed by the different computa-

tional resources. Parallel computing is also important to explore how it affects the carbon

footprint of the SaaS churn prediction models. Finally, future work could also test how

training and running the ML models at different times of the day affect the generated

emissions.

5. Conclusions

This study performed an extensive benchmark of ML models for SaaS churn predic-

tion, taking into account not only predictive performance metrics but also metrics meas-

uring efficiency of use and environmental impact. To this end, 17 different ML models

were trained in two public datasets locally and on the cloud, in three different regions.

Results revealed that for small datasets like Telco, simple models like Logistic Re-

gression can be both fast and eco-friendly. However, when used in larger datasets like

KKBOX, Logistic Regression struggled to achieve good predictive performance while con-

suming increased amounts of energy.

XGBoost and LightGBM shone in both cases, offering a good balance of predictive

performance, fast training and inference times and limited emissions. Experimental re-

sults confirmed that the selection of a region for running the ML model in the cloud is

very crucial for minimizing the carbon footprint of the ML model. The same churn pre-

diction models generated about five times higher emissions when running in a high car-

bon intensity region compared to when running in a low carbon one. The fastest models

were found to be the simplest ones that had weak predictive performance, such as Naïve

Bayes, MultinomialNB and SGD.

Most importantly, in this work, a GEWS metric was proposed for ranking ML models

based on their predictive performance, training time, inference time and carbon footprint.

Consequently, by using the GEWS metric, SaaS providers can easily select ML models that

are not only accurate but also efficient and sustainable, achieving good training and infer-

ence times while minimizing their carbon footprint.

Author Contributions: Conceptualization, E.M., E.V. and G.A.P.; methodology, E.M., E.V. and

G.A.P.; software, E.M. and M.S.; validation, E.M.; formal analysis, E.M.; investigation, E.M.; re-

sources, E.M.; data curation, E.M. and M.S.; writing—original draft preparation, E.M. and E.V.; writ-

ing—review and editing, E.M., E.V. and G.A.P.; visualization, E.M., E.V. and G.A.P.; supervision,

E.M., E.V. and G.A.P. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: In this work, two public datasets were used: the Telco Customer

Churn dataset, available at https://www.kaggle.com/datasets/blastchar/telco-customer-churn (ac-

cessed on 12 September 2025), and KKBOX’s Churn prediction challenge dataset, available at

https://www.kaggle.com/competitions/kkbox-churn-prediction-challenge/ (accessed on 12 Septem-

ber 2025). The code is openly available in a GitHub repository at https://github.com/MachineLearn-

ingVisionRG/MLSaaSBench (assessed on 7 October 2025).

Conflicts of Interest: The authors declare no conflicts of interest.

Future Internet 2025, 17, 467 34 of 38

Abbreviations

The following abbreviations are used in this manuscript:

ML Machine Learning

SaaS Software as a Service

GEWS Green Efficiency Weighted Score

US United States

CV Cross-Validation

MLP Multi-layer Perceptron

NN Neural Network

AUC Area Under the Curve

VM Virtual Machine

DL Deep Learning

Appendix A

Table A1 includes the default hyperparameter values for all models. Table A2 pro-

vides implementation links for all models. Note that the default hyperparameters of vot-

ing schemes can be found for each model of the scheme separately, already included in

Table A2, while the link for the implementation of soft voting is also available.

Table A1. Default parameters of ML models used in the benchmarking process. The rest of the mod-

els’ parameters are set to ‘none’.

Model [Ref.] Default Parameters

XGBoost [43] ‘objective’: ‘binary:logistic’, ‘eval_metric’: ‘logloss’, ‘random_state’: 42, ‘use_label_encoder’: False

LightGBM [44]

‘boosting_type’: ‘gbdt’, ‘colsample_bytree’: 1.0, ‘learning_rate’: 0.1, ‘max_depth’: -1, ‘min_child_samples’: 20,

‘min_child_weight’: 0.001, ‘min_split_gain’: 0.0, ‘num_leaves’: 31, ‘random_state’: 42, ‘reg_alpha’: 0.0, ‘reg_lambda’: 0.0, ‘subsam-

ple’: 1.0, ‘subsample_for_bin’: 200,000, ‘subsample_freq’: 0, ‘objective’: ‘binary’, ‘metric’: [‘binary’], ‘num_threads’: 16, ‘num_iter-

ations’: 100

CatBoost [45]

nan_mode: Min, eval_metric: Logloss, iterations: 1000, sampling_frequency: PerTree, leaf_estimation_method: Newton, ran-

dom_score_type: NormalWithModelSizeDecrease, grow_policy: SymmetricTree, penalties_coefficient: 1, boosting_type: Plain,

model_shrink_mode: Constant, feature_border_type: GreedyLogSum, bayesian_matrix_reg: 0.10000000149011612, eval_fraction:

0, force_unit_auto_pair_weights: False, l2_leaf_reg: 3, random_strength: 1, rsm: 1, boost_from_average: False, model_size_reg:

0.5, pool_metainfo_options: {‘tags’: {}}, subsample: 0.800000011920929, use_best_model: False, class_names: [0,1], random_seed:

42, depth: 6, posterior_sampling: False, border_count: 254, classes_count: 0, sparse_features_conflict_fraction: 0, leaf_estima-

tion_backtracking: AnyImprovement, best_model_min_trees: 1, model_shrink_rate: 0, min_data_in_leaf: 1, loss_function: Lo-

gloss, learning_rate: 0.020607000216841698, score_function: Cosine, task_type: CPU, leaf_estimation_iterations: 10, boot-

strap_type: MVS, max_leaves: 64

Logistic Regres-

sion [46]

‘C’: 1.0, ‘dual’: False, ‘fit_intercept’: True, ‘intercept_scaling’: 1, ‘max_iter’: 1000, ‘multi_class’: ‘deprecated’, ‘penalty’: ‘l2’, ‘ran-

dom_state’: 42, ‘solver’: ‘lbfgs’, ‘tol’: 0.0001, ‘verbose’: 0, ‘warm_start’: False

Decision Tree [47]
‘ccp_alpha’: 0.0, ‘criterion’: ‘gini’, ‘min_impurity_decrease’: 0.0, ‘min_samples_leaf’: 1, ‘min_samples_split’: 2, ‘min_weight_frac-

tion_leaf’: 0.0, ‘random_state’: 42, ‘splitter’: ‘best’

Random Forest

[48]

‘bootstrap’: True, ‘ccp_alpha’: 0.0, ‘criterion’: ‘gini’, ‘max_features’: ‘sqrt’, ‘min_impurity_decrease’: 0.0, ‘min_samples_leaf’: 1,

‘min_samples_split’: 2, ‘min_weight_fraction_leaf’: 0.0, ‘n_estimators’: 100, ‘oob_score’: False, ‘random_state’: 42, ‘verbose’: 0,

‘warm_start’: False

Naïve Bayes [49] ‘var_smoothing’: 1e-09

MLP [50]

‘activation’: ‘relu’, ‘alpha’: 0.0001, ‘batch_size’: ‘auto’, ‘beta_1’: 0.9, ‘beta_2’: 0.999, ‘early_stopping’: False, ‘epsilon’: 1e-08, ‘hid-

den_layer_sizes’: (100,), ‘learning_rate’: ‘constant’, ‘learning_rate_init’: 0.001, ‘max_fun’: 15000, ‘max_iter’: 300, ‘momentum’: 0.9,

‘n_iter_no_change’: 10, ‘nesterovs_momentum’: True, ‘power_t’: 0.5, ‘random_state’: 42, ‘shuffle’: True, ‘solver’: ‘adam’, ‘tol’:

0.0001, ‘validation_fraction’: 0.1, ‘verbose’: False, ‘warm_start’: False

Vote_XGB_LGBM

(Voting of

XGBoost and

LightGBM)

enable_categorical = False, eval_metric = ‘logloss’, missing = nan, (‘lgbm’, LGBMClassifier(random_state = 42))], ‘flatten_trans-

form’: True, ‘verbose’: False, ‘voting’: ‘soft’, ‘xgb’: XGBClassifier(enable_categorical = False, eval_metric = ‘logloss’, missing =

nan), ‘lgbm’: LGBMClassifier(random_state = 42), ‘xgb__objective’: ‘binary:logistic’, ‘xgb__enable_categorical’: False,

‘xgb__eval_metric’: ‘logloss’, ‘xgb__missing’: nan, ‘xgb__random_state’: 42, ‘xgb__use_label_encoder’: False, ‘lgbm__boost-

ing_type’: ‘gbdt’, ‘lgbm__colsample_bytree’: 1.0, ‘lgbm__importance_type’: ‘split’, ‘lgbm__learning_rate’: 0.1,

‘lgbm__max_depth’: -1, ‘lgbm__min_child_samples’: 20, ‘lgbm__min_child_weight’: 0.001, ‘lgbm__min_split_gain’: 0.0,

‘lgbm__n_estimators’: 100, ‘lgbm__num_leaves’: 31, ‘lgbm__random_state’: 42, ‘lgbm__reg_alpha’: 0.0, ‘lgbm__reg_lambda’: 0.0,

‘lgbm__subsample’: 1.0, ‘lgbm__subsample_for_bin’: 200,000, ‘lgbm__subsample_freq’: 0

 Vote_AllGBM

(Voting of

XGBoost,

{‘estimators’: [(‘xgb’, XGBClassifier(enable_categorical = False, eval_metric = ‘logloss’, missing = nan)), (‘lgbm’, LGBMClassi-

fier(random_state = 42)), (‘cat’, <catboost.core.CatBoostClassifier object at 0x000002516EF9A0D0 >)], ‘flatten_transform’: True,

‘verbose’: False, ‘voting’: ‘soft’, ‘xgb’: XGBClassifier(enable_categorical = False, eval_metric = ‘logloss’, missing = nan), ‘lgbm’:

Future Internet 2025, 17, 467 35 of 38

LightGBM and

CatBoost)

LGBMClassifier(random_state = 42), ‘cat’: <catboost.core.CatBoostClassifier object at 0x000002516EF9A0D0 >, ‘xgb__objective’:

‘binary: logistic’, ‘xgb__enable_categorical’: False, ‘xgb__eval_metric’: ‘logloss’, ‘xgb__missing’: nan, ‘xgb__random_state’: 42,

‘xgb__use_label_encoder’: False, ‘lgbm__boosting_type’: ‘gbdt’, ‘lgbm__colsample_bytree’: 1.0, ‘lgbm__importance_type’: ‘split’,

‘lgbm__learning_rate’: 0.1, ‘lgbm__max_depth’: -1, ‘lgbm__min_child_samples’: 20, ‘lgbm__min_child_weight’: 0.001,

‘lgbm__min_split_gain’: 0.0, ‘lgbm__n_estimators’: 100, ‘lgbm__num_leaves’: 31, ‘lgbm__random_state’: 42, ‘lgbm__reg_alpha’:

0.0, ‘lgbm__reg_lambda’: 0.0, ‘lgbm__subsample’: 1.0, ‘lgbm__subsample_for_bin’: 200,000, ‘lgbm__subsample_freq’: 0,

‘cat__verbose’: 0, ‘cat__random_state’: 42}

 Vote_Mix (Vot-

ing of XGBoost,

Logistic Regres-

sion, Decision

Tree and Naïve

Bayes)

‘estimators’: [(‘xgb’, XGBClassifier(enable_categorical = False, eval_metric = ‘logloss’, missing = nan)), (‘lr’, LogisticRegres-

sion(max_iter = 1000, random_state = 42)), (‘dt’, DecisionTreeClassifier(random_state = 42)), (‘nb’, GaussianNB())], ‘flatten_trans-

form’: True, ‘verbose’: False, ‘voting’: ‘soft’, ‘xgb’: XGBClassifier(enable_categorical = False, eval_metric = ‘logloss’, missing =

nan), ‘lr’: LogisticRegression(max_iter = 1000, random_state = 42), ‘dt’: DecisionTreeClassifier(random_state = 42), ‘nb’: Gaussi-

anNB(), ‘xgb__objective’: ‘binary:logistic’, ‘xgb__enable_categorical’: False, ‘xgb__eval_metric’: ‘logloss’, ‘xgb__missing’: nan,

‘xgb__random_state’: 42, ‘xgb__use_label_encoder’: False, ‘lr__C’: 1.0, ‘lr__dual’: False, ‘lr__fit_intercept’: True, ‘lr__inter-

cept_scaling’: 1, ‘lr__max_iter’: 1000, ‘lr__multi_class’: ‘deprecated’, ‘lr__penalty’: ‘l2’, ‘lr__random_state’: 42, ‘lr__solver’: ‘lbfgs’,

‘lr__tol’: 0.0001, ‘lr__verbose’: 0, ‘lr__warm_start’: False, ‘dt__ccp_alpha’: 0.0, ‘dt__criterion’: ‘gini’, ‘dt__min_impurity_decrease’:

0.0, ‘dt__min_samples_leaf’: 1, ‘dt__min_samples_split’: 2, ‘dt__min_weight_fraction_leaf’: 0.0, ‘dt__random_state’: 42,

‘dt__splitter’: ‘best’, ‘nb__var_smoothing’: 1e-09

 StackGBM

(Stacking Ensem-

ble of Random

Forest, XGBoost,

LightGBM, Cat-

Boost and final es-

timator XGBoost)

[51]

‘estimators’: [(‘rf’, RandomForestClassifier(random_state = 42)), (‘xgb’, XGBClassifier(enable_categorical = False, eval_metric =

‘logloss’, missing = nan, m)), (‘lgbm’, LGBMClassifier(random_state = 42)), (‘cat’, <catboost.core.CatBoostClassifier object at

0x0000025159667F90 >)], ‘final_estimator__objective’: ‘binary:logistic’, ‘final_estimator__enable_categorical’: False, ‘final_estima-

tor__eval_metric’: ‘logloss’, ‘final_estimator__missing’: nan, ‘final_estimator__random_state’: 42, ‘final_estimator__use_label_en-

coder’: False, ‘final_estimator’: XGBClassifier(enable_categorical = False, eval_metric = ‘logloss’, missing = nan), ‘passthrough’:

True, ‘stack_method’: ‘auto’, ‘verbose’: 0, ‘rf’: RandomForestClassifier(random_state = 42), ‘xgb’: XGBClassifier(eval_metric =

‘logloss’, missing = nan), ‘lgbm’: LGBMClassifier(random_state = 42), ‘cat’: <catboost.core. CatBoostClassifier object at

0x0000025159667F90 >, ‘rf__bootstrap’: True, ‘rf__ccp_alpha’: 0.0, ‘rf__criterion’: ‘gini’, ‘rf__max_features’: ‘sqrt’, ‘rf__min_impu-

rity_decrease’: 0.0, ‘rf__min_samples_leaf’: 1, ‘rf__min_samples_split’: 2, ‘rf__min_weight_fraction_leaf’: 0.0, ‘rf__n_estimators’:

100, ‘rf__oob_score’: False, ‘rf__random_state’: 42, ‘rf__verbose’: 0, ‘rf__warm_start’: False, ‘xgb__objective’: ‘binary: logistic’,

‘xgb__enable_categorical’: False, ‘xgb__eval_metric’: ‘logloss’, ‘xgb__missing’: nan, ‘xgb__use_label_encoder’: False,

‘lgbm__boosting_type’: ‘gbdt’, ‘lgbm__colsample_bytree’: 1.0, ‘lgbm__importance_type’: ‘split’, ‘lgbm__learning_rate’: 0.1,

‘lgbm__max_depth’: -1, ‘lgbm__min_child_samples’: 20, ‘lgbm__min_child_weight’: 0.001, ‘lgbm__min_split_gain’: 0.0,

‘lgbm__n_estimators’: 100, ‘lgbm__num_leaves’: 31, ‘lgbm__random_state’: 42, ‘lgbm__reg_alpha’: 0.0, ‘lgbm__reg_lambda’: 0.0,

‘lgbm__subsample’: 1.0, ‘lgbm__subsample_for_bin’: 200,000, ‘lgbm__subsample_freq’: 0, ‘cat__verbose’: 0, ‘cat__random_state’:

42}

BernoulliNB [52] ‘alpha’: 1.0, ‘binarize’: 0.0, ‘fit_prior’: True, ‘force_alpha’: True

MultinomialNB

[53]
‘alpha’: 1.0, ‘fit_prior’: True, ‘force_alpha’: True

Bagging (Bagging

of Decision Trees)

[54]

‘bootstrap’: True, ‘bootstrap_features’: False, ‘estimator__ccp_alpha’: 0.0, ‘estimator__criterion’: ‘gini’, ‘estimator__min_impu-

rity_decrease’: 0.0, ‘estimator__min_samples_leaf’: 1, ‘estimator__min_samples_split’: 2, ‘estimator__min_weight_fraction_leaf’:

0.0, ‘estimator__random_state’: 42, ‘estimator__splitter’: ‘best’, ‘estimator’: DecisionTreeClassifier(random_state = 42), ‘max_fea-

tures’: 1.0, ‘max_samples’: 1.0, ‘n_estimators’: 10, ‘oob_score’: False, ‘random_state’: 42, ‘verbose’: 0, ‘warm_start’: False

SGD (Logistic Re-

gression with Sto-

chastic Gradient

Descent) [55]

‘alpha’: 0.0001, ‘average’: False, ‘early_stopping’: False, ‘epsilon’: 0.1, ‘eta0’: 0.0, ‘fit_intercept’: True, ‘l1_ratio’: 0.15, ‘learn-

ing_rate’: ‘optimal’, ‘loss’: ‘log_loss’, ‘max_iter’: 2000, ‘n_iter_no_change’: 5, ‘penalty’: ‘l2’, ‘power_t’: 0.5, ‘random_state’: 42,

‘shuffle’: True, ‘tol’: 0.001, ‘validation_fraction’: 0.1, ‘verbose’: 0, ‘warm_start’: False

SGD_NB_Ensem-

ble (Voting of

SGD and Naïve

Bayes)

‘estimators’: [(‘SGD’, SGDClassifier(loss = ‘log_loss’, max_iter = 2000, random_state = 42)), (‘nb’, GaussianNB())], ‘flatten_trans-

form’: True, ‘verbose’: False, ‘voting’: ‘soft’, ‘SGD’: SGDClassifier(loss = ‘log_loss’, max_iter = 2000, random_state = 42), ‘nb’:

GaussianNB(), ‘SGD__alpha’: 0.0001, ‘SGD__average’: False, ‘’SGD__early_stopping’: False, ‘SGD__epsilon’: 0.1, ‘SGD__eta0’:

0.0, ‘SGD__fit_intercept’: True, ‘SGD__l1_ratio’: 0.15, ‘SGD__learning_rate’: ‘optimal’, ‘SGD__loss’: ‘log_loss’, ‘SGD__max_iter’:

2000, ‘SGD__n_iter_no_change’: 5, ‘SGD__penalty’: ‘l2’, ‘SGD__power_t’: 0.5, ‘SGD__random_state’: 42, ‘SGD__shuffle’: True,

‘SGD__tol’: 0.001, ‘SGD__validation_fraction’: 0.1, ‘SGD__verbose’: 0, ‘SGD__warm_start’: False, ‘nb__var_smoothing’: 1e-09

Table A2. Implementation links for all models.

Model [Ref.] Implementation Links

XGBoost [43] https://xgboost.readthedocs.io/en/stable/parameter.html (assessed on 12 September 2025)

LightGBM [44] https://lightgbm.readthedocs.io/en/latest/Parameters.html (assessed on 12 September 2025)

CatBoost [45] https://catboost.ai/docs/en/references/training-parameters/ (assessed on 12 September 2025)

Logistic Regression [46]
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html#sklearn.lin-

ear_model.LogisticRegression (assessed on 12 September 2025)

Decision Tree [47]
https://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeClassifier.html#sklearn.tree.Decision-

TreeClassifier (assessed on 12 September 2025)

Random Forest [48]
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html#sklearn.ensem-

ble.RandomForestClassifier (assessed on 12 September 2025)

Naïve Bayes [49]
https://scikit-learn.org/stable/modules/generated/sklearn.naive_bayes.GaussianNB.html#sklearn.na-

ive_bayes.GaussianNB (assessed on 12 September 2025)

Future Internet 2025, 17, 467 36 of 38

MLP [50]
https://scikit-learn.org/stable/modules/generated/sklearn.neural_network.MLPClassifier.html#sklearn.neu-

ral_network.MLPClassifier (assessed on 12 September 2025)

Vote_XGB_LGBM (Voting of

XGBoost and LightGBM)

https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.VotingClassifier.html#sklearn.ensemble.Vot-

ingClassifier (assessed on 12 September 2025)

Vote_AllGBM (Voting of XGBoost,

LightGBM and CatBoost)

https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.VotingClassifier.html#sklearn.ensemble.Vot-

ingClassifier (assessed on 12 September 2025)

Vote_Mix (Voting of XGBoost, Lo-

gistic Regression, Decision Tree

and Naïve Bayes)

https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.VotingClassifier.html#sklearn.ensemble.Vot-

ingClassifier (assessed on 12 September 2025)

StackGBM (Stacking Ensemble of

Random Forest, XGBoost,

LightGBM, CatBoost and final es-

timator XGBoost) [51]

https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.StackingClassifier.html#sklearn.ensem-

ble.StackingClassifier (assessed on 12 September 2025)

BernoulliNB [52]
https://scikit-learn.org/stable/modules/generated/sklearn.naive_bayes.BernoulliNB.html (assessed on 12 Septem-

ber 2025)

MultinomialNB [53]
https://scikit-learn.org/stable/modules/generated/sklearn.naive_bayes.MultinomialNB.html (assessed on 12 Sep-

tember 2025)

Bagging (Bagging of Decision

Trees) [54]

https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.BaggingClassifier.html#sklearn.ensem-

ble.BaggingClassifier (assessed on 12 September 2025)

SGD (Logistic Regression with

Stochastic Gradient Descent) [55]

https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.SGDClassifier.html#sklearn.lin-

ear_model.SGDClassifier (assessed on 12 September 2025)

SGD_NB_Ensemble (Voting of

SGD and Naïve Bayes)

https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.VotingClassifier.html#sklearn.ensemble.Vot-

ingClassifier (assessed on 12 September 2025)

References

1. Ibrahim, A.M.A.; Abdullah, N.S.; Bahari, M. Software as a Service Challenges: A Systematic Literature Review. In Proceedings

of the Future Technologies Conference (FTC) 2022, Vancouver, BC, Canada, 20–21 October 2022; Lecture Notes in Networks

and Systems; Springer: Cham, Switzerland, 2023; Volume 3, pp. 257–272, ISBN 9783031183430.

2. Gupta, M.; Gupta, D.; Rai, P. Exploring the Impact of Software as a Service (SaaS) on Human Life. EAI Endorsed Trans. Internet

Things 2024, 10. https://doi.org/10.4108/eetiot.4821.

3. Sanches, H.E.; Possebom, A.T.; Aylon, L.B.R. Churn Prediction for SaaS Company with Machine Learning. Innov. Manag. Rev.

2025, 22, 130–142. https://doi.org/10.1108/INMR-06-2023-0101.

4. Phumchusri, N.; Amornvetchayakul, P. Machine Learning Models for Predicting Customer Churn: A Case Study in a Software-

as-a-Service Inventory Management Company. Int. J. Bus. Intell. Data Min. 2024, 24, 74–106.

https://doi.org/10.1504/IJBIDM.2024.10051203.

5. Dias, J.R.; Antonio, N. Predicting Customer Churn Using Machine Learning: A Case Study in the Software Industry. J. Mark.

Anal. 2025, 13, 111–127. https://doi.org/10.1057/s41270-023-00269-9.

6. Charizanis, G.; Mavridou, E.; Vrochidou, E.; Kalampokas, T.; Papakostas, G.A. Data-Driven Decision Support in SaaS Cloud-

Based Service Models. Appl. Sci. 2025, 15, 6508. https://doi.org/10.3390/app15126508.

7. Bolón-Canedo, V.; Morán-Fernández, L.; Cancela, B.; Alonso-Betanzos, A. A Review of Green Artificial Intelligence: Towards a

More Sustainable Future. Neurocomputing 2024, 599, 128096. https://doi.org/10.1016/j.neucom.2024.128096.

8. Tabbakh, A.; Al Amin, L.; Islam, M.; Mahmud, G.M.I.; Chowdhury, I.K.; Mukta, M.S.H. Towards Sustainable AI: A

Comprehensive Framework for Green AI. Discov. Sustain. 2024, 5, 408. https://doi.org/10.1007/s43621-024-00641-4.

9. Iqbal, M.S.A.; Haroon, M. Sustainable Cloud. In Advances in Science, Engineering and Technology; CRC Press: London, UK, 2025;

pp. 457–462.

10. The European Parliament and the Council of the European Union Regulation (EU) 2024/1689. Available online: https://eur-

lex.europa.eu/legal-content/EN/TXT/HTML/?uri=OJ:L_202401689 (accessed on 5 September 2025).

11. Rahman, M.; Kumar, V. Machine Learning Based Customer Churn Prediction In Banking. In Proceedings of the 2020 4th

International Conference on Electronics, Communication and Aerospace Technology (ICECA), Coimbatore, India, 5–7

November 2020; pp. 1196–1201.

12. Tékouabou, S.C.K.; Gherghina, Ș.C.; Toulni, H.; Mata, P.N.; Martins, J.M. Towards Explainable Machine Learning for Bank

Churn Prediction Using Data Balancing and Ensemble-Based Methods. Mathematics 2022, 10, 2379.

https://doi.org/10.3390/math10142379.

13. de Lima Lemos, R.A.; Silva, T.C.; Tabak, B.M. Propension to Customer Churn in a Financial Institution: A Machine Learning

Approach. Neural Comput. Appl. 2022, 34, 11751–11768. https://doi.org/10.1007/s00521-022-07067-x.

Future Internet 2025, 17, 467 37 of 38

14. AL-Najjar, D.; Al-Rousan, N.; AL-Najjar, H. Machine Learning to Develop Credit Card Customer Churn Prediction. J. Theor.

Appl. Electron. Commer. Res. 2022, 17, 1529–1542. https://doi.org/10.3390/jtaer17040077.

15. Suh, Y. Machine Learning Based Customer Churn Prediction in Home Appliance Rental Business. J. Big Data 2023, 10, 41.

https://doi.org/10.1186/s40537-023-00721-8.

16. Lalwani, P.; Mishra, M.K.; Chadha, J.S.; Sethi, P. Customer Churn Prediction System: A Machine Learning Approach. Computing

2022, 104, 271–294. https://doi.org/10.1007/s00607-021-00908-y.

17. Rautio, A.J.O. Churn Prediction in SaaS Using Machine Learning. Master’s Thesis, Tampere University, Tampere, Finland, 2019.

18. Maan, J.; Maan, H. Customer Churn Prediction Model Using Explainable Machine Learning. arXiv 2023, arXiv:2303.00960.

19. Gregory, B. Predicting Customer Churn: Extreme Gradient Boosting with Temporal Data. arXiv 2018, arXiv:1802.03396.

20. Hu, X.; Zhang, T. Research on User Churn Prediction of Music Platform Based on Integrated Learning. In Proceedings of the

2024 4th International Conference on Artificial Intelligence, Big Data and Algorithms, Zhengzhou, China, 21–23 June 2024; pp.

267–271.

21. Nimmagadda, S.; Subramaniam, A.; Wong, M.L. Churn Prediction of Subscription User for a Music Streaming Service; Stanford

University: Standford, CA, USA, 2017.

22. Gaddam, L. Comparison of Machine Learningalgorithms on Predicting Churn Within Music Streaming Service; Blekinge Institute of

Technology: Karlskrona, Sweden, 2022.

23. Wu, S.; Yau, W.-C.; Ong, T.-S.; Chong, S.-C. Integrated Churn Prediction and Customer Segmentation Framework for Telco

Business. IEEE Access 2021, 9, 62118–62136. https://doi.org/10.1109/ACCESS.2021.3073776.

24. Fujo, S.W.; Subramanian, S.; Khder, M.A. Customer Churn Prediction in Telecommunication Industry Using Deep Learning.

Inf. Sci. Lett. 2022, 11, 185–198. https://doi.org/10.18576/isl/110120.

25. Saha, S.; Saha, C.; Haque, M.M.; Alam, M.G.R.; Talukder, A. ChurnNet: Deep Learning Enhanced Customer Churn Prediction

in Telecommunication Industry. IEEE Access 2024, 12, 4471–4484. https://doi.org/10.1109/ACCESS.2024.3349950.

26. Arockia Panimalar, S.; Krishnakumar, A.; Senthil Kumar, S. Intensified Customer Churn Prediction: Connectivity with

Weighted Multi-Layer Perceptron and Enhanced Multipath Back Propagation. Expert Syst. Appl. 2025, 265, 125993.

https://doi.org/10.1016/j.eswa.2024.125993.

27. Dodge, J.; Prewitt, T.; Tachet des Combes, R.; Odmark, E.; Schwartz, R.; Strubell, E.; Buchanan, W. Measuring the Carbon

Intensity of Ai in Cloud Instances. In Proceedings of the 2022 ACM Conference on Fairness, Accountability, and Transparency,

Seoul, Republic of Korea, 21–24 June 2022; pp. 1877–1894.

28. Sanchez Ramirez, J.; Coussement, K.; De Caigny, A.; Benoit, D.F.; Guliyev, E. Incorporating Usage Data for B2B Churn

Prediction Modeling. Ind. Mark. Manag. 2024, 120, 191–205. https://doi.org/10.1016/j.indmarman.2024.05.008.

29. BlastChar Telco Customer Churn. Available online: https://www.kaggle.com/datasets/blastchar/telco-customer-churn

(accessed on 13 September 2025).

30. Geiler, L.; Affeldt, S.; Nadif, M. A Survey on Machine Learning Methods for Churn Prediction. Int. J. Data Sci. Anal. 2022, 14,

217–242. https://doi.org/10.1007/s41060-022-00312-5.

31. Kolomiiets, A.; Mezentseva, O.; Kolesnikova, K. Customer Churn Prediction in the Software by Subscription Models It Business

Using Machine Learning Methods. In Proceedings of the CEUR Workshop Proceedings, Ternopil, Ukraine, 16–18 November

2021.

32. Addison, H.; Chiu, A.; McDonald, M.; Kan, W.; Yianchen WSDM-KKBox’s Churn Prediction Challenge. Available online:

https://www.kaggle.com/competitions/kkbox-churn-prediction-challenge/ (accessed on 12 September 2025).

33. Sckit Learn Compute_Sample_Weight. Available online: https://scikit-

learn.org/stable/modules/generated/sklearn.utils.class_weight.compute_sample_weight.html#sklearn.utils.class_weight.comp

ute_sample_weight (accessed on 12 September 2025).

34. Saias, J.; Rato, L.; Gonçalves, T. An Approach to Churn Prediction for Cloud Services Recommendation and User Retention.

Information 2022, 13, 227. https://doi.org/10.3390/info13050227.

35. Rothmeier, K.; Pflanzl, N.; Hullmann, J.A.; Preuss, M. Prediction of Player Churn and Disengagement Based on User Activity

Data of a Freemium Online Strategy Game. IEEE Trans. Games 2021, 13, 78–88. https://doi.org/10.1109/TG.2020.2992282.

36. Ç ALLI, L.; KASIM, S. Using Machine Learning Algorithms to Analyze Customer Churn in the Software as a Service (SaaS)

Industry. Acad. Platf. J. Eng. Smart Syst. 2022, 10, 115–123. https://doi.org/10.21541/apjess.1139862.

37. Ge, Y.; He, S.; Xiong, J.; Brown, D.E. Customer Churn Analysis for a Software-as-a-Service Company. In Proceedings of the 2017

Systems and Information Engineering Design Symposium (SIEDS), Charlottesville, VA, USA, 28 April 2017; pp. 106–111.

Future Internet 2025, 17, 467 38 of 38

38. Hoang, H.D.; Cam, N.T. Early Churn Prediction in Freemium Game Mobile Using Transformer-Based Architecture for Tabular

Data. In Proceedings of the 2024 IEEE 3rd World Conference on Applied Intelligence and Computing (AIC), Gwalior, India, 27–

28 July 2024; pp. 568–573.

39. Chakraborty, A.; Raturi, V.; Harsola, S. BBE-LSWCM: A Bootstrapped Ensemble of Long and Short Window Clickstream

Models. In Proceedings of the 7th Joint International Conference on Data Science & Management of Data (11th ACM IKDD

CODS and 29th COMAD), Bangalore, India, 4–7 January 2024; ACM: New York, NY, USA, 2024; pp. 350–358.

40. Gajananan, K.; Loyola, P.; Katsuno, Y.; Munawar, A.; Trent, S.; Satoh, F. Modeling Sentiment Polarity in Support Ticket Data

for Predicting Cloud Service Subscription Renewal. In Proceedings of the 2018 IEEE International Conference on Services

Computing (SCC), San Francisco, CA, USA, 2–7 July 2018; pp. 49–56.

41. Morozov, V.; Mezentseva, O.; Kolomiiets, A.; Proskurin, M. Predicting Customer Churn Using Machine Learning in IT Startups.

In Lecture Notes on Data Engineering and Communications Technologies; Springer, Cham, Switzerland, 2022; pp. 645–664.

42. Li, R. Bank Customer Churn Prediction Based on Stacking Model. Adv. Econ. Manag. Political Sci. 2025, 185, 42–51.

https://doi.org/10.54254/2754-1169/2025.LH23930.

43. Chen, T.; Guestrin, C. XGBoost: A Scalable Tree Boosting System. In Proceedings of the 22nd ACM SIGKDD International

Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016; ACM: New York, NY,

USA, 2016; pp. 785–794.

44. Ke, G.; Meng, Q.; Finley, T.; Wang, T.; Chen, W.; Ma, W.; Ye, Q.; Liu, T.Y. LightGBM: A Highly Efficient Gradient Boosting

Decision Tree. In Proceedings of the Advances in Neural Information Processing Systems, Long Beach, CA, USA, 4–9 December

2017; pp. 3149–3157.

45. Dorogush, A.V.; Ershov, V.; Gulin, A. CatBoost: Gradient Boosting with Categorical Features Support. arXiv 2018,

arXiv:1810.11363.

46. LaValley, M.P. Logistic Regression. Circulation 2008, 117, 2395–2399. https://doi.org/10.1161/CIRCULATIONAHA.106.682658.

47. Loh, W. Classification and Regression Trees. WIREs Data Min. Knowl. Discov. 2011, 1, 14–23. https://doi.org/10.1002/widm.8.

48. Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. https://doi.org/10.1023/A:1010933404324.

49. Frank, E.; Trigg, L.; Holmes, G.; Witten, I.H. Naive Bayes for Regression. Mach. Learn. 2000, 41, 5–25.

50. Glorot, X.; Bengio, Y. Understanding the Difficulty of Training Deep Feedforward Neural Networks. Proc. J. Mach. Learn. Res.

2010, 9, 249-256.

51. Wolpert, D.H. Stacked Generalization. Neural Netw. 1992, 5, 241–259. https://doi.org/10.1016/S0893-6080(05)80023-1.

52. McCallum, A.; Nigam, K. A Comparison of Event Models for Naive Bayes Text Classification. In Proceedings of the AAAI-98

Workshop on Learning for Text Categorization, Madison, WI, USA, 26–27 July 1998; Volume 752, pp. 41–48.

53. Manning, C.D.; Raghavan, P.; Schütze, H. Introduction to Information Retrieval; Cambridge University Press: Cambridge, UK,

2008; ISBN 9780521865715.

54. Breiman, L. Bagging Predictors. Mach. Learn. 1996, 24, 123–140. https://doi.org/10.1007/BF00058655.

55. Bottou, L. Stochastic Gradient Descent Tricks. In Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial

Intelligence and Lecture Notes in Bioinformatics); Springer: Berlin/Heidelberg, Germany, 2012; pp. 421–436, ISBN 9783642352881.

56. Google. General-Purpose Machine Family for Compute Engine: c4 Machine Series. Available online:

https://cloud.google.com/compute/docs/general-purpose-machines#c4_series (assessed on 10 October 2025)

57. Bishop, C.M. Pattern Recognition and Machine Learning (Information Science and Statistics), 1st ed.; Springer: New York, NY, USA,

2006.

58. Jahan, A.; Edwards, K.L.; Bahraminasab, M. Multi-Criteria Decision Analysis, 2nd ed.; Elsevier: Amsterdam, The Netherlands,

2013.

59. MacCrimmon, K.R. Decision Making Among Multiple–Attribute Alternatives: A Survey and Consolidated Approach; Arpa Order;

RAND: Santa Monica, CA, USA, 1968; No. RM4823ARPA.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual au-

thor(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to

people or property resulting from any ideas, methods, instructions or products referred to in the content.

