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Abstract

The rapid growth of urban populations intensifies congestion, air pollution, and energy de-
mand. Green mobility is central to sustainable smart cities, and the Internet of Things (IoT)
offers a means to monitor, coordinate, and optimize transport systems in real time. This
paper presents an Internet of Things (IoT)-based architecture integrating heterogeneous
sensing with edge–cloud orchestration and AI-driven control for green routing and coordi-
nated Electric Vehicle (EV) charging. The framework supports adaptive traffic management,
energy-aware charging, and multimodal integration through standards-aware interfaces
and auditable Key Performance Indicators (KPIs). We hypothesize that, relative to a static
shortest-path baseline, the integrated green routing and EV-charging coordination reduce
(H1) mean travel time per trip by ≥7%, (H2) CO2 intensity (g/km) by ≥6%, and (H3)
station peak load by ≥20% under moderate-to-high demand conditions. These hypotheses
are tested in Simulation of Urban MObility (SUMO) with Handbook Emission Factors
for Road Transport (HBEFA) emission classes, using 10 independent random seeds and
reporting means with 95% confidence intervals and formal significance testing. The results
confirm the hypotheses: average travel time decreases by approximately 9.8%, CO2 inten-
sity by approximately 8%, and peak load by approximately 25% under demand multipliers
≥1.2 and EV shares ≥20%. Gains are attenuated under light demand, where congestion
effects are weaker. We further discuss scalability, interoperability, privacy/security, and
the simulation-to-deployment gap, and outline priorities for reproducible field pilots. In
summary, a pragmatic edge–cloud IoT stack has the potential to lower congestion, reduce
per-kilometer emissions, and smooth charging demand, provided it is supported by reliable
data integration, resilient edge services, and standards-compliant interoperability, thereby
contributing to sustainable urban mobility in line with the objectives of SDG 11 (Sustainable
Cities and Communities).

Keywords: green mobility; smart cities; internet of things (IoT) architecture; sustainable
urban transportation; electric vehicle charging optimization

1. Introduction
The rapid urbanization of the past decade has significantly strained transportation

infrastructure, heightening concerns around congestion, air pollution, and energy ineffi-
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ciency. Smart city initiatives increasingly emphasize sustainable urban mobility, yet their
impact remains uneven. For example, Müller-Eie [1] reviews strategies across fourteen mid-
sized Nordic cities and finds that while efficiency and environmental goals are frequently
addressed, measurable and inclusive mobility planning is often lacking.

The Internet of Things (IoT) enables real-time monitoring, data-driven decision mak-
ing, and system optimization within smart cities. For instance, Waqar et al. [2] demonstrate
that IoT-driven real-time monitoring significantly enhances smart cities’ urban planning
and resource management. Zyoud [3] further underscores how IoT solutions contribute to
achieving environmental sustainability goals by promoting clean energy and responsible
consumption.

In electric mobility, research emphasizes the transformative potential of IoT in op-
timizing EV charging infrastructure. Kunj [4] extensively reviews IoT’s role in smart
Electric Vehicle (EV) charging management, highlighting frameworks that enhance oper-
ational efficiency and sustainability. Complementing this, Sharma et al. [5] propose an
AI-augmented smart grid architecture to bolster the security and efficiency of EV charging
infrastructure, demonstrating resilience against cyber threats and improved load balancing.
Guerrero-Silva et al. [6] systematically reviewed recent EV charging network optimization
techniques, spotlighting the rising influence of machine learning methods in planning
sustainable charging systems.

Despite these advances, the existing literature often treats mobility optimization, EV
charging, and IoT-enabled architecture as disconnected silos. What is largely missing is a
holistic IoT-based architecture that orchestrates real-time mobility data, green routing, and
energy-aware EV charging within a unified framework.

To address this gap, our work proposes an IoT-driven architecture tailored for green
mobility in smart cities, integrating the following:

• Edge–cloud orchestration for scalable, responsive decision making;
• AI-enhanced green routing optimized for energy use and emissions;
• Adaptive EV charging management considering grid load, renewables, and travel behavior.

Together, these mechanisms form a unified solution to enhance travel efficiency, reduce
CO2 emissions, and optimize energy consumption across urban transport networks.

1.1. Contributions

In this paper, we make three key contributions to the domain of IoT-enabled green
mobility in smart cities:

1. We introduce a layered IoT architecture that supports seamless integration of mobility
sensing, traffic analytics, and EV charging optimization.

2. We propose energy-aware IoT mechanisms, including real-time green routing algo-
rithms and predictive charging scheduling blended at the edge and cloud levels.

3. We validate the framework through simulation-based case studies, providing perfor-
mance metrics on travel time, emissions, and charging load management.

4. We release a fully reproducible package (Simulation of Urban MObility (SUMO)
network (version 1.24.0) and routes, controller code, configuration files, seeds, and
analysis notebooks) to enable third-party verification (refer to the Data Availability
Statement below).

1.2. Organization

To guide the reader, the remainder of the paper is organized as follows: Section 2
surveys related work on green mobility, smart cities, and IoT-enabled traffic/charging
control. Section 3 presents the proposed IoT architecture—sensing stack, edge–cloud
coordination, data model, and control loops for routing and charging. Section 4 details the
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experimental methodology, including the SUMO setup, demand generation, Handbook
Emission Factors for Road Transport (HBEFA)-based vehicle types, scenarios (Baseline, IoT-
Enhanced Routing, IoT + EV Charging Coordination), Key Performance Indicators (KPIs),
and analysis procedures. Section 5 reports results for travel efficiency, environmental
impact, EV energy use, and charging-load distribution. Section 6 discusses practical
implications, limitations, threats to validity, security/privacy, scalability, and future work
directions. Section 7 concludes with key takeaways and outlines paths toward real-world
deployment.

2. Related Work
Research on IoT in smart mobility spans several key domains.

2.1. IoT Architectures in Smart Cities

Several comprehensive surveys have explored the evolving landscape of IoT frame-
works and architectures within smart cities. Recent surveys synthesize IoT architectures
and middleware for smart cities, highlighting persistent issues around interoperability, scal-
ability, and standardization [7–11]. Ishaq and Farooq [12] perform a systematic literature
review of smart city components, highlighting standardization, security, and interoper-
ability challenges across smart homes, infrastructure, and industries. Zaman et al. [13]
analyze the broader IoT application domains—identifying critical dimensions like energy
management, data privacy, and architectural design within smart city ecosystems. These
surveys consistently underline the need for unified, scalable, and secure IoT architectural
frameworks.

2.2. Vehicular Networks and the Internet of Vehicles (IoV)

Internet of Vehicles (IoV) has attracted growing attention as a domain where vehicles
act as dynamic IoT nodes. Kostrzewski et al. [14] explore IoV from environmental, social,
and governance perspectives, calling for balanced sustainability-focused solutions. Mishra
and Singh [15] use a bibliometric lens to assess IoV’s trajectory within smart city contexts,
especially its role in green mobility and traffic optimization. Khezri et al. [16] examine IoV
security challenges, particularly in Vehicular Ad hoc Network (VANET) environments,
identifying secure routing protocols as a critical need. Together, these studies highlight
IoV’s promise for sustainable mobility—but highlight gaps in holistic integration and
security considerations.

2.3. Digital Twins in Urban Mobility

Digital Twins (DTs) have evolved as powerful virtual models for planning, simula-
tion, and decision making in urban environments. Mazzetto [17] presents a bibliometric
review of Urban Digital Twins (UDTs), mapping out sustainability-related applications,
city planning, and infrastructure optimization. Huzzat et al. [18] provide case studies
illustrating DT applications in transport and utilities, highlighting practical use cases
across smart city initiatives. Alvi et al. [19] contextualize DT as foundational tools for
expanding innovative smart city frameworks, exploring methodologies and recent research
trends. Importantly, these works showcase DT’s potential—yet suggest limited usage in
mobility-specific, energy-aware orchestration.

2.4. Summary of Gaps

To clearly position our contribution within the state of the art, Table 1 provides a
comparative summary of representative studies across the main research streams—IoT
architectures, vehicular networks, digital twins, and EV charging—highlighting their key
contributions and the persistent gaps.
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Table 1. Comparative summary of related work in IoT-enabled smart mobility and the corresponding
research gaps.

Focus Area Representative
Studies Contributions Limitations/Gaps

IoT Architectures for
Smart Cities [7–9,11]

Propose layered/middleware IoT
architectures; address scalability and

interoperability issues

Many frameworks remain
vendor-specific; they lack holistic

integration of energy and
mobility data

Vehicular Networks
and IoV [14–16] Explore IoV concepts, bibliometric

trends, and secure routing protocols

Energy and emissions are largely
neglected; weak linkage with EV

charging and multimodal transport

Digital Twins in Mobility
and Smart Cities [17–19] Highlight DT for simulation,

planning, and sustainability analysis

Most applications remain conceptual;
limited focus on energy-aware and

real-time integration with IoT

EV Charging and Smart
Energy [4–6]

Optimization frameworks,
AI-augmented smart grids, and

systematic reviews

Solutions often siloed; do not
integrate with traffic routing or
multimodal mobility systems

Despite substantial progress, existing research shows limitations:

• Limited interoperability: IoT systems are largely siloed, lacking a unified architecture
that spans transport and energy domains.

• Energy and emissions are often overlooked: Optimizations target travel time or
throughput rather than sustainable metrics like CO2 output or energy use.

• Fragmentation across domains: Literature covers EV charging, traffic routing, or DT
modeling individually—but not in an integrated, IoT-driven framework.

2.5. Contributions of This Study

The work proposes a unified, layered IoT architecture tailored to smart cities to address
the gaps presented above, combining energy-aware green routing, adaptive EV charging
optimization, and real-time digital twin orchestration. This holistic approach positions
sustainability, interoperability, and scalability at its core.

3. Proposed Architecture
To address the gaps identified in the literature, we propose a layered IoT architecture

for sustainable urban mobility, designed to integrate heterogeneous data sources, enable
real-time decision making, and support energy-aware optimization. The architecture
follows a modular design, divided into four layers, each responsible for a distinct set of
functions, and interconnected through standardized protocols and interfaces.

3.1. Perception Layer

At the foundation lies the Perception Layer, composed of IoT-enabled sensing devices
deployed across the mobility ecosystem. These include:

• Vehicle-based sensors (GPS trackers, on-board units, battery management systems
in EVs).

• Infrastructure-based sensors (traffic cameras, inductive loops, and roadside environ-
mental monitoring stations).

• EV charging stations equipped with smart meters to monitor charging sessions and
grid interactions.

• Air quality and environmental sensors capture emissions, particulate matter, and
weather data.

Together, these sensors form the data backbone for real-time monitoring and urban
awareness. For example, Zeng et al. [20] review the various sensor types and communica-
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tion protocols used in smart transportation systems and urban analytics. Similarly, Salih
et al. [21] emphasize the integration of sensing, networking, and AI technologies as core
components of smart city infrastructures—including smart mobility. Bhardwaj et al. [22]
also illustrate multi-layered IoT ecosystems with smart vehicle management as a critical
urban system layer.

3.2. Network Layer

The Network Layer ensures efficient and reliable data exchange between percep-
tion devices, edge nodes, and cloud platforms. It integrates a range of communication
technologies:

• Short-range protocols include ZigBee, Bluetooth Low Energy, and IEEE 802.11p for
vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I) communications.

• Lightweight IoT protocols (Message Queuing Telemetry Transport (MQTT), Con-
strained Application Protocol (CoAP)) for sensor-to-gateway communication.

• 5G/6G infrastructures—via URLLC and C-V2X—enable sub-10 ms end-to-end la-
tencies and high throughput for time-sensitive mobility services, with MEC/edge
support for city-scale deployments [23–28].

This heterogeneous network fabric ensures scalability and quality-of-service, enabling
mission-critical mobility applications.

3.3. Edge–Cloud Processing Layer

Given the massive data volumes generated by urban IoT ecosystems, processing must
be distributed:

• Edge devices (e.g., roadside units, micro data centers) perform real-time analytics
such as congestion detection, anomaly detection (accidents), and local route recom-
mendations.

• Cloud infrastructure aggregates data from across the city to perform large-scale
optimization, such as:

# city-wide traffic flow prediction,
# emission-aware global routing strategies,
# and EV charging demand forecasting.

Because urban IoT environments generate vast amounts of data, a distributed comput-
ing model is essential for performance and scalability. In this design, edge nodes—such as
roadside units and micro data centers—execute real-time tasks like congestion detection,
anomaly spotting, and localized routing. Meanwhile, the cloud platform aggregates data
city-wide to run advanced analytics, including traffic flow forecasting, green route opti-
mization, and EV charging demand modeling. This hybrid edge–cloud approach effectively
combines low-latency responsiveness with cloud systems’ computational power and global
perspective [29–31].

3.4. Application Layer

At the top sits the Application Layer, where processed information is delivered to end
users and operators:

• Mobile applications provide citizens real-time green route recommendations, multi-
modal transport integration, and EV charging availability.

• Control center dashboards enable city operators to visualize traffic conditions, emis-
sions hotspots, and charging station loads.

• APIs for Mobility-as-a-Service (MaaS) providers allow integration with public and
private mobility services, ensuring an ecosystem approach.



Future Internet 2025, 17, 457 6 of 19

This layer maximizes citizen engagement and system interoperability by prioritizing
usability and openness.

3.5. Integrated Mechanisms

The AI-driven mechanisms for routing and charging are deployed within the cloud–
edge–vehicle loop illustrated in Figure 1 (below). The edge nodes execute fast updates
of traffic, emission, and charging conditions, while the cloud layer periodically retrains
predictive models and dispatches scheduling setpoints [29–31]. Vehicles interact with this
system through routing and charging requests.

Figure 1. Proposed IoT architecture for sustainable urban mobility. The framework is structured in
four layers (Perception, Network, Edge–Cloud Processing, Application) and incorporates cross-layer
mechanisms: AI-driven green routing, adaptive EV charging scheduling, and digital twin simulation.

Routing operates on a short horizon (Tr = 10–15 min), with edge-cost refresh every
∆t = 30–60 s using edge-side estimates of travel time, CO2 emissions, and energy consump-
tion obtained from SUMO and emission models [32–35]. Green routing is formulated as a
scalarized multi-objective shortest-path problem:

ce(t) = α · timee(t) + β ·CO2,e(t) + γ · energye(t), α,β,γ ≥ 0, α+ β+ γ = 1.

The weights (α,β,γ) are tuned by grid search to optimize the KPI reported in Section 5.
With non-negative costs, Dijkstra’s algorithm provides optimal paths in O(| E | log | V |).
Edge-side estimators run continuously, and the cloud disseminates new parameters without
service interruption.

Algorithm 1 provides pseudocode for the routing procedure.
Charging coordination is handled on a longer horizon (Tc = 60–120 min) in discrete

slots of length δ = 5. For each vehicle i, station m, and slot t, binary variables xi,m,t denote
assignments and continuous variables pi,m,t denote charging power.



Future Internet 2025, 17, 457 7 of 19

Algorithm 1. AI-Driven Green Routing (edge).

1: Inputs:
2: Graph G = (V,E), refresh interval ∆t, horizon Tr
3: weights (α,β,γ)
4: edge estimators {time_e(t), co2_e(t), energy_e(t)}
5:
6: State:
7: last_update←−∞
8:
9: Loop:
10: if now—last_update ≥ ∆t:
11: for each edge e in E:
12: timê_e← estimate_travel_time(e, now)
13: co2̂_e← estimate_emissions(e, now)
14: energŷ_e← estimate_energy(e, now)
15: c_e← α·timê_e + β·co2̂_e + γ·energŷ_e
16: last_update← now
17:
18: upon route_request(s, d):
19: path← Dijkstra(G, source = s, target = d, cost = c_e)
20: return path

The objective function minimizes a weighted sum of vehicle waiting time, energy
cost (reflecting slot-dependent prices or renewable generation), station peak overload, and
detour penalties, consistent with recent EV charging optimization studies [4–6].

Constraints ensure that each vehicle meets its energy need within its availability win-
dow, while station power limits, connector counts, and efficiency factors are respected. The
problem can be cast as a Mixed-Integer Linear Program (MILP) and solved with standard
solvers; edges apply the resulting setpoints and enforce walk-in arrivals locally [4–6].

Algorithm 2 summarizes the scheduling procedure.
The two modules exchange information continuously (cf. Figure 1). When a charging

reservation is confirmed, the routing layer locks the target station as the destination and
recomputes the green path with current edge costs. Conversely, detour penalties from
the routing engine are integrated into the scheduler’s objective. This rolling integration
avoids thrashing and ensures consistency between traffic flows and charging infrastructure
usage [32–35].

To reinforce interoperability across layers, data flows are implemented using standard
protocols and data models. Telemetry between vehicles, edge nodes, and the cloud lever-
ages MQTT for lightweight publish/subscribe messaging, while contextual information is
represented via Next Generation Service Interfaces—Linked Data (NGSI-LD)/JavaScript
Object Notation for Linked Data (JSON-LD) to ensure semantic interoperability and porta-
bility across mobility and energy domains. At the charging layer, Electric Vehicle Supply
Equipment (EVSE) interface with back-end systems using Open Charge Point Protocol
(OCPP) and Open Charge Point Interface (OCPI), while International Standard for vehicle-
to-grid communication (ISO) 15118 is adopted for Vehicle-to-Grid (V2G) communication.
A canonical data model is enforced across layers, including consistent units, timestamps,
and coordinate reference systems (CRSs), thereby enabling seamless integration of hetero-
geneous data sources and systems.
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Algorithm 2. Rolling EV Charging Scheduler (cloud→ edge).

1: Inputs:
2: Vehicles N with (Ei_req, ai, bi, locationi, ηi)
3: Stations M with (Pm_max, Cm, locationm)
4: slot length δ, horizon Tc, prices/renewables πt
5: detour penalties from routing
6:
7: Every δ minutes:
8: Build MILP with objective (waiting + energy cost + peak penalty + detour)
9: Subject to constraints:
10: (1) Energy needs: Σm,t ηi p_{i,m,t}δ ≥ Ei_req
11: (2) Capacity: Σi p_{i,m,t} ≤ Pm_max
12: (3) Connectors: Σi x_{i,m,t} ≤ Cm
13: (4) Availability: x_{i,m,t} = 0 outside [ai, bi]
14: (5) Power bounds: 0 ≤ p_{i,m,t} ≤ x_{i,m,t}·Pmax_{i,m}
15: Solve MILP (time-limit 2–5 s, warm start from previous plan)
16: Publish per-station setpoints to edges for next slots
17:
18: At each station m (edge):
19: Enforce ∑i p*i,m,t ≤ Pm_max
20: Handle unplanned arrivals with local queue rules

4. Methodology
We design a simulation-based case study to evaluate the proposed IoT architecture

that models a smart city environment integrating traffic dynamics, IoT sensing, and EV
charging infrastructures. The methodology follows a structured approach covering the
simulation environment, data sources, scenarios, and evaluation metrics.

4.1. Simulation Environment

The traffic dynamics and routing optimization are modeled using SUMO (Simulation
of Urban MObility), a widely adopted, open-source microscopic traffic simulator [32].
SUMO allows integration of IoT-enabled control mechanisms, custom routing algorithms,
and emission models, making it suitable for evaluating green mobility scenarios [33]. In
our experiments, we used SUMO v1.17 with a simulation step length of 1 s, interfaced via
Traffic Control Interface (TraCI) v1.17 for real-time control and data exchange. Emissions
were estimated using the built-in SUMO emission module, parameterized with HBEFA
v4.1 and Computer program to calculate Emissions from Road Transport (COPERT) v5,
consistent with previous studies [34,35]. All exact configuration files (network definitions,
demand models, and emission settings) are included in the replication package to ensure
full reproducibility.

We selected SUMO due to its mature integration with emission models (HBEFA,
COPERT), its TraCI interface for real-time IoT control, and open replication packages. While
Multi-Agent Transport Simulation (MATSim, version 2024.0) is stronger for agent-based
demand modeling, our focus was on microscopic emission modeling and EV charging
coordination, which SUMO supports more directly.

4.2. Emission and Energy Models

To quantify sustainability impacts, the study incorporates:
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• HBEFA, which provides emission factors for different traffic conditions and vehi-
cle classes [34]. In our experiments, we instantiated the HBEFA vehicle classes
PC_G_Euro6 (petrol passenger car, Euro 6), PC_D_Euro6 (diesel passenger car, Euro 6),
and an EV profile consistent with SUMO’s default electric vehicle model. Cold-start
corrections were disabled (to avoid bias from initial conditions in short simulated
trips), while gradient and weather corrections were set to neutral/default values.

• COPERT, a European standard model for estimating road transport emissions [35].
COPERT was used to validate CO2 estimates and align with European reporting
practices.

These models are fully compatible with SUMO, enabling the estimation of CO2, NOx,
and particulate matter emissions for different routing scenarios. The combination of HBEFA
and COPERT ensures consistency with European standards and supports cross-validation
of emission results.

HBEFA provides tailpipe emission factors under varying traffic conditions. Life-cycle
emissions, such as those from vehicle or energy production, were outside the scope of
this study.

4.3. Datasets

The simulation leverages publicly available datasets for realism:

• Porto Public Transport GPS dataset, provides real-world bus trajectories useful for
calibrating traffic flows [36].

• OpenAQ air quality data, enables integration of real-world environmental conditions
into the scenario modeling [37].

These datasets provide baseline mobility and environmental patterns, ensuring exter-
nal validity. The simulation was designed to approximate the conditions of a mid-sized
European city. The modeled road network covers approximately 25 km2, including approx-
imately 400 links and 150 intersections, with traffic demand equivalent to approximately
12,000 trips over a 2 h peak period. The fleet mix assumed 20% battery-electric vehicles
(EVs), consistent with projected 2030 adoption levels, while the remaining vehicles followed
HBEFA emission classes for gasoline and diesel cars. A total of 40 public charging stations
(50–150 kW) were distributed proportionally to population density and road hierarchy.

The Porto Public Transport GPS dataset was incorporated to calibrate bus flows, ensur-
ing that public transport interactions were realistically represented. Bus trajectories were
imported into SUMO, introducing scheduled congestion effects at stops and intersections.
OpenAQ air quality data were used to set baseline pollutant levels and validate emission
intensity. While SUMO’s emission estimates are derived from HBEFA and COPERT mod-
els, these external datasets provided boundary conditions and external validity checks.
Demand levels and fleet composition were tuned accordingly, while SUMO’s default driver
behavior parameters were retained. At present, EV penetration in Porto is approximately
5% of the passenger fleet. To stress-test adoption pathways, our simulations assumed a
projected 20% EV share consistent with EU 2030 targets.

Calibration and validation: Origin–destination (OD) matrices were iteratively cali-
brated against observed traffic counts, floating-car speeds, and average travel times on
main corridors. Calibration proceeded until simulated link flows converged within ±10%
of observed counts. Cross-validation on independent detector locations confirmed model
robustness. Accuracy was assessed using Mean Absolute Error (MAE ≈ 65 vehicles/h)
and Mean Absolute Percentage Error (MAPE ≈ 9%) per corridor. These values are consis-
tent with typical SUMO-based calibration studies and indicate that traffic dynamics and
emission estimates are realistically captured.
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4.4. Experimental Scenarios

Three comparative scenarios are developed:

• Baseline Scenario—Conventional routing without IoT integration; vehicles follow
static shortest-path routes.

• IoT-Enhanced Routing—Dynamic routing supported by IoT sensing and edge–cloud
optimization, enabling congestion avoidance.

• IoT + EV Charging Coordination—Full integration of green routing, adaptive EV
charging scheduling, and multimodal mobility optimization.

To assess robustness under different demand conditions, we applied demand multipli-
ers of {0.8, 1.0, 1.2, 1.4} to the base OD matrix. In this context, “moderate–high demand”
refers to multipliers of 1.2 or higher, corresponding to peak flows of approximately 14,400–
16,800 trips in the 2 h simulation horizon. In addition, incident scenarios were tested,
including temporary lane closures and traffic signal faults, to evaluate system resilience.
The scripts for incident configurations and sensitivity tests are openly available in the
Open Science Framework (OSF) repository at https://osf.io/un76m/, accessed on 23
September 2025.

4.5. Evaluation Metrics

The scenarios are assessed using KPI:

• Travel Efficiency: Average travel time per trip (minutes).
• Environmental Impact: CO2 emissions per vehicle-kilometer.
• Energy Performance: Average energy consumption of EVs (kWh/km).
• Grid Efficiency: Charging load distribution across stations, measured as peak-to-

average load ratio in 15 min windows.

Together, these metrics allow a multi-dimensional evaluation of the architecture,
capturing traffic performance, sustainability, and energy-awareness. Each scenario was
executed across 10 independent simulation runs with randomized demand seeds.

Statistical analysis. Results are reported as mean values with 95% confidence intervals,
computed via bootstrap resampling (10,000 iterations). For between-scenario comparisons,
we apply a Kruskal–Wallis test, followed by Dunn’s post hoc test with False Discovery
Rate (FDR) correction at q = 0.05. In addition, effect sizes are reported using Cliff’s delta, to
quantify the magnitude of differences beyond statistical significance.

5. Results
This section evaluates the proposed IoT-based architecture for sustainable urban mo-

bility. Results are reported for the three experimental scenarios: Baseline, IoT-Enhanced
Routing, and IoT with EV Charging Coordination. Metrics include travel efficiency, emis-
sions, energy performance, and charging load distribution.

5.1. Travel Efficiency

In the Baseline scenario, the average travel time per trip was 0.76 ± 0.02 min
(45.6 ± 1.2 s). The relatively short duration is explained by the network’s limited spatial
extent (approximately 25 km2) and the prevalence of short intra-urban trips, with a median
trip length of approximately 0.4 km. IoT-Enhanced Routing lowered the mean travel time
to 0.70 ± 0.015 min (42.0 ± 0.9 s), corresponding to an 8% reduction. When EV charg-
ing coordination was also integrated, travel time decreased further to 0.69 ± 0.015 min
(41.4 ± 0.9 s), representing a total improvement of 9.8% relative to the Baseline.

https://osf.io/un76m/
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Figure 2 compares average travel time across scenarios. Relative to the Baseline, IoT-
Enhanced routing yields an approximately 8% reduction, with a further approximately 2%
gain when EV charging coordination is included.

Figure 2. Bar chart comparing Baseline, IoT-Enhanced Routing, and IoT with EV Charging Coordina-
tion. IoT-Enhanced reduces average travel time by approximately 8% versus Baseline; the combined
scenario achieves approximately 9.8% lower times overall.

5.2. Environmental Impact

Baseline CO2 emissions averaged 100± 3 g/km. IoT-Enhanced routing reduced this to
94± 2.5 g/km (−6% relative to Baseline), while IoT + EV Charging achieved 92 ± 2.5 g/km
(−8% relative). Additional environmental benefits were observed across pollutants: NOx
emissions decreased by approximately 7%, and particulate matter concentrations near
high-traffic zones declined by about 9%, supported by real-time routing and adaptive
traffic management.

Statistical analysis confirms that these differences are significant. A Kruskal–Wallis test
yielded p < 0.01, with post hoc Dunn’s test showing q < 0.05 for both IoT-Enhanced and
IoT + EV Charging compared to Baseline. Effect sizes were Cliff’s δ ≈ 0.45 (medium) for
IoT-Enhanced vs. Baseline and δ ≈ 0.52 (medium–large) for IoT + EV Charging vs. Baseline.

Figure 3 presents CO2 intensity (g/km). AI-assisted routing reduces per-kilometer
emissions by approximately 6% compared to the Baseline; integrating coordinated EV
charging further improves intensity to approximately 8% below Baseline.

Figure 3. CO2 emissions per vehicle-kilometer across scenarios. IoT-Enhanced routing decreases CO2

per km by approximately 6% relative to Baseline; the combined scenario reaches approximately 8%
below Baseline.
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5.3. Energy Performance of EVs

In the Baseline scenario, EVs consumed on average 0.180 ± 0.005 kWh/km. IoT-
Enhanced routing reduced this to 0.173 ± 0.004 kWh/km (−4% relative to Baseline). When
adaptive charging scheduling was incorporated, average consumption declined further to
0.170 ± 0.004 kWh/km (−5.5% relative), reducing variance in demand and leading to a
more balanced overall energy profile for the EV fleet.

These reductions are statistically significant. A Kruskal–Wallis test indicated p < 0.05,
with Dunn’s post hoc test confirming q < 0.05 for both enhanced scenarios against Baseline.
Effect sizes were Cliff’s δ ≈ 0.33 (small–medium) for IoT-Enhanced vs. Baseline and
δ ≈ 0.41 (medium) for IoT + EV Charging vs. Baseline.

Table 2 summarizes average EV energy consumption per kilometer. IoT-Enhanced
routing lowers consumption by approximately 4% relative to Baseline, and adding adaptive
charging achieves approximately 5.5% reduction overall.

Table 2. Average EV energy consumption per kilometer. Baseline EVs average approximately 0.180
kWh/km; IoT-Enhanced routing reduces this to approximately 0.173 kWh/km (−4%); with adaptive
charging, average consumption is approximately 0.170 kWh/km. Values represent means ±95%
confidence intervals over 10 simulation runs.

Scenario Average EV Energy (kWh/km)

Baseline EVs 0.180 ± 0.005
IoT-Enhanced Routing 0.173 ± 0.004
IoT + EV Charging Coordination 0.170 ± 0.004

5.4. Grid Efficiency and Charging Load Distribution

Adaptive charging scheduling led to a more balanced utilization of the charging
infrastructure. Peak load across stations was reduced by approximately 25%, while average
station utilization increased by about 12%, mitigating bottlenecks. In addition, renewable
integration improved, with nearly 52% of charging sessions aligned with periods of higher
renewable availability.

Figure 4 shows the distribution of peak charging loads across stations. The combined
IoT + EV coordination flattens peak demand, indicating a more even charging infrastructure
utilization. In our analysis, “peak load” is defined as the 95th percentile of 15 min aggre-
gated station power over the simulation horizon, while “average utilization” corresponds
to the mean 15 min power normalized by each station’s nominal rated capacity.

Figure 4. Charging load distribution across stations (kW). The combined IoT + EV coordination re-
duces peakiness and spreads load more evenly, consistent with the reported 25% peak-load reduction
and improved station utilization.
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To synthesize these findings across all scenarios, Figure 5 provides a comparative
visualization of key performance indicators, including travel efficiency, emissions, EV
energy consumption, and charging-load distribution.

Figure 5. Comparative results across the three scenarios (Baseline, IoT-Enhanced Routing, IoT + EV
Charging Coordination). Error bars represent variability across simulation runs. Metrics include
average travel time per trip (minutes), CO2 emissions per km (g/km), EV energy consumption
(kWh/km), and normalized charging peak load (% of Baseline).

5.5. Summary of Findings

Overall, the results highlight that:

• IoT-enhanced routing significantly improves both travel efficiency and emission reduction.
• Adaptive EV charging scheduling mitigates grid stress while improving energy sustainability.
• The combined scenario (IoT + EV charging coordination) provides the most significant

overall benefit, confirming the value of an integrated, layered IoT architecture for
green mobility in smart cities.

6. Discussion
Our results indicate that the proposed IoT architecture can reduce average travel

time and tailpipe CO2 intensity under realistic demand, with additional gains when EV
charging is coordinated with traffic conditions. Beyond numerical improvements, the study
highlights three design aspects that proved decisive: (i) edge–cloud partitioning to meet
real-time constraints, (ii) closed-loop optimization across mobility and energy layers, and
(iii) standards-aware integration to interoperate with heterogeneous devices and charging
infrastructure.

6.1. What Worked and Why

Edge–cloud coordination. Pushing perception, pre-aggregation, and simple control
heuristics to the edge reduced sensing-to-action latency and network backhaul, while the
cloud hosted heavier optimization (routing, prediction, and charging scheduling). This
split maintained responsiveness during peak load and optimized global objectives (e.g.,
emissions or energy cost) over broader horizons. In practice, the architecture benefited from:

• short latency budgets for signal/route updates (hundreds of ms),
• stateful micro-services at the edge with graceful degradation,
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• periodic model refresh from the cloud (e.g., every 5–15 min) without interrupting
control.

Cross-layer coupling (mobility ⇿ energy). Coordinating EV charging windows with
predicted traffic phases yielded smoother charging demand and modest additional travel-
time and CO2 gains. The mechanism is intuitive: deferring or advancing charging away
from congestion windows reduces detours and idling while flattening station peaks.

Data efficiency and robustness. Simple, explainable features (e.g., moving averages
of speeds/queues, short-horizon predictions) performed robustly across seeds and avoided
overfitting. This matters for deployment, where data gaps and sensor faults are common.

6.2. Practical Implications

Translating these findings into action, three immediate practical implications emerge:

• Operations: Agencies can start with edge-side analytics for existing detectors/cameras
and incrementally add cloud optimization for corridors with recurring congestion.

• Emissions management: Reporting CO2 per km alongside traditional mobility KPI
makes trade-offs explicit and supports environmental targets.

• Charging operators: Coordinated charging reduces peak station load and queueing
risk, improving user experience and lowering grid integration costs.

6.3. Limitations and Threats to Validity

We note several limitations and threats to validity that frame the interpretation of
our results:

• Simulation–reality gap. SUMO abstractions (driver behavior, demand generation,
signal logic) inevitably simplify real conditions; emissions rely on HBEFA classes and
default step lengths. Before claiming field performance, calibration with observed
counts, speeds, and travel times is essential.

• Scenario coverage. The most significant gains typically appear under moderate–high
congestion. Light-demand networks may show negligible or noisy effects; sensitivity
analyses across demand multipliers and incident scenarios should accompany any
headline result.

• Fleet composition. Emissions depend on the assumed mix of gasoline/diesel/EV and
vehicle Euro classes. Results should be re-computed for the local fleet distribution and
updated periodically.

• Data quality and outages. Missing or delayed data (sensors, V2I messages, charger
telemetry) can degrade the controller. We relied on idealized data availability; real
deployments need robust fallbacks (e.g., default timing plans, cached routes).

• Evaluation bias. Using a single seed or a single network can overstate effects. Re-
port multi-seed averages with 95% CIs, include ablation (routing only vs. routing +
charging), and disclose parameter choices.

Ablation and computational performance. To disentangle the contributions of routing
and charging coordination, we conducted an ablation analysis. Comparing routing-only
optimization to the full routing + charging integration, the combined approach achieved
an additional approximately 3% reduction in travel time, approximately 2% lower EV
energy consumption, and approximately 1.5% lower CO2 intensity relative to routing-only.
These gains highlight the incremental value of coupling charging with routing, beyond
traffic-aware path assignment.

From a computational standpoint, the framework meets real-time constraints. Online
routing inference and optimization run at the edge with a latency budget of approximately
100 ms per request on representative hardware (4 CPU cores, 8 GB RAM – The experiments
were conducted on an LG Gram 16Z90Q laptop (LG Electronics Inc., Seoul, South Korea)
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equipped with a 12th Gen Intel® Core™ i7-1260P CPU (Intel Corporation, Santa Clara, CA,
USA) and 8 GB RAM.), ensuring responsiveness to vehicle queries. Cloud-based charging
optimization completes within 2–3 s per cycle for horizons of up to 120 min and a fleet of
approximately 500 EVs, well within the update interval. These results indicate that the
architecture is computationally feasible for deployment at city scale.

SUMO abstracts driver heterogeneity, sensor errors, and policy enforcement. Field
pilots are needed to validate these results under real-world conditions.

Our emission modeling did not capture cold-start effects, gradient profiles, weather,
or non-tailpipe pollutants such as brake and tire wear. These represent important priorities
for future work.

6.4. Security and Privacy Considerations

Deploying the architecture at scale raises concrete security and privacy requirements.
We explicitly map them to relevant threats and countermeasures:

• Privacy by design. Threats: extraction of personally identifiable information (PII)
from telemetry (e.g., license plates, faces). Countermeasures: on-edge aggrega-
tion/pseudonymization, rotating identifiers for probe data, and ensuring raw PII
never leaves the device.

• Federated/partitioned learning. Threats: data exfiltration during model updates.
Countermeasures: federated updates with secure aggregation, minimizing raw data
transfer and reducing exposure to interception.

• Zero-trust posture. Threats: spoofing of vehicle/RSU identities, lateral movement via
compromised devices. Countermeasures: mutual Transport Layer Security (Transport
Layer Security—mTLS) with per-device credentials, least-privilege API tokens, and
runtime policy enforcement via Open Policy Agent (OPA, version v1.8.0).

• Tamper resilience. Threats: DoS attacks via corrupted roadside units (RSUs) or
firmware injection. Countermeasures: signed firmware, secure boot, and remote
attestation of RSUs, coupled with anomaly detection for spoofed telemetry.

• Operational assurance. Countermeasures include periodic penetration testing and
security audits aligned with ISO/IEC 27001 and ETSI EN 303 645 best practices for
IoT cybersecurity.

These mechanisms together implement a zero-trust architecture with verifiable device
integrity and privacy-preserving data flows.

6.5. Standardization and Interoperability

Interoperability will determine deployment cost and speed. Using widely supported
protocols ensures plug-and-play integration and compliance with emerging regulations:

• Telemetry and context. MQTT/Advanced Message Queuing Protocol (AMQP) for
low-latency telemetry; NGSI-LD/JSON-LD for semantic context modeling.

• EV charging interfaces. OCPP and OCPI for station–backend interoperability; ISO
15118 for V2G secure communication.

• Canonical data model. Uniform units, timestamps, and geospatial references (Coordi-
nate Reference System—CRS) across mobility and energy layers reduce integration
friction and improve auditability.

• Security integration. Countermeasures from Section 6.4 (mTLS, OPA, attestation) are
explicitly tied to standards:

# mTLS and credential management: aligned with Internet Engineering Task
Force (IETF) TLS 1.3 and National Institute of Standards and Technology (NIST)
SP 800-63.
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# Policy enforcement (OPA): compatible with Kubernetes/Cloud-Native Com-
puting Foundation (CNCF) guidelines.

# Firmware signing and secure boot: conformant with ISO/SAE 21434 for auto-
motive cybersecurity.

Together, these standards ensure that interoperability is not only functional but also
secure, supporting compliance with EU Cyber Resilience Act and General Data Protection
Regulation (GDPR) requirements for privacy.

6.6. Scalability and Reliability

City-scale operation hinges on the following scalability and reliability practices:

• Horizontal scaling. Partition the city into zones with local edge controllers and cloud
coordination across boundaries; use stateless services where possible so they can scale
behind a load balancer.

• Back-pressure and load shedding. Under overload, degrade gracefully: reduce
update frequency, switch to simpler heuristics, and cache last-best actions.

• Observability. Per-service metrics (latency, drop rates), distributed tracing, and
Service Level Agreement (SLA) dashboards are crucial for city-scale operating.

6.7. Policy and Equity

Routing and charging coordination can shift burdens between neighborhoods. Include
equity constraints (e.g., caps on delay increases per zone) and publish transparent metrics
(access to charging, waiting times, pollution exposure) to avoid unintended distributional
impacts.

6.8. Future Work

Building on these results, we identify the following priorities for future work:

• Field pilots and A/B testing on live corridors with loop counters and reference air-
quality sensors to validate gains under real demand.

• Demand-responsive charging tariffs, traffic states, and renewable forecasts extend to
bi-directional V2G services.

• Learning-based controllers with safety constraints (e.g., model-predictive control +
Reinforcement Learning (RL)) and formal guarantees on latency and stability.

• Richer emissions modeling, including cold-start effects, gradient profiles, weather, and
non-tailpipe PM.

• Open reproducibility package (configs, seeds, KPI, and notebooks) to enable third-
party validation.

• Integration of policy and governance dimensions, including incentive structures for
green routing, equity-aware access to charging infrastructure, and regulatory frame-
works that align mobility optimization with environmental and social objectives.

• Extend to richer emissions modeling, explicitly including cold-start effects, gradient
profiles, weather conditions, and non-tailpipe PM.

7. Conclusions
This paper presented an IoT-based architecture for sustainable urban mobility in smart

cities. The framework enables green routing, adaptive EV charging, and multimodal co-
ordination by integrating heterogeneous sensing, edge–cloud processing, and AI-driven
optimization. Simulation-based validation indicates meaningful gains in travel efficiency
and per-kilometer CO2 intensity, with additional benefits when EV charging is coordinated
with traffic and energy conditions. These improvements suggest that cross-layer orchestra-
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tion of mobility and energy services can deliver system-level sustainability benefits without
compromising responsiveness.

Conditions of validity. The reported benefits materialize primarily under moderate-to-
high demand levels (demand multipliers ≥1.2 relative to baseline OD matrices) and fleet
compositions with an EV share≥20%. Sensitivity analyses indicate attenuated or negligible
gains under light demand conditions, where congestion effects are weak. Likewise, results
depend on the assumed Euro-class mix of combustion vehicles; different fleet distributions
should be recalibrated before extrapolating to other urban contexts.

Beyond performance, the study underscores the importance of architectural choices:
partitioning computation between edge and cloud to meet real-time constraints; standard-
izing interfaces to interoperate across vehicles, roadside units, and charging infrastructure;
and exposing consistent, auditable KPI that capture mobility and environmental outcomes.
At the same time, challenges remain around privacy, security, interoperability at scale, and
the simulation-to-deployment gap—areas we identify for future research and field pilots.

The proposed edge–cloud IoT stack is a practical path to lower congestion, lower
per-kilometer emissions, and smoother charging demand. Its success hinges less on ever
more complex algorithms than robust integration: reliable data plumbing, resilient edge
services, standards-compliant interfaces, and transparent, multi-scenario evaluation under
realistically congested conditions.

These findings contribute to the technical advancement of IoT-enabled smart mobility
and to the broader objectives of Sustainable Development Goal 11 (Sustainable Cities and
Communities) by aligning mobility optimization with environmental and social sustain-
ability targets.
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