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Abstract 

Machine learning (ML) methods have been successfully employed to support decision-

making for Software as a Service (SaaS) providers. While most of the published research 

primarily emphasizes prediction accuracy, other important aspects, such as cloud deploy-

ment efficiency and environmental impact, have received comparatively less attention. It 

is also critical to effectively use factors such as training time, prediction time and carbon 

footprint in production. SaaS decision support systems use the output of ML models to 

provide actionable recommendations, such as running reactivation campaigns for users 

who are likely to churn. To this end, in this paper, we present a benchmarking comparison 

of 17 different ML models for churn prediction in SaaS, which include cloud deployment 

efficiency metrics (e.g., latency, prediction time, etc.) and sustainability metrics (e.g., CO2 

emissions, consumed energy, etc.) along with predictive performance metrics (e.g., AUC, 

Log Loss, etc.). Two public datasets are employed, experiments are repeated on four dif-

ferent machines, locally and on the cloud, while a new weighted Green Efficiency 

Weighted Score (GEWS) is introduced, as steps towards choosing the simpler, greener and 

more efficient ML model. Experimental results indicated XGBoost and LightGBM as the 

models capable of offering a good balance on predictive performance, fast training, infer-

ence times, and limited emissions, while the importance of region selection towards min-

imizing the carbon footprint of the ML models was confirmed. 

Keywords: machine learning; Software as a Service (SaaS); decision support systems; 

churn prediction; carbon footprint; CO2 emissions; sustainable AI; green AI;  

benchmarking; machine learning 

 

1. Introduction 

SaaS refers to cloud-based application services without the need for installation or 

local maintenance [1]. The applications are, therefore, hosted by providers, can be ac-

cessed from any device as long as there is an internet connection, and are typically under 

a recurring subscription. SaaS has empowered businesses and individuals with flexibility, 

lower costs and fast deployment [2]. Yet, billing issues, low engagement, lack of product 

fit to customer needs and vivid competition between different SaaS tools may lead to 

churn [3,4]. Customers cancel or fail to renew their subscription, which directly impacts 

providers’ revenue, growth and long-term viability. 

In a SaaS environment, machine learning (ML) models are often employed towards 

real-time decision support. In this context, ML models repeatedly analyze users’ 
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engagement metrics and behavior, along with transactional data, to determine potential 

churn risks and provide actionable recommendations such as running reactivation cam-

paigns for users that are likely to churn [3,5]. For the latter task, speed and cost-efficiency 

are considered crucial for sustainable SaaS ML models; real-time inference is essential to 

timely provide information for signs of disengagement, while efficient models are re-

quired to reduce overheads, considering the related costs to run ML models at scale in 

cloud resources. Thus, it is important to ensure that ML models are able to provide accu-

rate, fast and cost-efficient predictions to assure sustainability in cloud environments [6]. 

The environmental footprint of cloud-based ML in SaaS is also a great concern, since now-

adays, sustainability is a competitive edge, influencing decisions of customers that in-

creasingly tend to favor SaaS providers with green AI practices [1,7]. Sustainable AI refers 

to the development and use of AI systems in ways that minimize their environmental 

impact, promoting long-term ecological and social well-being [8]. Sustainability in cloud 

environments focuses on the optimal cloud infrastructure so as to reduce energy con-

sumption and carbon emissions [9]. Moreover, it should be noted that, especially in Eu-

rope, regulations regarding carbon accountability, such as the EU AI Act [10], are becom-

ing obligatory. 

To this end, this work examines ML in SaaS for churn prediction. The aim is to bench-

mark several ML models, regarding speed, efficiency and emissions. In this work, a total 

of 17 ML models are tested, and two public datasets are employed for transparency and 

reproducibility. Results on energy consumption, emissions, training time and prediction 

time (latency, Throughput), are provided, as well as predictive performance measures 

AUC (classic) and Log loss, which are valuable for SaaS providers. Moreover, experiments 

in different cloud settings are performed to show how it affects the generated emissions. 

In this context, we introduce a Green Efficiency Weighted Score (GEWS) to evaluate ML 

models based on all these aspects towards choosing simpler and greener alternatives 

while not sacrificing predicting performance. More specifically, the contributions of this 

work can be summarized in the following points: 

1. The benchmarking of 17 ML models in SaaS for churn prediction. Related works also 

focus on benchmarking ML models in SaaS for churn prediction, yet, the proposed 

work is the first to examine such an extended set of ML models; Sanches et al. [4] 

examined seven ML models, Rahman et al. [11] examined four models, Tékouabou 

et al. [12] examined six models, De Lima Lemos et al. [13] examined six models, Al-

Najjar et al. [14] examined five models, Suh [15] examined one model, Lalwani et al. 

[16] examined four models, Rautio [17] used three models and Maan et al. [18] used 

four models. Moreover, a literature review on ML in SaaS [6] highlights that the re-

cent literature on ML methods used for decision support in SaaS, including churn 

prediction, has not reported a single work benchmarking more than 12 ML models. 

2. An exhaustive evaluation using predictive, efficiency and sustainability measures for 

SaaS churn prediction, which, to the best of our knowledge, is first reported in the 

literature covering all those aspects in such an exhaustive experimental setup. 

3. Employment of two public datasets, KKBOX and Telco. Related works mainly use 

private datasets; while working with public sets, no benchmark results have been 

presented together for both datasets, KKBOX and Telco. KKBOX has been used sep-

arately [19–22]; the same applies to the Telco dataset [23–26]. 

4. Presentation of multiple experiments (PC, Google Cloud VMs, different Regions), fo-

cusing on cloud-based environments in realistic circumstances for SaaS applications. 

Specifically, experiments are performed in three different regions (the United States 

(US), Europe and Asia) in Google Cloud VMs, with both datasets. The differences 

when using VMs in different regions and times have already been investigated by 

Dodge et al. in [27]. The authors explicitly measured operational emissions across 
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different cloud regions and times of day (on Microsoft Azure) and concluded that 

region choice had the largest impact. It should be noted that most of the related re-

search focused solely on the accuracy of the predictions, neglecting aspects such as 

cloud deployment efficiency and environmental impact. 

5. Calculation of carbon emissions and energy consumption. Together with Dodge et 

al. [27], there is only one work, that of Sanchez Ramirez et al. [28], that assessed the 

carbon footprint of machine learning models for SaaS decision support. The authors 

examined the use of usage data for churn prediction and assessed the carbon foot-

print of five different machine learning models. Yet, the calculation of carbon foot-

print was conducted based on the estimation of energy consumption rather than real-

time computation. 

6. Benchmark against training time, prediction time (latency) and Throughput in cloud-

based systems that are important for production-ready systems. 

7. Benchmark relative gain in predictive performance over energy consumption and 

emissions again to identify the most eco-friendly ML models to use for churn predic-

tion in SaaS (AUC/Emissions, Log Loss/Emissions). 

8. Exhausting investigation of trade-offs between performance–efficiency based on the 

Pareto frontier analysis. 

9. Introduction of a novel metric, namely the GEWS, defined as a weighted sum of nor-

malized metrics AUC, Log Loss, training time, Total Emissions and Mean Latency, 

aiming to evaluate ML models based on all these aspects towards choosing simpler, 

greener and efficient ML models. 

While the proposed methodology uses well-known ML models, its scientific novelty 

mainly lies in its multi-dimensional and sustainable-aware benchmarking framework, fo-

cused on ML-based churn prediction in SaaS environments. The proposed methodology 

includes an unprecedented range of models’ benchmarking, a holistic evaluation frame-

work, a realistic cloud-based experimental deployment and a novel metric to guide the 

selection of greener and more efficient ML models. Based on the above, this work aims to 

provide a framework that combines AI performance, cloud engineering and environmen-

tal sustainability, a combination not previously fully explored in the academic literature. 

The rest of the paper is structured as follows. Section 2 presents materials and meth-

ods used in this work. Results for all experiments are included in Section 3. Section 4 dis-

cusses the results, while Section 5 concludes the paper. 

2. Materials and Methods 

2.1. Proposed Methodology 

The proposed methodology is illustrated in Figure 1. First, the data used for the ex-

periments were acquired. Two public datasets were used for our experimentation process 

to make our work more transparent and reproducible, as most of the related work uses 

private datasets, making it harder to evaluate the relative performance of different ML 

methods on SaaS decision support. In the next step, preprocessing of the datasets took 

place and they were split into a train and holdout set. The preprocessing involved the 

steps of handling missing values, encoding categorical variables and feature scaling (after 

splitting the datasets into folds and train/holdout). The data were split into two parts, 80% 

and 20%, using stratification based on the class variable that represents whether a user 

would churn or not. The percentage of 80% was used for performing 10-fold cross-valida-

tion (CV), while the 20% was used as a holdout set. For handling a class imbalance of the 

target variable, sample weighting was used, which computes a per-instance weight by 

giving the minority class larger weights. 
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A total of 17 different ML algorithms were tested on the same folds and train/holdout 

set. The selection of models was based on their reported performance for churn prediction 

as indicated in [6], while classic ML methods were also considered. For each of the ML 

methods tracked we calculated performance, efficiency and sustainability metrics. All ex-

periments were conducted on four different machines, on a PC and on three Google Cloud 

Virtual Machines (VMs), each in a different geographical region. 

 

Figure 1. Flow of the proposed methodology. 

2.2. Datasets 

The Telco Customer Churn dataset [29], available at https://www.kaggle.com/da-

tasets/blastchar/telco-customer-churn (accessed on 12 September 2025), is a public dataset 

widely used in churn prediction research [30]. It contains data from a telecommunication 

company operating on a subscription basis. Although it is not exactly SaaS, its subscrip-

tion nature offers quite a similar structure, and thus it has been used in research for SaaS 

churn prediction [30,31]. In particular, Telco operates on a subscription basis similar to 

SaaS. The profitability of subscription-based companies generally depends on customer 

retention. So even small changes in churn rate can significantly impact the generated rev-

enue. Telco contains features such as tenure, contract type, payment method and service 

usage, which resemble SaaS feature variables such as subscription length, plan type, pay-

ment method and product usage. Specifically, it consists of 7043 rows, each one represent-

ing one customer, and 21 columns (features) containing information regarding customer 

attributes, services’ content and subscription. 

The second public dataset employed in this study is the one provided by KKBOX’s 

Churn prediction challenge [32], available at https://www.kaggle.com/competi-

tions/kkbox-churn-prediction-challenge/ (accessed on 12 September 2025). KKBOX is a 

music streaming service provider with millions of users. It provides a generous, free sub-

scription plan, by the end of which users either churn or renew. The challenge provided 

data up to March 2017 and asked the participants to predict churn for April 2017. Since 

the ground truth for April 2017 is not provided in the dataset, we used data up to February 

(28 February 2017) and used it to predict churn for March 2017. The provided data are in 
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the form of four different .csv files containing information regarding user characteristics, 

user logs and subscription information, making it suitable to use for benchmarking churn 

prediction models. Specifically, the KKBOX dataset contains raw data in four different 

.csv files: 

• train_v2 file, contains the user IDs and whether they have churned (97.0961 records); 

• transactions_v2 file, contains information regarding users’ membership, payment 

plans and payment details (1.048.575 records); 

• user_logs_v2 file, contains user logs for daily listening behavior (1.048.575 records); 

• members_v3 file, contains user information like city and gender (1.048.575 records). 

The dataset was preprocessed so as to obtain data per user, resulting in a dataset of 

970.960 records and 35 features, where each row contains information about a specific 

user. Although KKBOX was released in 2017, it is one of the largest real datasets publicly 

available [30]; therefore, the age of the dataset does not undermine its relevance and does 

not limit the practical applicability of our findings. 

2.3. Data Preprocessing 

The Telco dataset is a relatively clean dataset which contains one row per customer 

and no missing values. However, it contains many categorical variables. One-hot encod-

ing was used to represent those features with numeric values. The continuous numeric 

features (TotalCharges and MonthlyCharges) were normalized in the [0,1] using 

MinMaxScaler, after splitting into train/test to ensure no leakage between them. Finally, 

the resulting dataset contained 33 features and 7043 rows. 

Regarding the KKBOX dataset, the row data from the four .csv files were merged 

with a left joint in order to maintain all data. Then, we kept only data up to 28 February 

2017 for training, while data from March 2017 was kept for testing. Thus, no user logs or 

transactions for March were contained in the train set. From the transactions file, the most 

recent transaction represented the current payment state of each user. Based on this infor-

mation, feature engineering was performed, creating features regarding days since regis-

tration, subscription length, month and weekday of registration and last transaction. The 

user logs file contained log events for the users regarding app usage. So, for a user, there 

might be more than one row or even none, if the user has no activity. Each row contained 

the user ID, date and features regarding listening activity: 

• num_25/50/75/985/100, refers to the number of songs played less than 25%, 25–50%, 

50–75%, 75–98.5% and 98.5–100% of the song length; 

• num_unq refers to unique songs played; 

• total_secs refers to the total seconds played. 

We grouped those rows per user and computed sums and means for 

num_25/50/75/985/100, num_unq and total_secs. From the date column, date_min, 

date_max and date_unique were derived from the user’s earliest log date, latest log date 

and number of active days. Then, the following features were defined: 

• log_span_days, as date_max minus date_min, to represent user lifespan; 

• avg_secs_per_song, defined as the sum of total_secs for each user divided by the 

number of unique songs played (sum of num_unq); 

• days_since_last_log_missing, which is 1 if there are no logs, otherwise it is 0; 

• days_since_last_log, for the number of days since the last log. 

Following feature engineering, the handling of missing values took place. For the 

transactional related features like payment_plan_days and actual_amount_paid, we filled 

missing values with zero. Similarly, user log features were filled with zero when there 

were no values to show the absence of user activity and the days_since_last_log feature 

was filled with 999 since zero would mean very recent activity. Columns of raw dates and 
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IDs (msno, bd, registration_init_time, membership_expire_date and transaction_date) 

were removed. Next, the categorical variable gender was encoded to integer values 1 and 

2. For continuous numeric features like “payment_plan_days” and “ac-

tual_amount_paid”, normalization was performed by applying MinMaxScaler, separately 

for the train and test sets. The resulting dataset contained 970.960 rows and 35 features. 

2.4. Machine Learning Models 

Stratified splits of 80–20% were performed for both datasets to formulate the train 

and holdout sets. The percentage of 80% was used for performing a 10-fold stratified 

cross-validation. The splits were saved, and all ML classifiers were trained and tested in 

the same parts. The utility function of sklearn compute_sample_weight with class_weight 

= ‘balanced’ was used as a universal way to handle class imbalance [33]. This function 

computes sample weights, assigning larger values to the minority class, which is used 

when training the ML model. 

The ML methods used in our benchmarking study were selected based on the related 

research on SaaS decision support in [6], specifically for churn prediction. Therefore, ac-

cording to the literature review conducted in [6], the most reported ML models for churn 

prediction in SaaS were selected. In our benchmark, we included Random Forest, which 

was proposed for SaaS Churn prediction in [31,34–36], XGBoost, which was efficiently 

used in [37,38], Decision Tree used in [5], LightGBM proposed in [39] and Logistic Regres-

sion reported in [28]. Moreover, we used a multi-layer perceptron (MLP) for including 

feed-forward neural network (NN) implementation in our experiments, as in [40,41]. Sim-

ilarly, we used a Stacking ensemble (StackGBM), as proposed in the recent publication of 

Li [42], which uses Random Forest, XGBoost, LightGBM and CatBoost as base learners 

and XGBoost as a meta-learner. We also included an ensemble combination of XGBoost 

and LightGBM inspired by the winning solution in the KKBOX Challenge [19]. Two other 

ensemble combinations were included in order to test their relative performance, 

VoteAllGBM, which used XGBoost, LightGBM and CatBoost in a soft voting scheme and 

Vote_Mix, which used XGBoost, Logistic Regression, Decision Tree and Naïve Bayes in a 

soft voting scheme. Classic ML models such as Multinomial and Bernoulli Naïve Bayes 

were also included in benchmarking in order to compare their performance with the rest 

of the selected methods. Finally, the Bagging of Decision Trees, Logistic Regression with 

stochastic gradient descent (SGD) learning and an ensemble of SGD with Naïve Bayes 

were also included. 

At this point, no deep learning (DL) architectures were selected, despite their rele-

vance in large-scale SaaS. The latter was due to the model selection process that was based 

on the findings of [6], as well as because DL architectures are not best fitted for tabular 

data, such as in our case. The use of DL models would require different preprocessing and 

format of the dataset. Considering DL models in our methodology would be technically 

possible, yet it would be methodically unfair to compare their results directly with the 

results obtained by our ML models in the current setup. Moreover, recall the scope of this 

work, which is to provide a methodology for benchmarking ML models for SaaS churn 

prediction, focusing on efficiency and sustainability. 

Table 1 contains all the ML models used in our benchmarking. The implementation 

(in Python 3.11.13) employed Python library scikit-learn 1.7.1 for all ML models except 

XGBoost, LightGMB and CatBoost, and XGBoost 3.0.3 for XGBoost models, LightGBM 

4.6.0 for LightGBM models and CatBoost 1.2.8 for CatBoost models. For all the models, 

random_state = 42 was set. For all the models, the default hyperparameters were used, as 

defined in Table A1 of the Appendix A Section. Table A2 of the Appendix A Section also 

provides the referenced implementation links for all models, aiming to provide full access 

to the readers to source codes towards reproducing the benchmarking process. In case a 
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specific value of a hyperparameter, different from the default is used, it is mentioned in 

Table 1. 

In this work, optimization of the models’ hyperparameters is not considered. Hy-

perparameter tuning can enhance model performance and potentially affect comparative 

fairness. However, our decision to evaluate all models using default hyperparameters was 

intentional, due to the following reasons: (1) to establish a reproducible benchmarking 

baseline across all models, allowing for a fair comparison of models in their most accessi-

ble form; (2) to align with our sustainability goals and reflect realistic deployment scenar-

ios where tuning may not be feasible due to resource constrains; (3) to train and evaluate 

all models under the same conditions, pursuing fairness through uniformity, ensuring 

methodological consistency and avoiding bias introduced by uneven tuning efforts. 

Table 1. Parameter setup of ML models used in the benchmarking process. 

Model [Ref.] Setup Parameters 

XGBoost [43] XGBClassifier (eval_metric =“logloss”) (xgboost library) 

LightGBM [44] LGBM classifier (lightgbm library) 

CatBoost [45] CatBoost classifier (catboost library) 

Logistic Regression [46] LogisticRegression (max_iter = 1000) 

Decision Tree [47] DecisionTree 

Random Forest [48] RandomForest 

Naïve Bayes [49] GaussianNB 

MLP [50] MLPClassifier(max_iter = 300) 

Vote_XGB_LGBM (Voting of XGBoost and 

LightGBM) 

VotingClassifier. Estimators: XGBClassifier (eval_metric = “logloss”, LGBMClassi-

fier, Voting = “soft” 

Vote_AllGBM (Voting of XGBoost, LightGBM 

and CatBoost) 

VotingClassifier. Estimators: XGBClassifier (eval_metric = “logloss”, LGBMClassi-

fier, CatBoostClassifier. Voting = “soft” 

Vote_Mix (Voting of XGBoost, Logistic Regres-

sion, Decision Tree and Naïve Bayes) 

VotingClassifier. Estimators: XGBClassifier (eval_metric = “logloss”), 

LogisticRegression(max_iter = 1000), DecisionTreeClassifier, GaussianNB. Voting = 

“soft” 

StackGBM (Stacking Ensemble of Random For-

est, XGBoost, LightGBM, CatBoost and final es-

timator XGBoost) [51] 

StackingClassifier. Estimators: RandomForestClassifier, XGBClassifier (eval_metric 

= “logloss”), LGBMClassifier, CatBoostClassifier. Final_estimator: XGBClassi-

fier(use_label_encoder = False, eval_metric = “logloss, passthrough = True)) 

BernoulliNB [52] BernoulliNB  

Multinomial NB [53] MultinomialNB 

Bagging (Bagging of Decision Trees) [54] BaggingClassifier. Estimator: DecisionTreeClassifier(n_estimators = 10) 

SGD (Logistic Regression with Stochastic Gra-

dient Descent) [55] 
SGDClassifier(loss = “log_loss”, max_iter = 2000) 

SGD_NB_Ensemble (Voting of SGD and Naïve 

Bayes) 

VotingClassifier. Estimators: SGDClassifier (loss = “log_loss”, max_iter = 2000, 

GaussianNB()), Voting: soft 

2.5. Training and Evaluation 

The experimentation process was conducted in four different machines by following 

the same steps. First, the preprocessing of the datasets was made as explained in Section 

2.2, as well as the splitting into train/test (folds) and holdout sets. Then, all the ML models 

were trained in the same folds, performing 10-fold CV. Finally, the ML models were 

trained in the full training set and tested with the holdout set. 

The process was repeated in four different machines, a PC and three Google Cloud 

VMs in different regions. The deployment of the SaaS prediction models could be per-

formed in various ways, for example, using serverless containers such as Cloud Run or 

platforms like VertexAI. However, those environments offer less control compared to 

VMs, making them unsuitable for reliably tracking energy consumption and emissions. 

Therefore, for the proposed benchmarking study, VMs were used for reliably measuring 

energy consumption and emissions. 
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More specifically, first, all experiments were conducted on a PC Intel i5-9400F, 64-bit 

RAM, 32 GB with Ubuntu 24.04.3 LTS, 64-bit kernel, which runs in Kavala, Greece. In 

Google Cloud, we set 3 VMs of type c4-standard-4 [56] (4 vCPUs, 15 GB Memory) in re-

gions in Asia (Tokyo), Europe (Frankfurt) and the USA (Oregon). The generated emissions 

differ among different regions due to the way energy is produced. Table 2 includes the 

selected regions and grid carbon intensity (gCO2eq/kWh) as reported in the “Carbon free 

energy for Google Cloud regions” report, available at https://cloud.google.com/sustaina-

bility/region-carbon (accessed on 12 September 2025). As it is shown in Table 2, VM3 is 

the “greenest” option since it is considered “Low CO2”, VM2 is of medium grid carbon 

intensity and VM1 is of high grid carbon intensity. This setup aims to measure the relative 

differences in the emissions generated by running the same ML models in regions with 

different grid carbon intensities. 

Table 2. Google Cloud VMs, regions and grid carbon intensity. 

VM 
Google Cloud Re-

gion 
Location 

Grid Carbon In-

tensity 

(gCO2eq/kWh) 

CO2 Intensity Char-

acterization 

VM1 
asia-northeast1-b 

19:00 UTC 
Asia (Tokyo) 453 High 

VM2 
europe-west3 

19:00 UTC 
Europe (Frankfurt) 276 Medium 

VM3 
us-west1  

19:00 UTC 
US (Oregon) >200 High 

For all experiments, the evaluation metrics included in Table 3 are calculated. Predic-

tive performance metrics include classic metrics like AUC, accuracy, precision, recall and 

F-measure, as well as Log Loss, which is the evaluation metric used in KKBOX challenges, 

and it is considered valuable for SaaS providers running reactivation campaigns. For the 

calculation of energy consumption and emissions generated, the CodeCarbon library 

available at https://codecarbon.io/ (accessed on 12 September 2025) was used. CodeCar-

bon monitors energy consumption when running code and maps it to carbon emissions 

based on the carbon intensity of electricity in the region where the code is running. Energy 

consumption and CO2 emissions, along with model size and training time, were tracked 

for both 10-fold CV and train/holdout experiments. Prediction time, Mean Latency and 

Throughput were calculated by loading the saved ML models that were trained in the full 

train set, predicting the output for the complete holdout set. 

Table 3. Evaluation metrics per objective. 

Evaluation Metrics Objective 

AUC 

Predictive performance 

Log-Loss 

Accuracy 

Precision 

Recall 

F-measure 

Training time 

Efficiency 
Prediction time 

Mean Latency 

Throughput 

Model Size 

Sustainability Energy_consumed 

Emissions CO2 
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3. Results 

In this section, the experiment results are presented. Section 3.1 presents the results 

regarding the predictive performance of the ML models, efficiency is evaluated in Section 

3.2 and sustainability in Section 3.3., either on PC or on the cloud. Trade-offs between 

performance and efficiency are discussed in Section 3.4, concluding with the introduction 

of a novel Green Efficiency Weighted Score (GEWS) aiming to help identify both the most 

efficient and greener alternatives. 

3.1. Performance Evaluation 

Apart from accuracy, precision, recall and F1-score, a common evaluation metric for 

churn prediction is the Area Under the Curve (AUC). AUC shows how well the model 

can separate churners from non-churners. Additionally, Log Loss is also calculated, as it 

is the evaluation metric used in the KKBOX challenge. Log Loss is considered important 

for SaaS providers because it is linked to the reliability of predictions of churn models for 

each user. SaaS vendors use them to select which users to target in their retention cam-

paigns. Retention campaigns can become costly, so it is essential to target the right users 

to ensure resources are used efficiently and not wasted. 

The Log Loss value for an instance with true class label 𝑦 ∈ {0,1} and probability 

estimate p for y = 1 is defined as shown in Equation (1) [57]: 

𝐿𝑜𝑔 𝐿𝑜𝑠𝑠𝑖(𝑦, 𝑝) = −(𝑦 ∗ (log(𝑝) + (1 − 𝑦) ∗ log (1 − 𝑝)  (1) 

Then, for N instances, the average Log Loss value is computed. 

3.1.1. Performance on 10-Fold CV 

Table 4 presents the evaluation results for the 10-fold CV in the KKBOX dataset. As 

it is shown, XGBoost, CatBoost, LightGBM and the ensemble approaches Voting and 

Stacking (Vote_AllGBM, Vote_XGB_LGBM and StackGBM) achieved an AUC of 0.80. 

Similarly, MLP achieved an AUC of 0.79. The rest of the ML models noted an AUC value 

of less than 0.75. Specifically, Vote_Mix noted an AUC of 0.74, Logistic Regression of 0.68, 

Naïve Bayes of 0.67, MultinomialNB of 0.66 and BernoulliNB of 0.64. Bagging noted an 

AUC of 0.64, while SGD and SGD_NB_Ensemble, of 0.68 and 0.66, respectively. 

Regarding Log Loss values, the best results were noted by the ensemble approaches 

Vote_AllGBM, Vote_XGB_LGBM and StackGBM, which showed Log Loss values of 0.24 

and Vote_Mix of 0.27. The ML models SGD_NB_Ensemble showed a relatively good Log 

Loss of 0.33, while CatBoost and XGBoost followed with 0.52. MLP noted a similar Log 

Loss of 0.54, while the rest of the ML models followed with mediocre results ranging from 

0.63 for Logistic Regression to 2.51 for Decision Tree. 
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Table 4. Evaluation metrics for 10-fold CV on dataset KKBOX (PC). 

ML Model 
Mean  

Accuracy 

Mean  

Precision 

Mean  

Recall 

Mean  

F1-Score 

Mean  

AUC (CV) 

Mean Log Loss 

(CV) 

XGBoost 0.72 0.21 0.74 0.32 0.80 0.52 

LightGBM 0.72 0.21 0.74 0.32 0.80 0.52 

CatBoost 0.73 0.21 0.73 0.32 0.80 0.52 

Logistic Regression 0.71 0.16 0.53 0.25 0.68 0.63 

Decision Tree 0.83 0.24 0.42 0.30 0.59 2.51 

Random Forest 0.85 0.27 0.37 0.31 0.64 0.73 

Naïve Bayes 0.85 0.18 0.19 0.18 0.67 2.04 

MLP 0.73 0.21 0.71 0.32 0.79 0.54 

Vote_XGB_LGBM 0.92 0.93 0.16 0.27 0.80 0.24 

Vote_AllGBM 0.92 0.92 0.16 0.27 0.80 0.24 

Vote_Mix 0.92 0.75 0.16 0.26 0.74 0.27 

StackGBM 0.92 0.91 0.16 0.27 0.80 0.24 

BernoulliNB 0.75 0.15 0.37 0.21 0.64 0.81 

MultinomialNB 0.82 0.17 0.26 0.20 0.66 0.66 

Bagging 0.86 0.27 0.36 0.31 0.64 1.16 

SGD 0.71 0.16 0.54 0.25 0.68 0.64 

SGD_NB_Ensemble 0.85 0.18 0.19 0.18 0.66 0.33 

Figure 2 illustrates the AUC for each of the ML models, while Figure 3 illustrates the 

Log Loss. Although ensemble approaches Vote_AllGBM, Vote_XGB_LGBM and Stack-

GBM reported the best results in Log Loss, they showed low levels of recall (less than 0.2) 

and high precision (0.75–0.92). Thus, those ML models could be characterized as “con-

servative” in terms of predicting churned users. However, when they characterize a user 

as churned, their decision is mostly accurate. 

XGBoost, CatBoost and LightGBM achieved the best results in recall (0.74, 0.74 and 

0.73, respectively), indicating that they can classify most churners correctly. MLP showed 

similar results with 0.71 recall. Therefore, for SaaS providers that run expensive cam-

paigns and want to minimize the risk of targeting users that are not likely to churn, ML 

models such as Vote_AllGBM, Vote_XGB_LGBM and StackGBM are a better fit (based 

only on the predictive performance). 

 

Figure 2. Average AUC for 10-fold CV, on the KKBOX dataset (PC). 
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Figure 3. Average Log Loss for 10-fold CV, on the KKBOX dataset (PC). 

Figure 4 illustrates the corresponding AUC values for all ML models on the Telco 

dataset (10-fold CV). As it is observed, Logistic Regression achieved the highest AUC 

(0.85). The ML models Vote_AllGBM, Vote_XGB_LGBM, LightGBM and CatBoost re-

ported an AUC of 0.84. Random Forest, Vote_Mix, MultinomialNB and SGD_NB_Ensem-

ble showed an AUC of 0.83. Naïve Bayes, StackGBM and SGD achieved an AUC of 0.82 

while MLP and BernoulliDB noted an AUC of 0.81. Bagging followed with an AUC of 0.80 

and, finally, Decision Tree with an AUC of 0.65. 

 

Figure 4. Average AUC for 10-fold CV, on dataset Telco (PC). 

Figure 5 visualizes the results of the Log Loss values for the Telco dataset. 

Vote_XGB_LGBM achieved 0.44 Log Loss while Vote_AllGBM noted the lowest Log Loss 

of 0.43. Logistic Regression achieved 0.49 Log Loss, StackGBM had Log Loss of 0.5, while 

the rest of the ML models noted Log Loss values higher than 0.50 (Random Forest 0.51, 

MLP 0.55, MultinomialNB 0.82, SGD_NB_Ensemble 0.84, Bagging 1.31, BernoulliNB 1.09 

and Naïve Bayes 2.88). 

Interestingly, Logistic Regression achieved a good AUC of 0.85 and Log Loss of 0.49. 

The Telco dataset has many categorical features encoded with one-hot encoding that make 
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it a good candidate for applying Logistic Regression. Based on the results of the Telco 

dataset, which are included in Table 5, the ensemble approaches of Vote_AllGBM and 

Vote_XGB_LGBM seem more suitable for SaaS providers looking to obtain more reliable 

churn probabilities for their users and thus, targets users that are more likely to churn. 

However, those models “catch” fewer churners as opposed to models such as XGBoost, 

LightGBM, CatBoost and Logistic Regression, which showed better recall values (0.67, 

0.74, 0.75 and 0.80, respectively), as shown in Table 5. 

Therefore, SaaS providers that implement less expensive campaigns and are more 

concerned with not “missing” churners than targeting users that are more likely to churn, 

should prefer models such as XGBoost, LightGBM, CatBoost or even simpler models such 

as Logistic Regression. 

 

Figure 5. Average Log loss for 10-fold CV, on dataset Telco (PC). 

Table 5. Evaluation metrics for 10-fold CV, on dataset Telco (PC). 

ML Model 
Mean  

Accuracy 

Mean  

Precision 

Mean  

Recall 

Mean  

F1-Score 

Mean  

AUC (CV) 

Mean Log Loss 

(CV) 

XGBoost 0.76 0.54 0.67 0.60 0.83 0.50 

LightGBM 0.76 0.54 0.74 0.62 0.84 0.47 

CatBoost 0.76 0.54 0.75 0.63 0.84 0.47 

Logistic Regression 0.75 0.52 0.80 0.63 0.85 0.49 

Decision Tree 0.73 0.50 0.48 0.49 0.65 9.53 

Random Forest 0.79 0.63 0.47 0.54 0.83 0.51 

Naïve Bayes 0.65 0.43 0.89 0.58 0.82 2.88 

MLP 0.74 0.51 0.73 0.60 0.81 0.55 

Vote_XGB_LGBM 0.80 0.65 0.52 0.58 0.84 0.44 

Vote_AllGBM 0.80 0.65 0.51 0.57 0.84 0.43 

Vote_Mix 0.77 0.57 0.63 0.60 0.83 0.47 

StackGBM 0.79 0.62 0.49 0.55 0.82 0.50 

BernoulliNB 0.67 0.44 0.87 0.58 0.81 1.09 

MultinomialNB 0.73 0.50 0.79 0.61 0.83 0.82 

Bagging 0.78 0.61 0.43 0.50 0.80 1.31 

SGD 0.77 0.61 0.60 0.58 0.82 2.69 

SGD_NB_Ensemble 0.75 0.54 0.72 0.61 0.83 0.84 
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3.1.2. Performance on Holdout 

Comparing the evaluation results of the CV with the holdout evaluation results, there 

were noted small differences indicating that the cross-validation process was performed 

correctly and the ML models generalize well. Models with strong predictive performance 

showed tiny differences (≤0.01) while ML models with less predictive power noted larger 

differences such as Decision Tree, which achieved Log Loss of 2.51 in cross-validation and 

2.45 in holdout showing a more unstable behavior due to their weak predictive perfor-

mance (AUC 0.59–0.60). Figures 6 and 7 illustrate AUC and Log Loss, respectively, for 

holdout versus CV for all models on the KKBOX dataset. 

 

Figure 6. AUC on holdout vs. average AUC for 10-fold CV, on KKBOX dataset (PC). 

 

Figure 7. Log Loss on holdout vs. average Log Loss for 10-fold CV, on KKBOX dataset (PC). 
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Similar were the results for the Telco dataset, as illustrated in Figures 8 and 9. Most 

of the models noted almost identical evaluation metrics except ML models such as SDG 

and Decision Tree, which showed low predictive performance and more unstable behav-

ior. 

 

Figure 8. AUC on holdout vs. average AUC for 10-fold CV, on Telco dataset (PC). 

 

Figure 9. Log Loss on holdout vs. average Log Loss for 10-fold CV, on Telco dataset (PC). 

3.2. Efficiency Evaluation 

3.2.1. Training Time on PC and Cloud 

MLP and StackGBM required much more time to train compared to the rest of the 

models, as shown in Figure 10, illustrating the training time per ML model when 
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performing 10-fold CV on the KKBOX dataset, running on PC. Specifically, MLP required 

78.88 min, while similarly, StackGBM noted 76.43 min on the same settings. The rest of 

the ML models required less than half of the time spent on MLP and StackGBM. Specifi-

cally, Logistic Regression required 11.36 min, CatBoost 6.48 min, Random Forest 8.61 min 

and Vote_Mix 6.70 min. Bagging training needed 2.51 min and SGD 1.87 min. The rest of 

the ML models (XGBoost, LightGBM, Decision Tree, Vote_XGB_LGBM, BernoulliNB, 

MultinomialNB and SGD_NB_Ensemble) reported training times less than 1 min. 

 

Figure 10. Total training time for 10-fold CV, on KKBOX dataset (PC). 

Similarly, when training the models on the cloud, the training time for MLP and 

StackGBM were quite larger than the rest of the models. As shown in Table 6, MLP noted 

the larger training time of 102.13 min on average on the three Google Cloud VMs we used 

in the experiments. StackGBM followed with 86.96 min on average. Logistic Regression 

required 13.96 min and Vote_AllGBM 9.21 min The rest of the ML models required less 

than 10 min to train. In particular, CatBoost, Random Forest and Vote_Mix required 8.77, 

7.82 and 8.14 min, respectively. Bagging training lasted 2.34 min. Extremely fast ML mod-

els with less than 1 min to train were Vote_XGB_LGBM (0.87 min), LightGBM (0.47 min), 

XGBoost (0.42 min), Decision Tree (0.38 min), SGD (0.37 min), BernoulliNB (0.17 min), 

SGD_Ensemble (0.13 min) and MultinomialNB (0.12 min). 

Table 6. Training time (min) for 10-fold CV, on dataset KKBOX (Google Cloud VMs). 

Model VM1 VM2 VM3 Average Standard Deviation 

XGBoost 0.42 0.41 0.43 0.42 0.01 

LightGBM 0.47 0.47 0.48 0.47 0.00 

CatBoost 8.57 8.50 9.23 8.77 0.33 

Logistic Regression 13.53 12.95 15.41 13.96 1.05 

Decision Tree 0.36 0.36 0.40 0.38 0.02 

Random Forest 7.58 7.40 8.46 7.82 0.46 

Naïve Bayes 0.15 0.14 0.16 0.15 0.01 

MLP 101.49 102.13 102.76 102.13 0.52 

Vote_XGB_LGBM 0.86 0.85 0.92 0.87 0.03 

Vote_AllGBM 8.91 8.88 9.82 9.21 0.44 

Vote_Mix 7.71 7.56 9.15 8.14 0.72 

StackGBM 84.25 83.56 93.06 86.96 4.33 

BernoulliNB 0.18 0.16 0.19 0.17 0.01 
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MultinomialNB 0.12 0.10 0.12 0.12 0.01 

Bagging 2.26 2.24 2.54 2.34 0.14 

SGD 2.17 2.07 2.90 2.38 0.37 

SGD_NB_Ensemble 0.83 0.79 1.09 0.90 0.13 

Training times for the Telco dataset, visualized in Figure 11, were much smaller com-

pared to KKBOX, as expected, since it is a much smaller dataset. However, there were still 

notable differences among the models. StackGBM had the highest training time of 105.15 

s. MLP was next with 34.89 s. Vote_AllGBM followed with 16.61 s and CatBoost with 

13.67. Random Forest and Vote_Mix noted 4.37 and 2.32 s, respectively. 

Vote_XGM_LGBM’s training lasted 2.08 s. XGBoost and Logistic Regression were very 

fast, noting training times less than 2 s (1.34 s and 1.27 s, respectively). LightGBM was 

even faster to train, noting 0.91 s of training time quite close to and SGD_NB_Ensemble 

(0.95 s). The fastest to train were the simpler models like SGD (0.63 s), Decision Tree (0.36 

s), Naïve Bayes (0.16 s), BernoulliNB (0.18 s) and MultinomialNB (0.15 s). 

 

Figure 11. Total Training time (seconds) for 10-fold CV, on Telco dataset (PC). 

Table 7 summarizes the training time for each ML model when performing 10-fold 

CV on Google Cloud VMs. StackGBM showed the largest training time compared to the 

rest of the ML models (129.11 s). MLP followed with 26.72 s, Vote_AllGBM with 19.24 s 

and CatBoost with 18.25 s. Random Forest, Vote_Mix and Vote_XGB_LGBM noted train-

ing times of 4.62, 2.23 and 1.55 s, respectively. Extremely fast training with less than 1 s 

was noted in the case of XGBoost (0.77 s), SGD_NB_Ensemble (0.77 s), LightGBM (0.75 s), 

SGD (0.49 s), Decision Tree (0.33 s), Naïve Bayes (0.12 s), BernoulliNB (0.14 s) and Multi-

nomialNB (0.11 s). 

Table 7. Training time (seconds) for 10-fold CV, on the Telco dataset (Google Cloud VMs). 

Model VM1 VM2 VM3 Average Standard Deviation 

XGBoost 0.75 0.76 0.78 0.77 0.01 

LightGBM 0.74 0.74 0.77 0.75 0.01 

CatBoost 18.14 18.12 18.50 18.25 0.17 

Logistic Regression 0.84 0.84 0.89 0.86 0.02 

Decision Tree 0.33 0.33 0.34 0.33 0.00 

Random Forest 4.61 4.60 4.68 4.63 0.04 

Naïve Bayes 0.12 0.12 0.13 0.12 0.01 

MLP 26.89 26.60 26.67 26.72 0.12 

Vote_XGB_LGBM 1.54 1.54 1.57 1.55 0.01 
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Vote_AllGBM 19.09 19.12 19.51 19.24 0.19 

Vote_Mix 2.29 2.18 2.22 2.23 0.05 

StackGBM 128.47 128.17 130.69 129.11 1.12 

BernoulliNB 0.14 0.14 0.13 0.14 0.00 

MultinomialNB 0.11 0.11 0.11 0.11 0.00 

Bagging 1.69 1.69 1.71 1.69 0.01 

SGD 0.49 0.50 0.49 0.49 0.00 

SGD_NB_Ensemble 0.77 0.78 0.77 0.77 0.00 

3.2.2. Prediction Time, Mean Latency and Throughput on the Cloud 

The training time of ML models is important, yet, in order to efficiently use a model 

in real-time production, it is important to also consider other factors such the time needed 

for generating predictions. For that reason, we conducted another set of experiments in 

the three VMs where we trained the ML models in the 80% train set, saved that model in 

the VM and called it for generating predictions for the holdout set (the remaining 20%). 

The following metrics are calculated for each model: 

• Total prediction time for the complete holdout set. 

• Mean Latency, referring to the time needed for generating prediction for one sample. 

• Throughput, as the number of predictions per second. 

Table 8 contains the prediction metrics for each ML model and their average values 

across all VMs, on the KKBOX dataset. Results are almost identical for different regions 

for the same ML model and the marginal differences can be due to other reasons as well, 

ML models can slightly vary even when trained on the same data and same conditions. 

However, there are notable differences among the prediction metrics for each ML model. 

As shown in Figure 12, StackGBM and Random Forest have much higher Mean Latency 

compared to the rest of the models (0.0524 ms and 0.045 ms, respectively). Bagging fol-

lowed with 0.0060 ms, VoteAllGBM with 0.0056 ms and Vote_XGB_LGBM with 0.0049 

ms. MLP came next with 0.0039 ms, LightGBM with 0.0037 ms and Vote_Mix with 0.0032 

ms. CatBoost and XGBoost were even faster, noting values of 0.008 ms and 0.0014, outper-

forming simpler models like BernoulliNB (0.0017 ms). CatBoost outperformed even Naïve 

Bayes and MultinomialNB which achieved a Mean Latency of 0.0012 ms and 0.0011 ms, 

respectively. Similarly, SGD_NB_Ensemble noted a value of 0.0012 ms. The fastest ones 

where Logistic Regression and SGD with 0.0002 ms followed by the Decision Tree which 

noted 0.0006 ms of Mean Latency. 

The same conclusions regarding how fast the ML models are on inference can be 

drawn when looking at the total prediction time, since it is the Mean Latency multiplied 

by the number of instances on the holdout set. The same stands for Throughput. As shown 

in Table 8, fast models like CatBoost can provide predictions for more than 1 million rec-

ords in a second, and simple models like Logistic Regression and Decision Tree can give 

predictions for more almost 10× million records in one second. On the contrary, models 

such as StackGBM and Random Forest can predict on average 19.135 and 22.291 instances 

per second, respectively. This is an important aspect to consider when using those ML 

models in production, since for SaaS providers with many users, this can cause delays if 

they use the ML models frequently. So, ML models like StackGBM and Random Forest 

are not among the best options if the models are meant to be used frequently. Comple-

mentary Figure 12 visualizes the Mean Latency (ms) in VMs (average on regions) for all 

models, on the KKBOX dataset. 

Smaller prediction times were witnessed for the Telco dataset, which was as expected 

due to its small size. However, there are still differences among the ML models’ prediction 

times. The relative difference among the prediction time of models is similar to the ones 

noted for the KKBOX dataset. Table 9 includes the prediction time metrics for all VMs and 
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models, while Figure 13 illustrates the Mean Latency (ms) in VMs (average on regions) 

for all models, on the Telco dataset. 

The fastest ML models were Logistic Regression, Decision Tree, MultinomialNB and 

SGD with 0.001 ms Mean Latency. MLP, Naïve Bayes and BernoulliNB achieved 0.002 ms 

Mean Latency. SGD_NB_Ensemble was fast with 0.003 ms Mean Latency followed by Cat-

Boost with 0.004 ms. Bagging was the next fastest with 0.005 ms followed by XGBoost and 

LightGBM, which achieved 0.006 ms Mean Latency. The voting schemes 

Vote_XGB_LGBM, VoteAllGBM and Vote_Mix achieved 0.018, 0.021 and 0.010 ms, re-

spectively. StackGBM was again the slowest at 0.054 ms followed by Random Forest and 

Multinomial NB with 0.02 ms. 

Table 8. Prediction time, Mean Latency and Throughput metrics on different VMs for 10-fold CV, 

on the KKBOX dataset. 

VM- Region 
VM1: Asia -Northeast1-b  

19:00 UTC 

VM2: EU—West3  

19:00 UTC 

VM3: US West1  

19:00 UTC 
Average 

Model 

Predic-

tion Time 

(s) 

Mean  

Latency  

(ms) 

Through-

put  

(Sample/s) 

Predic-

tion Time 

(s) 

Mean  

Latency 

(ms) 

Throughput 

(Sample/s) 

Predic-

tion Time 

(s) 

Mean  

Latency 

(ms) 

Throughput 

(Sample/s) 

Predic-

tion Time 

(s) 

Mean 

Latency 

(ms) 

Throughput 

(Sample/s) 

XGBoost 0.26 0.0014 734,685 0.26 0.0014 738,269 0.27 0.0014 7,173,49 0.27 0.0014 730,101 

LightGBM 0.72 0.0037 268,879 0.72 0.0037 271,588 0.73 0.0037 267,240 0.72 0.0037 269,236 

CatBoost 0.15 0.0008 1,289,414 0.15 0.0008 1,279,011 0.15 0.0008 1,282,835 0.15 0.0008 1,283,753 

Logistic Regression 0.04 0.0002 5,544,422 0.03 0.0002 5,779,359 0.04 0.0002 4,831,150 0.04 0.0002 5,384,977 

Decision Tree 0.12 0.0006 1,571,370 0.12 0.0006 1,652,179 0.15 0.0008 1,314,524 0.13 0.0007 1,512,691 

Random Forest 8.36 0.0430 23,230 8.42 0.0433 23,076 9.44 0.0486 20,566 8.74 0.0450 222,91 

Naïve Bayes 0.20 0.0010 956,918 0.20 0.0010 973,352 0.30 0.0015 650,896 0.23 0.0012 860,389 

MLP 0.75 0.0039 259,671 0.72 0.0037 268,738 0.81 0.0042 240,661 0.76 0.0039 256,357 

Vote_XGB_LGBM 0.96 0.0049 202,767 0.94 0.0049 205,789 0.98 0.0050 198,943 0.96 0.0049 202,500 

Vote_AllGBM 1.08 0.0055 180,425 1.06 0.0055 182,626 1.11 0.0057 175,146 1.08 0.0056 179,399 

Vote_Mix 0.61 0.0031 319,971 0.59 0.0030 330,234 0.69 0.0036 281,362 0.63 0.0032 310,522 

StackGBM 9.78 0.0504 19,854 9.85 0.0507 19,711 10.88 0.0561 17,840 10.17 0.0524 19,135 

BernoulliNB 0.30 0.0015 648,956 0.30 0.0015 656,327 0.41 0.0021 477,180 0.33 0.0017 594,154 

MultinomialNB 0.18 0.0009 1,084,657 0.18 0.0009 1,062,531 0.26 0.0013 750,543 0.21 0.0011 965,910 

Bagging 1.06 0.0055 183,303 1.05 0.0054 185,121 1.37 0.0070 141,957 1.16 0.0060 170,127 

SGD 0.03 0.0002 5,623,307 0.03 0.0002 6,072,912 0.04 0.0002 4,569,442 0.04 0.0002 5,421,887 

SGD_NB_Ensemble 0.21 0.0011 938,350 0.19 0.0010 1,024,291 0.28 0.0014 699,297 0.22 0.0012 887,313 

 

Figure 12. Mean Latency (ms) on VMs (average on regions), on the KKBOX dataset. 
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Table 9. Prediction time, Mean Latency and Throughput metrics on different VMs for 10-fold CV, 

on the Telco dataset. 

VM- Region 
VM1: Asia -Northeast1-b  

19:00 UTC 

VM2: EU—West3  

19:00 UTC 

VM3: US West1  

19:00 UTC 
Average 

Model 

Predic-

tion Time 

(s) 

Mean  

Latency  

(ms) 

Through-

put  

(Sample/s) 

Predic-

tion Time 

(s) 

Mean  

Latency 

(ms) 

Throughput 

(Sample/s) 

Predic-

tion Time 

(s) 

Mean  

Latency 

(ms) 

Throughput 

(Sample/s) 

Predic-

tion Time 

(s) 

Mean 

Latency 

(ms) 

Throughput 

(Sample/s) 

XGBoost 0.0079 0.0056 178,923 0.0078 0.0056 180,002 0.0081 0.0058 173,669 0.0079 0.0056 177,532 

LightGBM 0.0088 0.0063 159,260 0.0087 0.0062 161,350 0.0089 0.0063 157,521 0.0088 0.0063 159,377 

CatBoost 0.0050 0.0035 282,768 0.0047 0.0033 302,419 0.0053 0.0038 264,270 0.0050 0.0035 283,152 

Logistic Regression 0.0017 0.0012 829,499 0.0016 0.0011 872,892 0.0017 0.0012 822,225 0.0017 0.0012 841,539 

Decision Tree 0.0020 0.0014 695,009 0.0019 0.0014 727,719 0.0021 0.0015 685,792 0.0020 0.0014 702,840 

Random Forest 0.0430 0.0305 32,787 0.0421 0.0299 334,56 0.0455 0.0323 30,939 0.0435 0.0309 32,394 

Naïve Bayes 0.0025 0.0018 556,942 0.0025 0.0018 561,396 0.0027 0.0019 516,470 0.0026 0.0018 544,936 

MLP 0.0031 0.0022 449,947 0.0027 0.0019 523,212 0.0031 0.0022 460,401 0.0030 0.0021 477,853 

Vote_XGB_LGBM 0.0245 0.0174 57,597 0.0264 0.0188 53,283 0.0267 0.0190 52,724 0.0259 0.0184 54,534 

Vote_AllGBM 0.0316 0.0224 44,575 0.0280 0.0198 50,403 0.0277 0.0196 50,956 0.0291 0.0206 48,645 

Vote_Mix 0.0142 0.0101 99,065 0.0138 0.0098 102,061 0.0148 0.0105 95,424 0.0143 0.0101 98,850 

StackGBM 0.0792 0.0562 17,793 0.0740 0.0525 19,035 0.0743 0.0527 18,958 0.0758 0.0538 18,595 

BernoulliNB 0.0034 0.0024 418,840 0.0032 0.0023 436,877 0.0036 0.0025 395,853 0.0034 0.0024 417,190 

MultinomialNB 0.0020 0.0014 713,098 0.0020 0.0014 720,366 0.0020 0.0015 688,440 0.0020 0.0014 707,301 

Bagging 0.0070 0.0049 202,235 0.0069 0.0049 203,858 0.0074 0.0053 189,930 0.0071 0.0050 198,674 

SGD 0.0016 0.0012 861,509 0.0016 0.0011 874,215 0.0018 0.0013 796,528 0.0017 0.0012 844,084 

SGD_NB_Ensemble 0.0045 0.0032 315,807 0.0044 0.0031 319,760 0.0047 0.0034 297,607 0.0045 0.0032 311,058 

. 

Figure 13. Mean Latency (ms) on VMs (average on regions), on the Telco dataset. 

3.3. Sustainability Evaluation 

3.3.1. Energy and Emissions on PC 

Figure 14 presents the total energy consumption for a 10-fold CV on the KKBOX da-

taset when running on a PC as measured by the CodeCarbon library, taking into account 

the geographical region as detected by the IP address. The experiments took place in Ka-

vala, Greece. The highest energy consumption was noted by the ML model StackGBM 

(80.30 × 10−3 kWh). In similar levels, MLP consumed 68.95 × 10−3 kWh. The rest of the ML 

models consumed a smaller amount of energy. In particular, Logistic Regression required 

14.4 × 10−3 kWh, CatBoost required 9.19 × 10−3 kWh, Vote_AllGBM required 9.33 × 10−3 

kWh, Vot_Mix required 8.21 × 10−3 kWh and Random Forest required 6.61 × 10−3 kWh. The 
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rest of the ML models consumed lower levels of energy. Specifically, XGBoost consumed 

0.45 × 10−3 kWh, LightGBM consumed 0.41 × 10−3 kWh, Vote_XGB_LGBM consumed 0.72 

× 10−3 kWh, Bagging consumed 1.94 × 10−3 kWh and Vote_Mix (1.13 × 10−3 kWh) and SGD 

(0.54 × 10−3 kWh). Even smaller levels of consumed energy were noted for Decision Tree 

(0.31 × 10−3 kWh), Naïve Bayes (0.08 × 10−3 kWh), BernoulliNB (0.12 × 10−3 kWh), Multino-

mialNB (0.08 × 10−3 kWh) and SGD_NB_Ensemble (0.54 × 10−3 kWh). 

 

Figure 14. Energy consumption of ML models on the KKBOX dataset (PC). 

For the Telco dataset (Figure 15), the levels of energy consumption were much less 

than in the KKBOX dataset since it is much smaller, and the ML models completed train-

ing very quickly. However, there were still notable differences among the energy con-

sumption levels that different ML models required and are relatively similar to the con-

sumption levels noted for the KKBOX dataset, with the exception of Logistic Regression, 

which had the third highest energy consumption for KKBOX but a very low value for the 

Telco dataset. The Telco dataset has only 5634 training records (7043 total). On the con-

trary, the KKBOX dataset is almost 100× times the size of the Telco, with a training set of 

551.401 records (745.593 total). So Logistic Regression’s training lasted longer than in 

KKBOX since it had many more training records to process. StackGBM consumed the 

highest level of energy of 2.179 × 10−3 kWh. The next highest values were noted by MLP, 

CatBoost, and VoteAllGBM (0.539, 0.298 and 0.366 × 10−3 kWh). Random Forest came next 

with 0.056 × 10−3 kWh, Vote_Mix with 0.046 × 10−3 kWh, Vote_XGB_LGBM with 0.046 × 

10−3 kWh and Bagging with 0.025 × 10−3 kWh. The rest of the ML models followed with 

even less energy consumption. Specifically, XGBoost and Logistic Regression noted 0.026 

× 10−3 kWh, followed by LightGBM with 0.018 × 10−3 kWh. The least amount of energy 

consumption (0.002 × 10−3 kWh) was noted by Naïve Bayes and MultinomialNB. Slightly 

higher values of consumed energy were shown by BernoulliNB (0.003 × 10−3 kWh), 
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Decision Tree (0.005 × 10−3 kWh), SGD (0.008 × 10−3 kWh) and SGD_NB_Ensemble (0.012 × 

10−3 kWh). 

 

Figure 15. Energy consumption of ML models for the Telco dataset (PC). 

Figure 16 presents the emissions generated when training the ML models on a 10-

fold CV on PC for the KKBOX dataset. As expected, the ML models that required more 

time to complete the training generated higher levels of emissions. CO2 emissions and 

energy consumption are interrelated. Cloud computing and ML workloads consume elec-

tricity, resulting in CO2 emissions, this also depends on the energy mix of the grid (coal-

powered grid, renewable-powered grid). The evaluation of ML models should therefore 

also be based on energy and emissions data, in the steps towards identifying eco-friendly 

options. StackGBM generated the highest value of emissions (27.03 g CO2) compared to 

the rest of the ML models. MLP followed at similar levels with a value of 23.21 g CO2. The 

rest of the ML models noted much less emissions ranging from 4.76 g CO2 for Logistic 

Regression to 0.02 g CO2 for Naïve Bayes and MultinomialNB. 

 

Figure 16. Total Emissions of ML models for 10-fold CV on the KKBOX dataset (PC). 
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Similarly, for the Telco dataset (Figure 17) the emissions generated were much higher 

for MLP and StackGBM than for the rest of the ML models. Thus, the highest emissions 

were generated by StackGBM (73.36 × 10−2 g CO2). MLP came next with 18.13 × 10−2 g CO2, 

while the smallest values of generated emissions were noted by the Bayes models (Naïve 

Bayes 0.07 × 10−2 g CO2, BernoulliNB 0.09 × 10−2 g CO2, MultinomialNB × 10−2 g CO2) fol-

lowed by Decision Tree (0.16 × 10−2 g CO2) and SGD (0.29 × 10−2 g CO2). 

 

Figure 17. Total Emissions of ML models for 10-fold CV on the Telco dataset (PC). 

In the case of the Telco dataset, energy consumption values as well as emissions are 

small for all models, yet with relative differences. Given the fact that those processes run 

repeatedly and by many different SaaS providers, their cumulative effect across runs re-

sults in negligible values to add up, leading to non-trivial energy consumption and emis-

sions at scale. Moreover, the actual values increase as the size of the datasets increases; the 

values for the KKBOX dataset are much higher compared to the respective ones for the 

Telco dataset. Moreover, it should also be considered that, based on SaaS providers’ busi-

ness policy, churn prediction models are trained and called for inference frequently, so as 

to be updated with new data, aggregating in a meaningful carbon footprint. 

3.3.2. Energy and Emissions on the Cloud 

The same training process was also followed for the three Google Cloud VMs with 

the exact same specifications and settings, yet in a different geographical region. The aim 

of this experiment is to compare the generated emissions when training ML models in 

different regions. 

The emissions generated on the cloud are less for all ML models, compared to the 

corresponding emissions generated when the models run on the PC, although a one-to-

one comparison is not valid since the PC machine does not have the same specifications 

as the VMs. 

Figure 18 contains the emissions generated per ML model when running on the three 

Google Cloud VMs for the KKBOX dataset. For all the ML models, the emissions gener-

ated when running in VM1 of the Asia-northeast1-b region were found to be higher com-

pared to those of the other two regions. On the contrary, the emissions generated in the 

US-west1 region were the lowest when compared to the emissions generated in the other 

regions. As is presented in Table 10, the emissions generated in the VM1 region were 3.66× 

to 4.87× times higher than the emissions generated in the VM3 region. By comparing the 

emissions generated when training the models on VM2 and VM3, we noticed that the 

emissions generated for all models were more than 2.5× times higher than in VM3, ranging 

from 2.63 for SGD to 3.65 for MLP. Lastly, when comparing the emissions generated by 
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the ML models in VM1 and VM2, we noticed that VM1 emissions were 1.32× to 1.54× times 

the emissions in VM2 for all ML models. 

 

Figure 18. Total emissions for 10-fold CV, on the KKBOX dataset (Google Cloud VMs). 

Table 10. Total emissions (g CO2) in different regions for 10-fold CV, on the KKBOX dataset. 

Model VM1 VM2 VM3 
Emission VM1/ 

Emissions VM2 

Emission VM2/ 

Emissions VM3 

Emission VM1/ 

Emissions VM3 

XGBoost 0.08 0.06 0.02 1.34 3.56 4.78 

LightGBM 0.05 0.04 0.01 1.35 3.61 4.87 

CatBoost 1.69 1.26 0.37 1.34 3.37 4.53 

Logistic Regression 2.69 1.94 0.63 1.39 3.09 4.29 

Decision Tree 0.03 0.03 0.01 1.34 3.31 4.43 

Random Forest 0.69 0.50 0.16 1.36 3.21 4.38 

Naïve Bayes 0.01 0.01 0.00 1.40 3.17 4.43 

MLP 9.19 6.95 1.91 1.32 3.65 4.82 

Vote_XGB_LGBM 0.12 0.09 0.03 1.35 3.38 4.55 

Vote_AllGBM 1.71 1.28 0.39 1.33 3.31 4.42 

Vote_Mix 1.47 1.09 0.36 1.35 3.03 4.10 

StackGBM 12.23 9.13 2.74 1.34 3.33 4.46 

BernoulliNB 0.02 0.01 0.00 1.43 3.19 4.55 

MultinomialNB 0.01 0.01 0.00 1.54 3.10 4.77 

Bagging 0.20 0.15 0.05 1.34 3.24 4.34 

SGD 0.20 0.14 0.05 1.39 2.63 3.66 

SGD_NB_Ensemble 0.08 0.05 0.02 1.41 2.69 3.79 
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Table 11 contains the emissions generated when performing a 10-fold CV on the 

Telco dataset on the three VMs. Although the emissions are much less compared to when 

training on the KKBOX dataset, there are still noted differences when training on different 

regions. The emissions generated when training on VM1 were 4.28× to 4.97× times higher 

than the emissions generated on VM3. In comparison with the emissions generated when 

training on VM2, we noticed 3.18× to 3.70× times higher emissions than the emissions gen-

erated when training on VM3, as shown in Table 9. Finally, when comparing the emissions 

of VM1 to those of VM2, we reported 1.32× to 1.37× times higher emissions for all the ML 

models. 

Table 11. Total emissions (g × 10−2 CO2) in different regions for 10-fold CV, on the Telco dataset. 

Model VM1 VM2 VM3 
Emission VM1/ 

Emissions VM2 

Emission VM2/ 

Emissions VM3 

Emission VM1/ 

Emissions VM3 

XGBoost 0.20 0.15 0.04 1.32 3.54 4.68 

LightGBM 0.19 0.14 0.04 1.32 3.58 4.74 

CatBoost 5.92 4.45 1.22 1.33 3.63 4.83 

Logistic Regression 0.27 0.20 0.06 1.35 3.18 4.28 

Decision Tree 0.12 0.09 0.03 1.34 3.64 4.87 

Random Forest 0.77 0.58 0.16 1.33 3.61 4.81 

Naïve Bayes 0.09 0.07 0.02 1.33 3.60 4.79 

MLP 4.18 3.11 0.85 1.35 3.66 4.93 

Vote_XGB_LGBM 0.36 0.27 0.08 1.34 3.57 4.78 

Vote_AllGBM 6.04 4.54 1.23 1.33 3.69 4.91 

Vote_Mix 0.74 0.54 0.15 1.37 3.62 4.97 

StackGBM 36.73 27.50 7.69 1.34 3.58 4.78 

BernoulliNB 0.10 0.07 0.02 1.33 3.68 4.89 

MultinomialNB 0.09 0.07 0.02 1.33 3.67 4.87 

Bagging 0.33 0.25 0.07 1.33 3.64 4.83 

SGD 0.15 0.11 0.03 1.33 3.69 4.89 

SGD_NB_Ensemble 0.19 0.14 0.04 1.32 3.70 4.88 

3.3.3. Models’ Size 

Another interesting aspect to consider for the efficient use and sustainability of the 

ML models for SaaS decision support is their size. Large models are harder to maintain in 

the cloud since they require more space to be saved. It is important to notice that the mod-

els that were the slowest at inference (StackGBM and Random Forest) showed to have the 

largest model size. As is shown in Figure 19 regarding the KKBOX dataset, the slowest 

models, StackGBM and Random Forest, had the largest sizes of 862.007 mb and 917.13 

mb, respectively. The next largest model was generated by Bagging (81.479 mb). The De-

cision Tree model was 11.783 mb and Vote_Mix 11.346 mb. Vote_AllGBM’s size was 1.774 

mb and CatBoost’s size was 1.069 mb. The rest of the models had sizes less than 1 mb. 

Similarly, for the Telco dataset (Figure 20), the largest models in size were the slowest 

ones, namely StackGBM (20.140 mb) and Random Forest (19.346 mb), as shown in Figure 

20. Vote_AllGBM model’s size was 1.675 mb, Bagging’s was 1.229 mb, and CatBoost’s was 

1.069 mb. The rest of the ML models had sizes less than 1 mb. 
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Figure 19. Average model size in VMs (average in regions), on the KKBOX dataset. 

 

Figure 20. Average model size in VMs (average in regions), on the Telco dataset. 

3.4. Overall Evaluation 

3.4.1. Pareto Frontiers Analysis 

In order to select an ML model supporting SaaS providers, multiple objectives should 

be considered. Predictive performance is undoubtedly important. However, objectives 

like emissions, training time and latency of the ML models should also be considered to 

have a sustainable and efficient solution to be used in production. 

Figure 21 contains the Mean AUC in the x-axis and the Mean Log Loss in the y-axis 

for 10-fold CV when running on a PC on the KKBOX dataset. Each ML model is repre-

sented with a circle. A third parameter, the total emissions (g CO2) in the same settings 

(10-fold CV, PC), were added by changing the color and size of the circles. The ML models 

that have the best predictive performance fall into the right-bottom side of the figure since 
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the AUC is higher and Log Loss is lower. When a circle is small and green, it means that 

the ML model generated small amounts of emissions. When a circle is larger and redder 

(color scale from green to red), it generates higher emissions. 

For example, Decision Tree, Naïve Bayes and Bagging are worse than MLP and 

LightGBM since they are positioned more to the left and top. MLP, XGBoost, CatBoost, 

LightGBM, StackGBM, Vote_AllGBM and Vote_XGB_LGBM noted the best predictive 

performance since they are on the right and bottom part of the figure. However, MLP and 

StackGBM circles are bigger than the rest and red, indicating that those models generated 

higher levels of emissions than the rest of the models. Thus, ML models such as XGBoost, 

LightGBM, CatBoost and Vote_XGB_LGBM are better to choose than StackGBM and MLP 

since they have similar predictive performance and are more eco-friendly. 

 

Figure 21. AUC vs. Log Loss vs. emissions CO2, on the KKBOX dataset. 

Similarly, for the Telco dataset (Figure 22), the ML models LightGBM, Logistic Re-

gression, CatBoost, Vote_XGB_AllGBM, Vote_XGB_LGBM, XGBoost and StackGBM 

noted good predictive performance and thus, they are in the bottom right corner of the 

figure. However, the StackGBM circle is larger and redder, indicating that it generated 

higher emissions, and it is not an eco-friendly option. 
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Figure 22. AUC vs. Log Loss vs. emissions CO2, on the Telco dataset. 

In order to compare the ML models based on multiple objectives such as predictive 

performance, generated emissions, training time and inference time, we employed the Pa-

reto frontier analysis [58] to identify the ML models that are the best candidate solutions. 

The aim is to determine which ML models have a high AUC, low Log Loss, low training 

time and low prediction time. The selected criteria are interrelated; AUC and Log Loss are 

interrelated since they both calculate predictive performance. Specifically, the AUC shows 

how well the ML model can separate the two classes of churners and non-churners and 

Log Loss measures how reliable the predicted probabilities are. Similarly, training time 

and emissions are interrelated since the longer the training time, the bigger the emissions. 

Latency could also be considered interrelated with training time, considering that an ML 

model that takes more time to train, probably needs more time to generate a prediction, 

since models’ complexity can affect both training time and inference latency. 

To this end, Table 12 contains, for each ML model, the mean AUC, mean Log Loss, 

total training time, total emissions and Mean Latency when ML models run on a PC on 

the KKBOX dataset. A model is considered a Pareto frontier when it is better than or equal 

to all objectives and better than at least one. For example, XGBoost is a Pareto frontier 

because there are no other ML models better on all parameters. On the contrary, 

VoteAllGBM is dominated by Vote_XGM_LGBM because although they have the same 

AUC and Log Loss, VoteAllGBM had higher training time, emissions and latency. The 

last column of Table 12 contains “Pareto” if it is a Pareto frontier and “Dominated” if there 

are solutions that are better alternatives. 
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Table 12. Trade-offs between performance–efficiency based on Pareto frontier analysis, on the 

KKBOX dataset. 

Model Mean AUC  
Mean Log 

Loss  

Total  

Training Time 

(min) 

Total  

Emissions  

(g CO2) 

Mean  

Latency (ms) 

Pareto  

Frontier 

XGBoost 0.80 0.52 0.34 0.15 1.37×10-6 Pareto 

LightGBM 0.80 0.52 0.30 0.14 3.71×10-6 Pareto 

CatBoost 0.80 0.52 6.48 3.09 7.79×10-7 Pareto 

Logistic Regression 0.68 0.63 11.36 4.76 1.87×10-7 Pareto 

Decision Tree 0.59 2.51 0.40 0.10 6.67×10-7 Pareto 

Random Forest 0.64 0.73 8.61 2.23 4.5×10-5 Dominated 

Naïve Bayes 0.67 2.04 0.10 0.03 1.2×10-6 Pareto 

MLP 0.79 0.54 78.88 23.21 3.91×10-6 Dominated 

Vote_XGB_LGBM 0.80 0.24 0.52 0.24 4.94×10-6 Pareto 

Vote_AllGBM 0.80 0.24 6.58 3.14 5.58×10-6 Dominated 

Vote_Mix 0.74 0.27 6.70 2.76 3.24×10-6 Pareto 

StackGBM 0.80 0.24 76.43 27.03 5.24E-05 Dominated 

BernoulliNB 0.64 0.81 0.13 0.04 1.72×10-6 Dominated 

MultinomialNB 0.66 0.66 0.08 0.03 1.07×10-6 Pareto 

Bagging 0.64 1.16 2.51 0.65 5.97×10-6 Dominated 

SGD 0.66 0.69 1.87 0.47 1.87×10-7 Pareto 

SGD_NB_Ensemble 0.66 0.34 0.69 0.18 1.16×10-6 Pareto 

For the Telco dataset, a similar analysis was conducted. Table 13 contains the results, 

with the last column indicating the Pareto frontier models. For AUC ≥0.8 and Log Loss 

≤0.6, the best candidate solutions are XGBoost, LightGBM, CatBoost, Logistic Regression, 

Vote_XGB_LGBM, Vote_AllGBM, Vote_Mix and StackGBM. 

Table 13. Trade-offs between performance–efficiency based on Pareto frontier analysis, on the Telco 

dataset. 

Model Mean AUC  
Mean Log 

Loss 

Total  

Training Time 

(min) 

Total  

Emissions  

(g CO2) 

Mean  

Latency (ms) 

Pareto  

Frontier 

XGBoost 0.83 0.50 1.34 0.87 0.000008 Pareto 

LightGBM 0.84 0.47 0.91 0.59 0.000005 Pareto 

CatBoost 0.84 0.47 13.67 10.02 0.000009 Pareto 

Logistic Regression 0.85 0.49 1.27 0.88 0.000001 Pareto 

Decision Tree 0.65 9.53 0.36 0.16 0.000002 Pareto 

Random Forest 0.83 0.51 4.37 1.88 0.000028 Dominated 

Naïve Bayes 0.82 2.88 0.16 0.07 0.000004 Pareto 

MLP 0.81 0.55 34.89 18.13 0.000003 Dominated 

Vote_XGB_LGBM 0.84 0.44 2.08 1.34 0.000030 Pareto 

Vote_AllGBM 0.84 0.43 16.61 12.31 0.000038 Pareto 

Vote_Mix 0.83 0.47 2.32 1.56 0.000031 Pareto 

StackGBM 0.82 0.50 105.15 73.36 0.000082 Pareto 

BernoulliNB 0.81 1.09 0.18 0.09 0.000004 Pareto 

MultinomialNB 0.83 0.82 0.15 0.08 0.000002 Pareto 

Bagging 0.80 1.31 1.64 0.84 0.000005 Dominated 

SGD 0.82 2.69 0.63 0.29 0.000001 Pareto 

SGD_NB_Ensemble 0.83 0.84 0.95 0.42 0.000004 Pareto 
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3.4.2. Green Efficiency Weighted Score (GEWS) 

In order to select the best solutions among the best candidates, we defined a Green 

Efficiency Weighted Score (GEWS). The GEWS is defined as a weighted sum of normal-

ized metrics, the AUC, Log Loss, training time, total emissions and Mean Latency Equa-

tion (2), and it is based on the Simple Additive Weighting (SAW) method proposed by 

MacCrimmon (1968) [59]. The values of the metrics were normalized with the min–max 

scaling method. 

𝐺𝐸𝑊𝑆 = 𝑤𝐴𝑈𝐶 ∗ 𝐴𝑈𝐶 + 𝑤𝐿 ∗ 𝐿𝑜𝑔𝐿𝑜𝑠𝑠 + 𝑤𝑇 ∗ 𝑇𝑟𝑎𝑖𝑛𝑖𝑛𝑔𝑇𝑖𝑚𝑒 + 𝑤𝑐𝑜2
∗ 𝐸𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠 + 𝑤𝑃𝑟 ∗ 𝐿𝑎𝑡𝑒𝑛𝑐𝑦 (2) 

The GEWS is considered a useful performance metric for decision makers, as it aims 

to facilitate SaaS providers towards selecting the most suitable ML model for their needs, 

based on a set of evaluation metrics, covering (1) predictive performance by considering 

AUC and Log Loss, (2) efficiency by considering training time and Mean Latency and (3) 

sustainability by considering CO2 emissions. 

In our case, weights were set as follows: 𝑤𝐴𝑈𝐶= 0.3, 𝑤𝐿= 0.2, 𝑤𝑇= 0.15, 𝑤𝑐𝑜2
= 0.2 and 

𝑤𝑃𝑟 = 0.15. In this way, we gave a higher weight to the AUC performance measure, 0.2 for 

Log Loss, 0.2 for emissions and 0.15 for training and latency. The selection of the weights 

was defined by our team of computer scientist experts, aiming to represent the case of a 

typical SaaS provider who is considering predictive performance as a slightly more im-

portant metric. 

The latter selection of weights is indicative; weights can be adjusted based on the 

SaaS providers’ preferences. Log Loss is more important for SaaS providers that run ex-

pensive campaigns and therefore, are interested in having churn prediction probability 

scores that can be relied on, while training time is more important for SaaS providers that 

train churn prediction models frequently. Similarly, latency is more important for SaaS 

providers that run retention actions based on triggers and use the models in real time, e.g., 

when a user browses the cancelation page, a personalized discount to appear based on the 

user’s likelihood of churn. If the latency of the ML model is high, this will impact on the 

end user experience. For SaaS providers that run predictions in bulk to run retention cam-

paigns, latency may not be that important since it does not affect the end user experience. 

Finally, emissions may not be of equal importance to all SaaS providers. An SaaS that runs 

in low-carbon regions generates much less emissions; thus, the emissions measure would 

be more important for an SaaS that runs on high-carbon regions. 

Figure 23 contains the computed GEWSs for the best candidate ML models for the 

KKBOX dataset on 10-fold CV (as presented in Table 12). 

As it is depicted in Figure 23, the best GEWS was achieved by Vote_XGB_LGBM 

(0.98). The next best scores were noted by XGBoost, which scored 0.97, followed by 

LightGBM, which scored 0.96. CatBoost had the same AUC and Log Loss with LightGBM 

but achieved 0.94 GEWS since it had higher training time, emissions and latency. Simi-

larly, Vote_Mix, which noted good AUC and Log Loss measures, but is less eco-friendly 

and slower than XGBoost and LightGBM, achieved a lower GEWS of 0.87. Finally, ML 

models that had much lower predictive performance but are fast and generated low emis-

sions achieved scores of 0.79 for Logistic Regression, 0.65 for Naïve Bayes, 0.76 for Multi-

nomialNB and 0.79 for SGD and SGD_NB_Ensemble. Acceptance criteria could also be set 

in order to exclude solutions that do not meet specific criteria. For example, Multinomi-

alNB, which scored 0.79 because it had a high AUC (0.81), very low values on the training 

time, prediction time and emissions, but noted a log loss of 0.87, could be excluded from 

the list of candidates before computing the GEWSs (e.g., acceptance criterion of Log-Loss 

<0.6). 
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Figure 23. GEWSs for the best candidate ML models for the KKBOX dataset. 

Figure 24 presents the GEWSs for the Telco dataset for the best candidate models. 

The best GEWS was achieved by Logistic Regression (0.99), followed by LightGBM with 

0.98. On the contrary, Vote_XGB_LGBM, which achieved the highest score in the KKBOX 

dataset, achieved 0.90 on Telco, indicating that simpler alternatives like Logistic Regres-

sion are preferable for smaller datasets like Telco. StackGBM, which has a similar AUC 

and Log Loss (0.82 and 0.5, respectively), achieved a much lower score of 0.45 due to its 

high training time, emissions and latency. The Bayes models (Naïve Bayes 0.90, Ber-

noulliNB 0.92 and MultinomialNB 0.96) also achieved good scores due to their good AUC 

and very small training time, emissions and latency. However, if acceptance criteria of 

Log Loss < 0.6 are set, those ML models do not qualify since they all noted higher values 

of Log Loss. 

 

Figure 24. GEWSs for the best candidate ML models for the Telco dataset. 
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4. Discussion 

The present work focused on decision support systems for SaaS and, more specifi-

cally, for churn prediction, which is of great importance for SaaS providers, on both local 

and international levels. For regional markets, churn prediction aims to promote business 

sustainability and resource optimization; churn prediction could help small local busi-

nesses to retain their customers through targeted retention strategies and stabilize their 

revenue, since they often operate on limited budgets and face intense competition. At the 

international level, churn prediction models can be adapted globally across markets to 

improve customer retention. Big international firms could benefit from benchmarking to 

refine their own ML models and lead to innovative retention strategies. Finally, ML mod-

els that reduce churn as well as cloud usage are preferable towards contributing to greener 

AI efforts. To this end, the results of our research are mainly interesting for direct stake-

holders that seek actionable insights to reduce churn, like SaaS companies, as well as for 

data scientists and product managers who use ML models to improve customers’ experi-

ence. Moreover, providers of cloud services could also benefit from the presented results, 

to gain additional insight into efficient deployment and resource usage. Finally, the pro-

posed methodology aims to contribute to the academic sector, and most specifically, to 

the evolving field of applied ML in the business context. The presented benchmarking 

should be considered by SaaS developers to refine their churn prediction models, by cloud 

infrastructure teams to ensure both ML models’ efficiency and sustainability and by re-

searchers interested in sustainability, to evaluate the environmental impact of ML for SaaS 

in cloud environments. 

Most of the related research focused on the accuracy of predictions, neglecting as-

pects such as training time, inference time, energy consumption and the carbon footprint 

of the training and deployment of churn-prediction ML models. Therefore, with this 

work, we benchmarked different ML algorithms in two public datasets and tracked their 

predictive performance with well-known metrics such as the AUC and more specific ones 

like Log Loss, which is valuable for SaaS providers that run retention campaigns. Moreo-

ver, with our extensive benchmarking process in the cloud, we aimed to determine the 

relative differences in ML models regarding their carbon footprint and how these change 

when they run in different regions. Finally, we provided a way to quantify the relative 

differences and select the best ML models that achieve good trade-offs across the different 

metrics by introducing a new weighted score, namely the Green Efficiency Weighted 

Score (GEWS). 

The experimentation process revealed that in small datasets, like Telco, simple meth-

ods like Logistic Regression can be a good fit, offering a good balance between predictive 

performance, efficiency and sustainability. In larger datasets like KKBOX, simple ML 

models like Logistic Regression could not capture the underlying relationships well, 

showing low AUC and increased energy consumption and carbon footprint, noting the 

third highest values. On the contrary, XGBoost, LightGBM and the voting schemes of both 

showed better results. Voting schemes such as Vote_XGB_LGBM and VoteAllGBM were 

more “conservative” in their predictions, noting low recall values indicating that they 

missed a lot of churners. However, they noted much lower Log Loss values than the rest 

of the ML models. Therefore, the probabilities that those ML models generated were more 

reliable and thus, more suitable for SaaS providers that run expensive campaigns or have 

limited resources. ML models like XGBoost, LightGBM and CatBoost showed the capabil-

ity of “catching” more churners; therefore, they seem to be a better alternative for SaaS 

providers that look to target as many churners as possible. 

More complex ensemble approaches like StackingGBM and Vote_Mix did not out-

perform the simpler voting scheme of XGBoost and LightGBM (Vote_XGB_LGBM) in pre-

dictive performance, which noted the same predictive performance metrics (AUC, Log-



Future Internet 2025, 17, 467 32 of 38 
 

 

Loss, accuracy, recall, F-measure and a little higher precision (0.93 vs. 0.91)). The Stacking 

ensemble (StackGBM) was the most energy-consuming ML model, generating 111 times 

higher emissions than Vote_XGB_LGBM when run locally. When run on the cloud, Stack-

GBM’s emissions were reported 102 times higher than the emissions of Vote_XGB_LGBM 

in a high-carbon intensity region (VM1), 101 times higher in a “medium” intensity region 

(VM2) and 91 times higher in a low-carbon region (VM3). The emissions of training Stack-

GBM in a high-carbon intensity region (VM1) were more than 400 times higher than the 

emissions when running Vote_XGB_LGBM in a low-carbon region (VM3). Moreover, the 

training time of StackGBM was 100 times higher than Vote_XGB_LGBM, while the latency 

was 10 times higher. 

Similarly, MLP showed good predictive performance, yet it did not outperform ML 

methods such as XGBoost and LightGBM, while it showed the second highest training 

and inference time and higher energy consumption and emissions. The emissions gener-

ated were more than five times higher than CatBoost’s emissions, 180 times higher than 

LightGBM and 100 times higher than the emissions of XGBoost. CatBoost’s training gen-

erated 20 times higher emissions than XGBoost and 33 times higher than LightGBM. When 

MLP was run in a high-carbon intensity region (VM1), it generated 459 times higher emis-

sions than XGBoost, 919 times higher than LightGBM and 25 times higher emissions than 

CatBoost when run in a low-carbon region (VM3). The experimentation results showed 

that for the same churn prediction models, the generated emissions can be even up to 

almost five times higher when running in regions that have higher grid carbon intensity. 

Therefore, the selection of the region is very crucial for minimizing the carbon footprint 

of the ML models. 

XGBoost, LightGBM, CatBoost and MLP showed to be very fast, noting low latency 

and high throughput values comparable to the simpler and very fast Bayes models, Deci-

sion Tree and SGD. Voting schemes such Vote_XGB_LGBM, Vote_Mix and VoteAllGBM 

showed higher inference times, which was as expected since they generate the final pre-

diction by more than one ML model. The slowest among the voting schemes was 

VoteAllGBM, noting 4× Latency than XGBoost, 1.5× latency than LightGBM and 7× latency 

than CatBoost for the KKBOX dataset and 3.68× latency than XGBoost, 3.27 × latency than 

LightGBM and 5.89 × latency than CatBoost. Finally, Random Forest and StackGBM 

showed much higher inference times, indicating that they are not good choices for SaaS 

providers that use the churn prediction models frequently and have a large user base. For 

example, StackGMB latency for the KKBOX dataset was 37 times higher than XGBoost, 14 

times higher than LightGBM, 65 times higher than CatBoost and 10 times higher than 

Vote_XGBoost_LGBM. Similarly, for the Telco dataset, StackGBM’s latency was 9.61 times 

higher than XGBoost, 8.54 times higher than LightGBM and 15.37 times higher than Cat-

Boost. 

For selecting the best ML model to use for SaaS churn prediction, we suggested a 

unified metric, the GEWS, that considers different aspects such as predictive performance, 

training time, inference time and carbon footprint. This way, SaaS providers can pick the 

ML model that is more suitable for their case, balancing predictive performance, efficiency 

and sustainability. Based on the experimentation results, the highest GEWS for the Telco 

dataset was noted by Logistic Regression, showing that for small datasets, simple models 

can be sufficient. For the KKBOX dataset, the highest GEWS was achieved by the voting 

ensemble Vote_XGBoost_LightGBM, offering a good balance of predictive performance, 

training and inference times along with carbon footprint. 

Future work could include experimentation with different hyperparameters for each 

ML model. Hyperparameters’ optimization could further refine the models’ performance; 

efficient tuning strategies could be explored to balance performance gains with sustaina-

bility concerns. Moreover, the impact of different feature selection, feature engineering 
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and feature transformation approaches could be examined, as well as the use of more deep 

learning architectures. Different resampling and under-sampling techniques could also be 

tested, while more state-of-the-art SaaS native datasets could be used. 

Most of the ML models in this benchmarking are CPU-based. However, ML models 

like XGBoost, LightGBM and CatBoost can be trained while using GPU resources. Future 

work could examine the impact on training time and generated emissions when using 

GPU compared with CPU training, and how this is consumed by the different computa-

tional resources. Parallel computing is also important to explore how it affects the carbon 

footprint of the SaaS churn prediction models. Finally, future work could also test how 

training and running the ML models at different times of the day affect the generated 

emissions. 

5. Conclusions 

This study performed an extensive benchmark of ML models for SaaS churn predic-

tion, taking into account not only predictive performance metrics but also metrics meas-

uring efficiency of use and environmental impact. To this end, 17 different ML models 

were trained in two public datasets locally and on the cloud, in three different regions. 

Results revealed that for small datasets like Telco, simple models like Logistic Re-

gression can be both fast and eco-friendly. However, when used in larger datasets like 

KKBOX, Logistic Regression struggled to achieve good predictive performance while con-

suming increased amounts of energy. 

XGBoost and LightGBM shone in both cases, offering a good balance of predictive 

performance, fast training and inference times and limited emissions. Experimental re-

sults confirmed that the selection of a region for running the ML model in the cloud is 

very crucial for minimizing the carbon footprint of the ML model. The same churn pre-

diction models generated about five times higher emissions when running in a high car-

bon intensity region compared to when running in a low carbon one. The fastest models 

were found to be the simplest ones that had weak predictive performance, such as Naïve 

Bayes, MultinomialNB and SGD. 

Most importantly, in this work, a GEWS metric was proposed for ranking ML models 

based on their predictive performance, training time, inference time and carbon footprint. 

Consequently, by using the GEWS metric, SaaS providers can easily select ML models that 

are not only accurate but also efficient and sustainable, achieving good training and infer-

ence times while minimizing their carbon footprint. 
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Abbreviations 

The following abbreviations are used in this manuscript: 

ML Machine Learning 

SaaS Software as a Service 

GEWS Green Efficiency Weighted Score 

US United States 

CV Cross-Validation 

MLP Multi-layer Perceptron 

NN Neural Network 

AUC Area Under the Curve 

VM Virtual Machine 

DL Deep Learning 

Appendix A 

Table A1 includes the default hyperparameter values for all models. Table A2 pro-

vides implementation links for all models. Note that the default hyperparameters of vot-

ing schemes can be found for each model of the scheme separately, already included in 

Table A2, while the link for the implementation of soft voting is also available. 

Table A1. Default parameters of ML models used in the benchmarking process. The rest of the mod-

els’ parameters are set to ‘none’. 

Model [Ref.] Default Parameters 

XGBoost [43] ‘objective’: ‘binary:logistic’, ‘eval_metric’: ‘logloss’, ‘random_state’: 42, ‘use_label_encoder’: False 

LightGBM [44] 

‘boosting_type’: ‘gbdt’, ‘colsample_bytree’: 1.0, ‘learning_rate’: 0.1, ‘max_depth’: -1, ‘min_child_samples’: 20, 

‘min_child_weight’: 0.001, ‘min_split_gain’: 0.0, ‘num_leaves’: 31, ‘random_state’: 42, ‘reg_alpha’: 0.0, ‘reg_lambda’: 0.0, ‘subsam-

ple’: 1.0, ‘subsample_for_bin’: 200,000, ‘subsample_freq’: 0, ‘objective’: ‘binary’, ‘metric’: [‘binary’], ‘num_threads’: 16, ‘num_iter-

ations’: 100 

CatBoost [45] 

nan_mode: Min, eval_metric: Logloss, iterations: 1000, sampling_frequency: PerTree, leaf_estimation_method: Newton, ran-

dom_score_type: NormalWithModelSizeDecrease, grow_policy: SymmetricTree, penalties_coefficient: 1, boosting_type: Plain, 

model_shrink_mode: Constant, feature_border_type: GreedyLogSum, bayesian_matrix_reg: 0.10000000149011612, eval_fraction: 

0, force_unit_auto_pair_weights: False, l2_leaf_reg: 3, random_strength: 1, rsm: 1, boost_from_average: False, model_size_reg: 

0.5, pool_metainfo_options: {‘tags’: {}}, subsample: 0.800000011920929, use_best_model: False, class_names: [0,1], random_seed: 

42, depth: 6, posterior_sampling: False, border_count: 254, classes_count: 0, sparse_features_conflict_fraction: 0, leaf_estima-

tion_backtracking: AnyImprovement, best_model_min_trees: 1, model_shrink_rate: 0, min_data_in_leaf: 1, loss_function: Lo-

gloss, learning_rate: 0.020607000216841698, score_function: Cosine, task_type: CPU, leaf_estimation_iterations: 10, boot-

strap_type: MVS, max_leaves: 64 

Logistic Regres-

sion [46] 

‘C’: 1.0, ‘dual’: False, ‘fit_intercept’: True, ‘intercept_scaling’: 1, ‘max_iter’: 1000, ‘multi_class’: ‘deprecated’, ‘penalty’: ‘l2’, ‘ran-

dom_state’: 42, ‘solver’: ‘lbfgs’, ‘tol’: 0.0001, ‘verbose’: 0, ‘warm_start’: False 

Decision Tree [47] 
‘ccp_alpha’: 0.0, ‘criterion’: ‘gini’, ‘min_impurity_decrease’: 0.0, ‘min_samples_leaf’: 1, ‘min_samples_split’: 2, ‘min_weight_frac-

tion_leaf’: 0.0, ‘random_state’: 42, ‘splitter’: ‘best’ 

Random Forest 

[48] 

‘bootstrap’: True, ‘ccp_alpha’: 0.0, ‘criterion’: ‘gini’, ‘max_features’: ‘sqrt’, ‘min_impurity_decrease’: 0.0, ‘min_samples_leaf’: 1, 

‘min_samples_split’: 2, ‘min_weight_fraction_leaf’: 0.0, ‘n_estimators’: 100, ‘oob_score’: False, ‘random_state’: 42, ‘verbose’: 0, 

‘warm_start’: False 

Naïve Bayes [49] ‘var_smoothing’: 1e-09 

MLP [50]  

‘activation’: ‘relu’, ‘alpha’: 0.0001, ‘batch_size’: ‘auto’, ‘beta_1’: 0.9, ‘beta_2’: 0.999, ‘early_stopping’: False, ‘epsilon’: 1e-08, ‘hid-

den_layer_sizes’: (100,), ‘learning_rate’: ‘constant’, ‘learning_rate_init’: 0.001, ‘max_fun’: 15000, ‘max_iter’: 300, ‘momentum’: 0.9, 

‘n_iter_no_change’: 10, ‘nesterovs_momentum’: True, ‘power_t’: 0.5, ‘random_state’: 42, ‘shuffle’: True, ‘solver’: ‘adam’, ‘tol’: 

0.0001, ‘validation_fraction’: 0.1, ‘verbose’: False, ‘warm_start’: False 

 

Vote_XGB_LGBM 

(Voting of 

XGBoost and 

LightGBM) 

enable_categorical = False, eval_metric = ‘logloss’, missing = nan, (‘lgbm’, LGBMClassifier(random_state = 42))], ‘flatten_trans-

form’: True, ‘verbose’: False, ‘voting’: ‘soft’, ‘xgb’: XGBClassifier(enable_categorical = False, eval_metric = ‘logloss’, missing = 

nan), ‘lgbm’: LGBMClassifier(random_state = 42), ‘xgb__objective’: ‘binary:logistic’, ‘xgb__enable_categorical’: False, 

‘xgb__eval_metric’: ‘logloss’, ‘xgb__missing’: nan, ‘xgb__random_state’: 42, ‘xgb__use_label_encoder’: False, ‘lgbm__boost-

ing_type’: ‘gbdt’, ‘lgbm__colsample_bytree’: 1.0, ‘lgbm__importance_type’: ‘split’, ‘lgbm__learning_rate’: 0.1, 

‘lgbm__max_depth’: -1, ‘lgbm__min_child_samples’: 20, ‘lgbm__min_child_weight’: 0.001, ‘lgbm__min_split_gain’: 0.0, 

‘lgbm__n_estimators’: 100, ‘lgbm__num_leaves’: 31, ‘lgbm__random_state’: 42, ‘lgbm__reg_alpha’: 0.0, ‘lgbm__reg_lambda’: 0.0, 

‘lgbm__subsample’: 1.0, ‘lgbm__subsample_for_bin’: 200,000, ‘lgbm__subsample_freq’: 0 

 Vote_AllGBM 

(Voting of 

XGBoost, 

{‘estimators’: [(‘xgb’, XGBClassifier(enable_categorical = False, eval_metric = ‘logloss’, missing = nan)), (‘lgbm’, LGBMClassi-

fier(random_state = 42)), (‘cat’, <catboost.core.CatBoostClassifier object at 0x000002516EF9A0D0 >)], ‘flatten_transform’: True, 

‘verbose’: False, ‘voting’: ‘soft’, ‘xgb’: XGBClassifier(enable_categorical = False, eval_metric = ‘logloss’, missing = nan), ‘lgbm’: 
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LightGBM and 

CatBoost) 

LGBMClassifier(random_state = 42), ‘cat’: <catboost.core.CatBoostClassifier object at 0x000002516EF9A0D0 >, ‘xgb__objective’: 

‘binary: logistic’, ‘xgb__enable_categorical’: False, ‘xgb__eval_metric’: ‘logloss’, ‘xgb__missing’: nan, ‘xgb__random_state’: 42, 

‘xgb__use_label_encoder’: False, ‘lgbm__boosting_type’: ‘gbdt’, ‘lgbm__colsample_bytree’: 1.0, ‘lgbm__importance_type’: ‘split’, 

‘lgbm__learning_rate’: 0.1, ‘lgbm__max_depth’: -1, ‘lgbm__min_child_samples’: 20, ‘lgbm__min_child_weight’: 0.001, 

‘lgbm__min_split_gain’: 0.0, ‘lgbm__n_estimators’: 100, ‘lgbm__num_leaves’: 31, ‘lgbm__random_state’: 42, ‘lgbm__reg_alpha’: 

0.0, ‘lgbm__reg_lambda’: 0.0, ‘lgbm__subsample’: 1.0, ‘lgbm__subsample_for_bin’: 200,000, ‘lgbm__subsample_freq’: 0, 

‘cat__verbose’: 0, ‘cat__random_state’: 42} 

 Vote_Mix (Vot-

ing of XGBoost, 

Logistic Regres-

sion, Decision 

Tree and Naïve 

Bayes) 

‘estimators’: [(‘xgb’, XGBClassifier(enable_categorical = False, eval_metric = ‘logloss’, missing = nan)), (‘lr’, LogisticRegres-

sion(max_iter = 1000, random_state = 42)), (‘dt’, DecisionTreeClassifier(random_state = 42)), (‘nb’, GaussianNB())], ‘flatten_trans-

form’: True, ‘verbose’: False, ‘voting’: ‘soft’, ‘xgb’: XGBClassifier(enable_categorical = False, eval_metric = ‘logloss’, missing = 

nan), ‘lr’: LogisticRegression(max_iter = 1000, random_state = 42), ‘dt’: DecisionTreeClassifier(random_state = 42), ‘nb’: Gaussi-

anNB(), ‘xgb__objective’: ‘binary:logistic’, ‘xgb__enable_categorical’: False, ‘xgb__eval_metric’: ‘logloss’, ‘xgb__missing’: nan, 

‘xgb__random_state’: 42, ‘xgb__use_label_encoder’: False, ‘lr__C’: 1.0, ‘lr__dual’: False, ‘lr__fit_intercept’: True, ‘lr__inter-

cept_scaling’: 1, ‘lr__max_iter’: 1000, ‘lr__multi_class’: ‘deprecated’, ‘lr__penalty’: ‘l2’, ‘lr__random_state’: 42, ‘lr__solver’: ‘lbfgs’, 

‘lr__tol’: 0.0001, ‘lr__verbose’: 0, ‘lr__warm_start’: False, ‘dt__ccp_alpha’: 0.0, ‘dt__criterion’: ‘gini’, ‘dt__min_impurity_decrease’: 

0.0, ‘dt__min_samples_leaf’: 1, ‘dt__min_samples_split’: 2, ‘dt__min_weight_fraction_leaf’: 0.0, ‘dt__random_state’: 42, 

‘dt__splitter’: ‘best’, ‘nb__var_smoothing’: 1e-09 

 StackGBM 

(Stacking Ensem-

ble of Random 

Forest, XGBoost, 

LightGBM, Cat-

Boost and final es-

timator XGBoost) 

[51] 

‘estimators’: [(‘rf’, RandomForestClassifier(random_state = 42)), (‘xgb’, XGBClassifier(enable_categorical = False, eval_metric = 

‘logloss’, missing = nan, m)), (‘lgbm’, LGBMClassifier(random_state = 42)), (‘cat’, <catboost.core.CatBoostClassifier object at 

0x0000025159667F90 >)], ‘final_estimator__objective’: ‘binary:logistic’, ‘final_estimator__enable_categorical’: False, ‘final_estima-

tor__eval_metric’: ‘logloss’, ‘final_estimator__missing’: nan, ‘final_estimator__random_state’: 42, ‘final_estimator__use_label_en-

coder’: False, ‘final_estimator’: XGBClassifier(enable_categorical = False, eval_metric = ‘logloss’, missing = nan), ‘passthrough’: 

True, ‘stack_method’: ‘auto’, ‘verbose’: 0, ‘rf’: RandomForestClassifier(random_state = 42), ‘xgb’: XGBClassifier(eval_metric = 

‘logloss’, missing = nan), ‘lgbm’: LGBMClassifier(random_state = 42), ‘cat’: <catboost.core. CatBoostClassifier object at 

0x0000025159667F90 >, ‘rf__bootstrap’: True, ‘rf__ccp_alpha’: 0.0, ‘rf__criterion’: ‘gini’, ‘rf__max_features’: ‘sqrt’, ‘rf__min_impu-

rity_decrease’: 0.0, ‘rf__min_samples_leaf’: 1, ‘rf__min_samples_split’: 2, ‘rf__min_weight_fraction_leaf’: 0.0, ‘rf__n_estimators’: 

100, ‘rf__oob_score’: False, ‘rf__random_state’: 42, ‘rf__verbose’: 0, ‘rf__warm_start’: False, ‘xgb__objective’: ‘binary: logistic’, 

‘xgb__enable_categorical’: False, ‘xgb__eval_metric’: ‘logloss’, ‘xgb__missing’: nan, ‘xgb__use_label_encoder’: False, 

‘lgbm__boosting_type’: ‘gbdt’, ‘lgbm__colsample_bytree’: 1.0, ‘lgbm__importance_type’: ‘split’, ‘lgbm__learning_rate’: 0.1, 

‘lgbm__max_depth’: -1, ‘lgbm__min_child_samples’: 20, ‘lgbm__min_child_weight’: 0.001, ‘lgbm__min_split_gain’: 0.0, 

‘lgbm__n_estimators’: 100, ‘lgbm__num_leaves’: 31, ‘lgbm__random_state’: 42, ‘lgbm__reg_alpha’: 0.0, ‘lgbm__reg_lambda’: 0.0, 

‘lgbm__subsample’: 1.0, ‘lgbm__subsample_for_bin’: 200,000, ‘lgbm__subsample_freq’: 0, ‘cat__verbose’: 0, ‘cat__random_state’: 

42} 

BernoulliNB [52] ‘alpha’: 1.0, ‘binarize’: 0.0, ‘fit_prior’: True, ‘force_alpha’: True 

MultinomialNB 

[53] 
‘alpha’: 1.0, ‘fit_prior’: True, ‘force_alpha’: True 

Bagging (Bagging 

of Decision Trees) 

[54]  

‘bootstrap’: True, ‘bootstrap_features’: False, ‘estimator__ccp_alpha’: 0.0, ‘estimator__criterion’: ‘gini’, ‘estimator__min_impu-

rity_decrease’: 0.0, ‘estimator__min_samples_leaf’: 1, ‘estimator__min_samples_split’: 2, ‘estimator__min_weight_fraction_leaf’: 

0.0, ‘estimator__random_state’: 42, ‘estimator__splitter’: ‘best’, ‘estimator’: DecisionTreeClassifier(random_state = 42), ‘max_fea-

tures’: 1.0, ‘max_samples’: 1.0, ‘n_estimators’: 10, ‘oob_score’: False, ‘random_state’: 42, ‘verbose’: 0, ‘warm_start’: False 

SGD (Logistic Re-

gression with Sto-

chastic Gradient 

Descent) [55] 

‘alpha’: 0.0001, ‘average’: False, ‘early_stopping’: False, ‘epsilon’: 0.1, ‘eta0’: 0.0, ‘fit_intercept’: True, ‘l1_ratio’: 0.15, ‘learn-

ing_rate’: ‘optimal’, ‘loss’: ‘log_loss’, ‘max_iter’: 2000, ‘n_iter_no_change’: 5, ‘penalty’: ‘l2’, ‘power_t’: 0.5, ‘random_state’: 42, 

‘shuffle’: True, ‘tol’: 0.001, ‘validation_fraction’: 0.1, ‘verbose’: 0, ‘warm_start’: False 

SGD_NB_Ensem-

ble (Voting of 

SGD and Naïve 

Bayes) 

‘estimators’: [(‘SGD’, SGDClassifier(loss = ‘log_loss’, max_iter = 2000, random_state = 42)), (‘nb’, GaussianNB())], ‘flatten_trans-

form’: True, ‘verbose’: False, ‘voting’: ‘soft’, ‘SGD’: SGDClassifier(loss = ‘log_loss’, max_iter = 2000, random_state = 42), ‘nb’: 

GaussianNB(), ‘SGD__alpha’: 0.0001, ‘SGD__average’: False, ‘’SGD__early_stopping’: False, ‘SGD__epsilon’: 0.1, ‘SGD__eta0’: 

0.0, ‘SGD__fit_intercept’: True, ‘SGD__l1_ratio’: 0.15, ‘SGD__learning_rate’: ‘optimal’, ‘SGD__loss’: ‘log_loss’, ‘SGD__max_iter’: 

2000, ‘SGD__n_iter_no_change’: 5, ‘SGD__penalty’: ‘l2’, ‘SGD__power_t’: 0.5, ‘SGD__random_state’: 42, ‘SGD__shuffle’: True, 

‘SGD__tol’: 0.001, ‘SGD__validation_fraction’: 0.1, ‘SGD__verbose’: 0, ‘SGD__warm_start’: False, ‘nb__var_smoothing’: 1e-09 

Table A2. Implementation links for all models. 

Model [Ref.] Implementation Links  

XGBoost [43] https://xgboost.readthedocs.io/en/stable/parameter.html (assessed on 12 September 2025) 

LightGBM [44] https://lightgbm.readthedocs.io/en/latest/Parameters.html (assessed on 12 September 2025) 

CatBoost [45] https://catboost.ai/docs/en/references/training-parameters/ (assessed on 12 September 2025) 

Logistic Regression [46] 
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html#sklearn.lin-

ear_model.LogisticRegression (assessed on 12 September 2025) 

Decision Tree [47] 
https://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeClassifier.html#sklearn.tree.Decision-

TreeClassifier (assessed on 12 September 2025) 

Random Forest [48] 
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html#sklearn.ensem-

ble.RandomForestClassifier (assessed on 12 September 2025) 

Naïve Bayes [49] 
https://scikit-learn.org/stable/modules/generated/sklearn.naive_bayes.GaussianNB.html#sklearn.na-

ive_bayes.GaussianNB (assessed on 12 September 2025) 
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MLP [50]  
https://scikit-learn.org/stable/modules/generated/sklearn.neural_network.MLPClassifier.html#sklearn.neu-

ral_network.MLPClassifier (assessed on 12 September 2025) 

Vote_XGB_LGBM (Voting of 

XGBoost and LightGBM) 

https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.VotingClassifier.html#sklearn.ensemble.Vot-

ingClassifier (assessed on 12 September 2025) 

Vote_AllGBM (Voting of XGBoost, 

LightGBM and CatBoost) 

https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.VotingClassifier.html#sklearn.ensemble.Vot-

ingClassifier (assessed on 12 September 2025) 

Vote_Mix (Voting of XGBoost, Lo-

gistic Regression, Decision Tree 

and Naïve Bayes) 

https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.VotingClassifier.html#sklearn.ensemble.Vot-

ingClassifier (assessed on 12 September 2025) 

StackGBM (Stacking Ensemble of 

Random Forest, XGBoost, 

LightGBM, CatBoost and final es-

timator XGBoost) [51] 

https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.StackingClassifier.html#sklearn.ensem-

ble.StackingClassifier (assessed on 12 September 2025) 

BernoulliNB [52] 
https://scikit-learn.org/stable/modules/generated/sklearn.naive_bayes.BernoulliNB.html (assessed on 12 Septem-

ber 2025) 

MultinomialNB [53] 
https://scikit-learn.org/stable/modules/generated/sklearn.naive_bayes.MultinomialNB.html (assessed on 12 Sep-

tember 2025) 

Bagging (Bagging of Decision 

Trees) [54]  

https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.BaggingClassifier.html#sklearn.ensem-

ble.BaggingClassifier (assessed on 12 September 2025) 

SGD (Logistic Regression with 

Stochastic Gradient Descent) [55] 

https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.SGDClassifier.html#sklearn.lin-

ear_model.SGDClassifier (assessed on 12 September 2025) 

SGD_NB_Ensemble (Voting of 

SGD and Naïve Bayes) 

https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.VotingClassifier.html#sklearn.ensemble.Vot-

ingClassifier (assessed on 12 September 2025) 
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