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Abstract: As the Internet of Things (IoT) continues to expand, wireless communication is increasingly
widespread across diverse industries and remote devices. This includes domains such as Operational
Technology in the Smart Grid. Notably, there is a surge in resource-constrained devices leveraging
wireless communication, especially with the advances of 5G/6G technology. Nevertheless, the
transmission of wireless communications demands substantial power and computational resources,
presenting a significant challenge to these devices and their operations. In this work, we propose
the use of deep learning to improve the Bit Error Rate (BER) performance of Orthogonal Frequency
Division Multiplexing (OFDM) wireless receivers. By improving the BER performance of these
receivers, devices can transmit with less power, thereby improving IoT devices’ battery life. The
architecture presented in this paper utilizes a depthwise Convolutional Neural Network (CNN)
for channel estimation and demodulation, whereas a Graph Neural Network (GNN) is utilized for
Low-Density Parity Check (LDPC) decoding, tested against a proposed (1998, 1512) LDPC code. Our
results show higher performance than traditional receivers in both isolated tests for the CNN and
GNN, and a combined end-to-end test with lower computational complexity than other proposed
deep learning models. For BER improvement, our proposed approach showed a 1 dB improvement
for eliminating BER in QPSK models. Additionally, it improved 16-QAM Rician BER by five decades,
16-QAM LOS model BER by four decades, 64-QAM Rician BER by 2.5 decades, and 64-QAM LOS
model BER by three decades.

Keywords: IoT; 5G; operational technology; OFDM; receiver; deep learning; machine learning

1. Introduction

Fifth- and sixth-generation (5G/6G) networks promise higher data rates for more
connected devices than previously possible on cellular networks. Multiple industries are
taking advantage of these benefits, including the energy sector and the applications this
enables, by pushing for vastly more connected devices for Smart Grid, Smart Homes, Smart
Manufacturing, Smart Cities, and other areas, collectively often referred to as the Internet of
Things (IoT). Many of these application domains also intersect with Critical Infrastructure
sectors, elevating the importance of longevity and reliability in these connected devices.
With their rapidly growing number and the advantages provided by OFDM, such as
reduced impact from Intersymbol Interference (ISI), more robust signal equalization, or
ease of implementation, OFDM receivers are of vital importance and interest.

A drawback of these receivers being implemented on resource-constrained devices,
however, is two-fold: the relatively high power requirement for signal transmission, and
their computational complexity. This paper proposes a deep learning-based architecture
for channel estimation, demodulation, and subsequent channel decoding. The motivation
of this work is to improve OFDM receiver accuracy and facilitate reliable communications
at lower signal quality while progressing towards a fully Machine Learning-based OFDM
receiver architecture. Researchers are continuing to propose new applications of ML in 5G
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and 6G implementations [1], with our research showing significant promise for replacing
traditional receivers with deep learning architectures.

Our models utilize a CNN for channel estimation and demodulation and a GNN
for LDPC-based channel decoding. CNNs of varying sizes ranging from 200 k to 1.2 M
parameters are compared against a traditional receiver’s performance, with significant
gains achieved by the DL-based approach with respect to the achieved BER. For the GNN,
both a 20 k and 80 k parameter model were compared against standard LDPC decoders,
showing comparable BER compared to standard belief propagation (BP) and Min-Sum
algorithms. Our models are then combined in an end-to-end architecture, which shows
significant improvement over the decoded output of a traditional receiver.

The remainder of the paper is organized as follows: Section 2 will provide a review of
related works, and Section 3 outlines the methodology of this work, including subsections
for our CNN and GNN model designs. Section 4 presents the results for each model and
compares them to traditional approaches. Section 5 outlines our future work, and Section 6
concludes the paper.

2. Related Works

The application of machine-learning models for various parts of OFDM receivers has
gained increasing interest in recent years. The authors of [2] proposed a Convolutional
Neural Network (CNN) for symbol synchronization, channel estimation, demodulation,
and channel decoding in channels utilizing BPSK and QPSK modulation. In [3], the authors
proposed the use of a Residual Neural Network (ResNet) with depthwise convolutions [4]
for channel estimation and demodulation in OFDM channels operating up to 64-QAM,
which showed particular promise for a single model against multiple modulation schemes.
However, a drawback of utilizing CNNs for these applications is the computational com-
plexity and large number of parameters.

Graph Neural Networks (GNNs) have also been proposed for various receiver ap-
plications to combat this. The authors of [5] proposed a GNN for symbol detection com-
bined with expectation propagation to improve performance in multi-user Multiple-Input
Multiple-Output (MU-MIMO) systems. GNNs have also been proposed for use in channel
tracking of MIMO systems; for example, in [6]. However, the trade-off for fewer param-
eters with these models is the requirement for multiple iterations and message passing
within the GNN. Other approaches have also been proposed utilizing Long-Short Term
Memory (LSTM) models in [7], which show promising results in channel estimation and
demodulation in Rician and 3GPP models.

Although each model mentioned has shown promise for different portions of an OFDM
receiver, other approaches implement deep learning, utilizing multiple separate models
to progress toward a completely ML-based receiver. The authors of [8] propose different
time domain and frequency domain models to improve an OFDM receiver’s response to
increased Error Vector Magnitude while still utilizing traditional receiver components.

For channel decoding, GNNs were applied to BCH and Low-Density Parity Check
(LDPC) codes in [9], which utilized the generation matrix for these codes to ensure valid
codewords were generated, rather than focusing solely on BER. The results from this work
were promising even for Quasi-Cyclic (QC) LDPC codes and 5G LDPC codes. A shared
GNN approach was proposed in [10], where the authors reduced the parameter size of
the GNN with limited impact on BER. Other work has focused on augmenting current
LDPC decoders with trainable parameters to improve the performance of existing Belief
Propagation (BP) algorithms [11,12]. This approach utilizes fewer parameters than the
GNN approach by augmenting the BP algorithm with trainable parameters and improving
algorithm performance. CNNs with specially crafted butterfly layers have been shown to
perform well in learning linear codes [13] and have also been shown to work well on 1D
datasets [14].

These efforts illustrate the potential for augmenting or replacing traditional wireless
receiver functionalities with deep learning implementations. However, we observed a
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relative lack of consideration for resource-constrained devices and how this device class
could benefit from such transformations. Additionally, previously published research
provides limited results for DL architectures combining the functionalities of channel
estimation, symbol demodulation, and channel decoding. To address this shortcoming, we
outline the individual results of our separate functional models along with the results of
our combined DL architecture.

3. Methodology

The methodology of this work is to expand the capabilities of currently proposed
machine-learning receivers in OFDM systems by completing a Traditional Receiver’s
channel estimation, equalization, demodulation, and decoding, all with machine-learning
models. Our approach is presented in Figure 1 and is organized into two separate blocks,
DL-OFDM, utilized for all aspects from channel estimation through demodulation, and
LDPC-GNN, which is utilized for rate matching and LDPC Decoding. Thus, in this paper,
we explore a predominantly DL-driven architecture for resource-constrained devices, with
potential applications ranging from IoT to mobile and vehicular communications.

Figure 1. Overall architecture of the combined deep learning approach.

Our proposed method differs from other current published research efforts due to the
inclusion of additional traditional receiver functions within the DL architecture. Current
research focuses on improvements to specific sections of receiver performance, whereas
our research aims to expand joint machine-learning capabilities within OFDM receivers.
This change is outlined in Table 1.

Table 1. Comparison of existing approaches.

Model Architecture OFDM Time Domain Channel Demapping Channel
Modulation Correction Estimation Decoding

[8] CNN ✓ ✓ X ✓ X

[3] Resnet ✓ X ✓ ✓ X

[2] DenseNet X ✓ ✓ ✓ X

[7] LSTM X ✓ ✓ ✓ X

[9] GNN X X X X ✓

[10] GNN X X X X ✓

Proposed Method CNN and GNN ✓ X ✓ ✓ ✓

✓ —Implemented with machine learning, X —Utilize traditional receiver blocks.

The evaluation method chosen for our architecture is the BER for each SNR, modula-
tion scheme, and channel model. Since this DL architecture evaluates the performance of
an LDPC channel decoder, using BER allows us to compare and contrast the output of the
demodulation compared to the final output of the receiver. With this in mind, we perform
BER evaluations on both DL-OFDM and LDPC-GNN models compared to their traditional
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receiver counterparts. This process was then completed with the DL architecture compared
to a traditional receiver to show end-to-end performance gains.

3.1. CNN-Based Joint Channel Estimation, Equalization, and Demodulation

The model we designed for OFDM symbol handling was inspired by a CNN with
depthwise convolutions [4]. Our model takes the place of a traditional receiver’s channel
estimation, equalization, and OFDM demodulation blocks by taking the output of the Fast
Fourier Transform as input and then generating each coded bit’s Log-Likelihood Ratio
(LLR) as an output. The model input is similar to that outlined in [3], with the real and
imaginary matrices for the received signal Y, received pilot signals H, and expected pilots
X stacked along the third dimension. For this paper, we examine different model sizes to
show the merits of not only the achievable performance gains but also the potential for
reduced complexity.

The model architecture is comprised of only four layer types: 2D convolution,
1 × 1 2D convolution, Batch Normalization, and Rectified Linear Unit (ReLU). These
layers combined together perform a Depthwise Separable Convolution in the convolu-
tional block. For this paper, three different models of varying sizes are evaluated for our
comparative analysis, with their fundamental architecture shown in Figure 2.
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Figure 2. CNN-based joint OFDM receiver signal operations.

In this study, we use an OFDM transceiver system with 64 subcarriers, out of which
11 are for the guardband regions and 1 is the DC subcarrier, plus 6 subcarriers used for
pilots in a comb pattern, leaving 46 data subcarriers, with a frame comprised of a variable
number of OFDM symbols to closely match the bits of the encoded LDPC code. We
used QPSK, 16-QAM, and 64-QAM for data modulation, in a SISO system, tested with
the Rician channel model as well as the four different LOS models provided by 3GPP
TR 38.900 (CDL-D/E, TDL-D/E) [15]. Matlab’s 5G toolbox was utilized to generate the
dataset, with each test constituting a dataset of 500,000 frames for each modulation scheme
and channel model for training. The train, test, and validation split was configured to
be 40%, 10%, and 50%, respectively, to ensure a sufficiently sized validation set for the
purposes of this evaluation. Three models were trained to compare the parameter size
against the achieved BER performance, and show the feasibility of this implementation on
resource-constrained devices.

Hyper-Parameter Tuning

For hyper-parameter tuning, layer channels were tested for values {4, 16, 64, 128,
256}, and dilation values were tested with values {(1, 1), (2, 3), and (3, 6)}, and the number
of convolutional blocks was selected between 1, 3, and 5. Each model was tested for
convergence against a 4-QAM AWGN dataset. Convergence occurred on most models with
3 and 5 convolutional blocks. Thus, the smallest, largest, and a representative mid-sized
model were selected for comparative evaluation. The model overview of the highest-
performing models is shown in Table 2.
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Table 2. Tested CNN architectures.

Model Conv. Dilations Channels ParametersBlocks

Large 5 (2, 3) (3, 6) 64, 128, 256, 128, 64 1.2 M

Medium 3 (2, 3) (3, 6) 64, 256, 64 800 k

Small 3 (2, 3) (3, 6) 64, 128, 64 270 k

The model output represents the bit LLRs, obtained as a 3-dimensional array of
dimensions I × J × K, where I is the number of data+pilot subcarriers, J is the number of
OFDM symbols, and K is the number of bits per subcarrier. Pilot signals are discarded
from the output of the demodulator deep learning model, as they are not considered in
the final data bit array and do not have the same modulation as the data subcarriers. Each
output data bit bijk ∀ i ∈ I, j ∈ J, k ∈ K is then translated from the LLR to a probability
utilizing the Sigmoid function xijk =

1
1+e

−bijk
. We use a Binary Cross-Entropy loss function

for model training (Equation (1)), where B is the number of bits per subcarrier, R is the set
of data subcarriers in a transmitted frame, and yijk are the target coded bits.

L = − 1
RB

B

∑
k

R

∑
ij
(yijk(log(xijk)) + (1 − yijk)(log(1 − xijk))) (1)

3.2. GNN-Based LDPC Decoding

The LDPC-GNN model proposed in this paper utilizes message passing for node classifi-
cation, with each iteration utilizing a graph convolutional layer, outlined in [16]. (N, K) LDPC
codes can be viewed as a bipartite graph, with the variable nodes V = {v1, v2, ..., vi : i = N}
representing N coded bits, and factor nodes F = { f1, f2, ..., fj : j = K} representing K. As
shown in Figure 3, the variable nodes are utilized as inputs, feeding six graph convolu-
tional layers that output the decoded factor nodes. The adjacency matrix A ∈ RKxN defines
directional messages between V and F.

For each convolutional layer, Equation (2) summarizes each layer update, as outlined
in [16], where Ã = A + IK, with IK being the identity matrix IK ∈ RKxK, the count of input
nodes to a specific variable node being represented by D̃ii = ∑j A, and where W l is the
matrix of weights of layer l, Hl is the input array into the lth layer, and H0 is the input
array V, shown in Figure 3. Since we require the last layer to update the factor nodes of the
LDPC code, the output will always be a single channel of length N.

H(l+1) = D̃− 1
2 ÃD̃− 1

2 HlW l (2)

For updating the factor nodes from the output of the graph convolutional layer, the
adjacency matrix A is utilized to ensure that only variable nodes that correspond to the
updates of a factor node are considered. The inverse is true for updating the variable nodes,
as shown in Equation (3), with the mean value taken for each node. Given that D̃ii = ∑j A,
we define D̃i = {D11, D22, ..., Dii : i = N}, producing a vector containing the number of
input factor nodes to each variable node vi. We define the inverse for factor nodes as well,
with D̃j = {D11, D22, ..., Djj : j = K}.

F =
VA
D̃j

, V =
FA
D̃i

(3)
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Figure 3. GNN architecture for LDPC decoding.

Hyper-Parameter Tuning

For the purpose of this paper, we utilize the proposed (1998, 1512) QC-LDPC code,
outlined in [17] and utilized in [11]. This code was chosen due to its high coding rate and
Quasi-Cyclic nature. The tested models can also be seen in Table 3.

Table 3. GNN hyper-parameter search space.

Parameter Search Space Converging Best

Iterations {1, 3, 5, 7} 5 7

Hidden Layers 1–8 6 8

Aggregation {Sum, Mean} - Mean

Optimizer {SGD, ADAM, LAMB} - ADAM

Learning Rate { 10−2, 10−3, 10−5 } - 10−3

Since the models tested for this application began converging before the search space
maxima, two separate GNNs were evaluated for this paper, consisting of the smallest and
largest converging models that we tested. The first model is comprised of six convolutional
layers and 20 k parameters, with the set of channels for each layer being {32, 64, 128, 64, 32,
1}. The second model utilizes 80 k parameters, with the set of channels for each layer being
{32, 64, 128, 256, 128, 64, 32, 1}. The impact of the number of iterations for message passing
was evaluated for 3, 5, and 7 iterations, with 7 producing the best result. The same number
of 500,000 frames was generated for training, with a train, test, and validation split of 40%,
10%, and 50%, respectively.

4. Results

To test the feasibility of our deep learning receiver approach, each model was evaluated
for their respective receiver operations effectiveness, for both Rician and 3GPP LOS models,
before also being evaluated jointly for the achievable end-to-end performance. This section



Future Internet 2024, 16, 155 7 of 13

will thus be divided into subsections focusing on the coded bit LLR extraction via OFDM
demodulation, the LDPC decoding, and finally the end-to-end performance.

As mentioned in the previous section, each modulation scheme utilizes a variable
number of OFDM symbols to reduce the number of padding bits required when varying
the employed subcarrier modulation scheme and its associated bits per subcarrier. QPSK
utilizes 22 symbols, 16-QAM utilizes 14 symbols, and 64-QAM utilizes 8 OFDM symbols. A
comparison of the computational complexity regarding other proposed models can be seen
in Table 4. The latency and throughput of the models will be reliant on the optimization of
the processor completing the ML accuracy, so BER and model complexity are the reported
comparative results.

Table 4. Computational complexity.

LLR Extraction

Paper Depth Weights Modulation Scheme

[8] 5–13 ResNet Blocks 292 k–725 k 64-QAM

[3] 11 ResNet Blocks 1.2 M 4–256 QAM

[2] 8 DenseNet and Convolutional Blocks Unlisted BPSK-QPSK

[7] LSTM-4 Hidden Units and 4 Dense Layers Unlisted QPSK

Proposed Method 3–5 Convolutional Blocks 200 k–1.2 M 4–64 QAM

Channel Decoding

Paper Depth Weights Codes Tested

[9] 2 MLP with 40 Hidden Units 20 k (63, 45) BCH, (6, 3) LDPC, 5G LDPC

[10] 2–3 MLP Layers with 40–64 Hidden Units 2440–9489 (7, 4), (63, 45) BCH, (6, 3) LDPC, 5G LDPC

Proposed Method 6 Convolutional Layers 20 k–80 k (1998, 1512) LDPC

4.1. Coded Bit LLR Extraction Comparison

For coded bit LLR extraction, each CNN consumes the output from the FFT and
produces as output the corresponding number of bit LLRs. To measure the BER for each
model independently of any error correction coding benefits, the sigmoid of each LLR
was calculated for the probability of each bit being a 1. Therefore, any sigmoid output
larger than 0.5 would be interpreted as a 1, with a 0 corresponding to any value less than
0.5, which is subsequently compared against the coded bits utilized at the transmitter just
prior to the transmitter’s modulation stage. Each test was conducted over an SNR range of
5–35 dB. The combined results for the Rician channel are shown in Figure 4.

These results show an improved performance for all tested models against the tradi-
tional receiver. For QPSK, all models show a performance improvement of at least 1 dB
over the traditional receiver, with the 200 k-parameter model requiring higher SNR to
eliminate errors compared to the other tested models. However, three models for 16-QAM
and 64-QAM, respectively, once again exhibit similar model performance, while retaining a
bit error plateau, albeit at a much improved BER level compared to their traditional receiver
counterparts. This is likely due to the models performing well, but not perfectly, when
encountering the distortions resulting from the scattered path signal energies resulting in
the Rician fading model. A surprising insight resulting from these tests is the relative lack
of improvement achieved by the 1.2 M parameter model compared to the 800 k parameter
model, which may be caused by the 800 k parameter model learning up to the theoretical
limit for the noise on the channel. From these results, we can see that a relatively modest
CNN model can achieve significant performance improvements compared to other, far
larger models.
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Figure 4. CNN models−combined Rician results.

Each model was subsequently trained and evaluated for each modulation scheme
against the previously outlined 3GPP LOS channel models, with our evaluation conducted
and completed in the same manner as for the Rician channel model. These results, shown
in Figure 5, outline a much larger performance gain than what we observed in the Rician
channel models, with the CNN models converging to 0 bit errors at 16 dB SNR, whereas
the traditional receiver plateaus around a BER of 4 × 10−4 16-QAM and 64-QAM begin to
show the advantages of the larger models compared to the 200 k parameter model, with
800 k and 1.2 M parameter model’s BER plateauing at a much better BER value. All of
these results, however, are very promising, as even the worst-performing model still far
outperforms the traditional receiver across all of our tests.

4.2. LDPC Decoding Results

For the LDPC decoding, the LDPC-GNN was evaluated using the same channel
models as we utilized for the CNN-based OFDM receiver demodulation evaluation. The
inputs for this GNN are the LLR outputs of the traditional receiver, with the LLRs presenting
the log-ratio of the probability of the demodulated bit being a 1 versus a 0. LDPC rate
matching is performed on the input to the model. The largest axis of the adjacency matrix
is utilized for rate matching to trim padding bits before inference. Similar to the previous
CNN model, a hard decision was made for the probability of 0.5 or larger being designating
a 1. For evaluation of the LDPC model, the 16-QAM dataset was generated for the BP,
Layered-BP, Normalized Min-Sum, and Offset Min-Sum decoding algorithms, the results
of which can be seen in Figure 6.

From these results, we can observe that the Min-Sum algorithms perform worse at
SNRs between 5 and 10 dB compared to the Belief Propagation algorithms and our GNN
models, but slightly outperform both in the SNR range of 12–25 dB. The algorithms are on
par in the range above 25 dB. We can observe that the GNN operation closely matches the BP
algorithms, and varying the parameter size of the model does not appear to impact the BER
performance. This matches previously reported results, showing increased performance of
BP algorithms up to 10 iterations, and improvement with increasing SNR [18]. Regarding
training time, the larger 80 k parameter model converged faster than the 20 k model, but
both produced these results after 2 epochs of training.
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Figure 5. CNN models−combined 3GPP LOS results.

5 10 15 20 25 30 35

SNR (dB)

10-2

10-1

B
E

R

LPDC Algorithm Comparison

Belief Propagation
Layered Belief Propogaiton
Normalized Min-Sum
Offset Min-Sum
DL-GNN 20k
DL-GNN Large

Figure 6. A 16−QAM Rician LDPC comparison.

4.3. End-to-End Results

With promising results from both the DL-OFDM and LDPC-GNN models, we then
completed an end-to-end evaluation of our overall deep learning receiver architecture,
by feeding the output of the DL-OFDM into the LDPC-GNN. We refer to this end-to-end
model as DL-WholeRx for simplicity. This test was completed on both Rician Fading and



Future Internet 2024, 16, 155 10 of 13

3GPP LOS channel models shown in the previous sections, with our obtained results shown
in Figures 7 and 8.

5 10 15 20 25 30 35
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B
E

R

Receiver Comparison- Rician Fading Model (Decoded Bits)
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DL-WholeRx

Receiver

QPSK
16-QAM
64-QAM
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Figure 7. Rician end−to−end comparison.
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Figure 8. 3GPP LOS end−to−end comparison.

The LDPC-GNN was retrained on the LLR output from the DL-OFDM model, as the
amplitude for a given LLR was not guaranteed to fall in the same range as a traditional
receiver. The DL-OFDM model did not need to be retrained, as the input signal from the
FFT was the same.

The Rician channel results show similar results to those in the DL-OFDM section, with
the deep learning receiver performing better across all modulation schemes. An interesting
observation for the traditional receiver when utilizing the BP algorithm with 10 iterations
is the degradation of 16-QAM BER, as the achieved BER is closer to 64-QAM results than
the coded bits BER. This is likely due to the high rate of the LDPC code, combined with
the relatively poor channel conditions. Compared to the traditional receiver, we observe
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that our deep learning receiver performs better for all modulation schemes, and reports
significantly better BER at higher SNR for both 16-QAM and 64-QAM, with 16-QAM BER
improving by 5 decades, and 64-QAM improving by 3.5 decades.

When examining the 3GPP LOS model results shown in Figure 8, we see a dramatic
increase in performance between the traditional and deep learning receiver, as 16-QAM
shows a two-decade BER improvement, and 64-QAM shows a three-decade BER im-
provement. When compared against the coded bits BER in Figure 5, a marginal BER
performance increase is shown for our deep learning receiver and similar performance
for the traditional receiver.

Given the maintained convergence of the QPSK model and improvement for 16-QAM
and 64-QAM, we can conclude that our architecture manages to significantly outperform
traditional receivers in adverse channel conditions. Our work expands on existing research
by combining channel estimation, symbol demodulation, and channel decoding into a
single deep-learning architecture.

5. Future Work

This paper provides a deep learning architecture for replacing most components of a
traditional OFDM receiver. Research remains on exploring the replacement of the remaining
components for error compensation, cyclic prefix removal, and performing the FFT utilizing
deep learning. Some work in that regard has been proposed that may complete this at
a lower modulation scheme [2], but the architecture relies on CNN layers, which have
difficulty learning linear codes, such as LPDC codes. This research is limited by the utilized
carrier frequency and implemented channel models. The research can be expanded in the
future to include additional channel models. Our team aims to continue this work to further
harness the potential to significantly improve the BER performance achieved by such DL-
driven receiver architectures and to leverage these gains to optimize energy consumption
in resource-constrained devices, such as IoT. We also plan to further study parameter and
model size reductions and approaches to unify the various DL models within the receiver
chain into a single unified DL model. Finally, research remains to study approaches for
reducing the latency resulting from GNN model iterations for LDPC decoding.

6. Conclusions

As the demand for IoT solutions grows, especially in areas such as Smart Grid applica-
tions and the energy sector, the number of resource-constrained or even battery-powered
devices connecting to next-generation cellular networks also increases. By improving the
achievable BER for these receivers through the use of a deep learning architecture, we aim
to facilitate resource efficiency improvements for these devices by being able to reduce the
transmit power requirements while maintaining or improving their BER performance. In
this paper, we presented a deep learning approach to channel estimation, equalization,
demodulation, and error correction decoding for OFDM-based receivers. CNN models
were evaluated for 200 k, 800 k, and 1.2 M parameters, showing improvement with each
model over a traditional receiver. A GNN architecture with 20 k and 80 k parameters was
trained and evaluated against standard LDPC BP and Min-Sum algorithms, showing simi-
lar performance to that of standard algorithms. Finally, by combining both deep learning
components into the proposed architecture, we could demonstrate the capabilities and
benefits of an end-to-end deep learning-driven approach to OFDM receiver operations,
showing not only the feasibility of this approach but also its tremendous benefits in the form
of a much lower BER than a standard OFDM receiver for comparable transmit power usage.
These results show significant promise for the future work of implementing a complete
OFDM receiver through deep learning, with additional model optimizations to further
improve resource efficiency. From this work, we observe the benefits this can provide to
critical infrastructure sectors, such as the energy grid, by making device connectivity more
robust and more energy efficient at the same time.
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