
Citation: Jamal, M.; Ullah, Z.; Naeem,

M.; Abbas, M.; Coronato, A. A Hybrid

Multi-Agent Reinforcement Learning

Approach for Spectrum Sharing in

Vehicular Networks. Future Internet

2024, 16, 152. https://doi.org/

10.3390/fi16050152

Academic Editors: Stefano Rinaldi

and Alan Oliveira De Sá

Received: 24 March 2024

Revised: 20 April 2024

Accepted: 23 April 2024

Published: 28 April 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

future internet

Article

A Hybrid Multi-Agent Reinforcement Learning Approach for
Spectrum Sharing in Vehicular Networks
Mansoor Jamal 1, Zaib Ullah 2,* , Muddasar Naeem 2 , Musarat Abbas 1 and Antonio Coronato 2

1 Department of Electronics, Quaid-i-Azam University, Islamabad 44000, Pakistan
2 Artificial Intelligence and Robotics Lab, Università Telematica Giustino Fortunato, 82100 Benevento, Italy
* Correspondence: z.ullah@unifortunato.eu

Abstract: Efficient spectrum sharing is essential for maximizing data communication performance
in Vehicular Networks (VNs). In this article, we propose a novel hybrid framework that leverages
Multi-Agent Reinforcement Learning (MARL), thereby combining both centralized and decentralized
learning approaches. This framework addresses scenarios where multiple vehicle-to-vehicle (V2V)
links reuse the frequency spectrum preoccupied by vehicle-to-infrastructure (V2I) links. We introduce
the QMIX technique with the Deep Q Networks (DQNs) algorithm to facilitate collaborative learning
and efficient spectrum management. The DQN technique uses a neural network to approximate
the Q value function in high-dimensional state spaces, thus mapping input states to (action, Q
value) tables that facilitate self-learning across diverse scenarios. Similarly, the QMIX is a value-based
technique for multi-agent environments. In the proposed model, each V2V agent having its own DQN
observes the environment, receives observation, and obtains a common reward. The QMIX network
receives Q values from all agents considering individual benefits and collective objectives. This
mechanism leads to collective learning while V2V agents dynamically adapt to real-time conditions,
thus improving VNs performance. Our research finding highlights the potential of hybrid MARL
models for dynamic spectrum sharing in VNs and paves the way for advanced cooperative learning
strategies in vehicular communication environments. Furthermore, we conducted an in-depth
exploration of the simulation environment and performance evaluation criteria, thus concluding in
a comprehensive comparative analysis with cutting-edge solutions in the field. Simulation results
show that the proposed framework efficiently performs against the benchmark architecture in terms
of V2V transmission probability and V2I peak data transfer.

Keywords: vehicular networks; multi-agent reinforcement learning; deep Q-networks (DQN); QMIX;
spectrum management; deep reinforcement learning

1. Introduction

Intelligent Transportation Systems (ITSs) are integral to our daily lives, thus impacting
road safety, security, and efficiency [1]. ITSs encompass advanced applications that aim
to provide intelligent services for various modes of transport and traffic control. V2X
communication, a critical component of the ITS, enables vehicles to interact with infrastruc-
ture, machinery, grids, and other vehicles. This interaction can significantly enhance road
safety, traffic efficiency, and energy preservation, as well as pave the way for self-driving
vehicles. Vehicle-to-Everything (V2X) communication is envisioned for users in a new era
of intelligent transportation systems, where connected vehicles seamlessly integrate with
networks to meet safety and operational requirements [2].

Following the recent release of the 3rd Generation Partnership Project (3GPP) specifica-
tions, Vehicular Communication Networks (VCNs) have garnered increased attention from
both industries and academia [3]. The underpinning of V2X technology lies in a hetero-
geneous network environment that leverages Long-Term Evolution (LTE) and 5G cellular
communication technologies, which are renowned for their efficacy in high-speed data
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transfer [4,5]. In [6], the authors explored challenges in V2X communications, specifically in
metropolitan environments with signal obstruction due to installations. A Reconfigurable
Intelligent Surface (RIS) was suggested as a key to improving communication performance
by adjusting signal reflection. While a RIS shows benefits, traditional solutions have cover-
age constraints. Researchers have suggested simultaneously transmitting and reflecting the
RIS (STAR-RIS), thus enabling 360° coverage and leveraging RIS advantages. They explored
a STAR-RIS-assisted V2X system, thereby developing an optimization problem to maximize
the data rate for V2I users while satisfying V2V latency and reliability conditions. They
organized the problem into two sub-problems using a combined DDQN with an attention
mechanism and an optimization-based technique for real-time solutions. Numerical results
show substantial performance gains over established RIS solutions.

With the exponential growth of connected devices and data-intensive applications
like V2X communication, the demand for high bandwidth and reliable data transmission
is exceeding the capacity of existing spectrum allocations [7]. This paper explores the
challenges and potential solutions for spectrum access in V2X networks, thus focusing on
achieving the high data rates and reliability required for critical safety and information
exchange applications. The 3GPP facilitates V2X (Vehicle-to-Everything) services within the
framework of 5G cellular networks. The 3GPP Release 16 specifically presents connectivity
solutions tailored for Robotics and Autonomous Systems (RASs) [8]. Due to the constant
movement of vehicles and varying environments (buildings, tunnels, etc.), the signal quality
(channel conditions) in V2X communication experiences significant and rapid changes.
This introduces significant uncertainty when allocating resources like bandwidth and
power, thereby challenging conventional optimization methods in solving V2X resource
allocation problems.

Our emphasis lies in the 3GPP cellular V2X technology, where a reservoir of radio
resources is at the disposal of vehicles, thus enabling them to judiciously select optimal
resources for their communication needs [9]. The spectrum is currently allocated for V2I
(Vehicle-to-Infrastructure) links utilizing OFDM, thus incorporating essential interference
management and power control mechanisms. For V2V (Vehicle-to-Vehicle) links, effective
strategies are required to efficiently share the preoccupied spectrum with V2I. This involves
the selection of optimal sub-bands and power levels. Similarly, in [10], a task offloading
strategy has been developed to maximize computation efficiency between vehicles.

This work introduces a novel Multi-Agent Reinforcement Learning (MARL) algo-
rithm with QMIX cooperation for dynamic resource allocation in heterogeneous V2X
networks [11]. It tackles the challenging scenario of multiple V2V links having a pool of
radio resources that users can autonomously select for V2V communication. By selecting
the optimal power level and spectrum sub-band, the algorithm dynamically adapts to the
changing vehicular environment, thereby aiming to achieve increased network efficiency,
an enhanced data rate, and improved reliability. Compared to existing methods, our QMIX-
based MARL excels in promoting V2V cooperation, real-time adaptation through an online
MARL approach, and joint network optimization for superior efficiency and fairness. This
innovative solution presents significant contributions to dynamic resource allocation in
V2X networks.

The article layout is organized as follows: Section 2 discusses the related studies in
detail, and Section 3 describes the system model with various subsections to explicitly talk
about the necessary techniques. Section 4 explains the construction of the hybrid model
and respective algorithms, and Section 5 presents the simulation results of the proposed
framework. Section 6 concludes the article.

2. Related Work

In V2X communication, particularly for coordinating both V2V and V2I links, an
effective resource allocation mechanism is crucial to ensure the efficient use of limited
spectrum resources.
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To address the challenge of uncertain optimal resource allocation due to fast-changing
channel conditions in vehicular networks, The authors of [12] proposed an optimization
framework for wireless charging, power allocation, and resource block assignment in
cellular V2X communications. It includes a network model where roadside objects use
wireless power from RF signals of electric vehicles for charging and information process-
ing. In [13], the study addressed D2D-based V2X communication with imperfect CSI,
thus aiming to maximize the VUEs’ sum ergodic capacity. It proposed a low-complexity
power control approach and an enhanced Gale–Shapley algorithm for spectrum resource
allocation, thus showing improved efficiency and effectiveness in enhancing the VUEs’
sum ergodic capacity. Similarly, the authors of [14] maximized V2X throughput via power
allocation. It proposed a Weighted Minimum Mean Square Error (WMMSE) algorithm
and a deep learning method. The WMMSE uses block coordinate descent, while the
deep learning approach leverages a supervised Deep Neural Network (DNN) trained on
WMMSE outputs. The DNN achieved accurate power allocation with significantly reduced
computational overhead.

Furthermore, in [15], a novel approach for cellular V2V was proposed to enhance
reliability and reduce latency. In this approach, V2V links are controlled by eNodeB, with
each link monitoring packet lifetime and waiting for eNodeB responses. In contrast to
centralized resource allocation, which can be vulnerable to single-point failures like eNodeB
outages, decentralized or distributed schemes hold significant promise for V2X commu-
nication. In these distributed approaches, vehicles autonomously negotiate and select
optimal resources through direct communication, even when traditional infrastructure is
unavailable. This enhances network resilience and enables flexible and scalable resource
utilization. The article [16] investigated a distributed approach for transmission mode
selection and resource allocation in V2X networks, thus also formulating the problem as a
Markov Decision Process (MDP).

The authors in [17] exploreed challenges in mode settings and resource allotment in
heterogeneous V2X conditions. They suggest a federated multi-agent Deep Reinforcement
Learning (DRL) strategy with action awareness to guarantee Quality of Service (QoS). The
technique includes an action–observation-based DRL and a prototype parameter accu-
mulation algorithm. By observing adjacent agents’ actions and dynamically balancing
documented rewards, a fast convergence of individual models is guaranteed. The model pa-
rameter aggregation technique enhances generalization by sampling historical parameters
and maintaining individual model qualities.

Furthermore, the authors in [18] considered V2X resource allocation with Deep Re-
inforcement Learning (DRL). A Deep Q Network (DQN) and Deep Deterministic Policy
Gradient (DDPG) DQN–DDPG combo handles the sub-band and power, while meta-DRL
enables fast adaptation in dynamic environments, thus outperforming quantized power
approaches. Investigations into unreliable V2V connections and signaling overhead for
joint model selection have been discussed in [19]. To address these challenges, a two-time
scale federated DRL approach was proposed, thus leveraging clustering techniques for
enhanced efficiency. Similarly, the work in [20] addressed spectrum scarcity in V2X commu-
nications by proposing a joint Resource Block (RB) sharing and power allocation method
via online distributed MARL, which optimizes the V2I data rate and V2V reliability.

Traditional approaches rely on complete knowledge of the communication channels,
thereby offering centralized control. However, these methods struggle with high communi-
cation overhead and increased latency, especially in scenarios with heavy traffic. To address
this, we propose a distributed system where each agent (vehicle) independently selects the
optimal sub-band and power level for communication. This distributed approach aims to
maximize network performance by eliminating the need for constant information exchange.

3. System Model

Consider a cellular-based vehicular communication network illustrated in Figure 1.
The vehicular network comprises M V2I links and K V2V links, thus offering support for
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high-bandwidth entertainment services and dependable regular safety message exchange
for advanced driving applications. We note that all the vehicles are capable of doing both
V2I and V2V communication equipped with different multiple radios.

The V2I links in our vehicular communication network employ cellular interfaces,
thus establishing connections between vehicles and the Base Station (BS) to facilitate
high-speed data transmission services. Conversely, V2V links utilize sidelink interfaces,
thereby enabling localized D2D communications for periodically disseminating generated
safety messages.

Figure 1. An illustrative structure of vehicular communication networks. B is the base station, m is
V2I link, k is the V2V link, k′ is another V2V link, gm,B is the power gain of V2I link, and gk,B is the
interference power gain of V2I link.

The set represents V2I links in the network M = {1,2,. . . ,M}, while the V2V links are
represented by K = {1,2,. . . ,K}. This setup enables efficient data exchange and seamless
communication, thereby ensuring dependable safety message sharing and high-data-rate
entertainment services among vehicles.

The interference to the V2I links consists of two parts: the background noise and the
signal from the V2V links sharing the same sub-band. The Signal-to-Interference-plus-Noise
Ratio (SINR) for the mth V2I is given by Equation (1) as follows.

γm =
Pmgm,B

σ2 + ∑k∈K ρkPkgk,B
, (1)

where Pm is the transmission power of the V2I link, and Pk is the transmission power of the
V2V link.

σ2 in Equation (1) is the noise power, and gm,B is the power gain of the channel
corresponding to the mth V2I link, where B refers to the BS (Base Station), and gk,B is the
interference power gain of the kth V2V link, which reflects the impact of interference from
the V2V link on the BS. ρk is the spectrum indicator, with 1 when the kth V2V user reuses
the spectrum and 0 otherwise.

The capacity of the mth V2I link can be expressed as given in Equation (2).

Cm = W log(1 + γm), (2)

where W in Equation (2) signifies the bandwidth associated with each spectrum sub-band.
Similarly, we can formulate the SINR for the kth V2V link, which might utilize the

shared spectrum as given in Equations (3)–(5).

γk =
Pkgk

σ2 + Gk + Gk̂
, (3)



Future Internet 2024, 16, 152 5 of 15

with
Gk = Pmgm,k, (4)

and
Gk̂ = ∑

k′ ̸=k
ρk′Pk′ gk′ ,kgk′ , (5)

where gk is the gain of the kth V2V link; gm,k is the interference from the V2I link; ρk′ is
the spectrum indicator, with 1 when k′ the V2V user reuses the spectrum and 0 otherwise;
k′ is the other V2V user sharing the spectrum with kth V2V user; and gk′ ,k and gk′ are the
interference from another k′th V2V links using the same resource block. The capacity of the
kth V2V can be expressed as given in Equation (6).

Ck = W log(1 + γd
k ). (6)

This paper aims to optimize the V2I link capacity for high-quality entertainment services,
thus meeting low-latency and high-reliability requirements for V2V links to provide realistic
and dependable information to vehicle users in road traffic. To achieve the first objective,
the sum rate of the V2I links must be maximized. For the second objective, V2V users
need to successfully transmit packets of size D within a finite time Tmax, as modeled in
Equation (7).

Pr

{
Tmax

∑
t=1

Ck[t] ≥ D/∆T

}
(7)

where Pr denotes the probability, Ck[t] represents the achievable data rate of the V2V user
K at time slot t, D is the packet size, ∆T is the transmission time of one packet, and Tmax is
the maximum allowed transmission time.

3.1. Environment Modeling

In Figure 1, we present a dynamic resource sharing scenario where multiple V2V
links strive to use the spectrum occupied by the V2I links. This competitive environment
underscores the suitability of a MARL approach, thereby treating each V2V link as an
autonomous agent navigating the uncertain landscape to optimize both individual and
collective performance.

Expanding on the resource sharing scenario in Figure 2, we conceptualize the inter-
actions among numerous V2V links as a Multi-Agent MDP (MA-MDP). This framework
views each V2V link as an independent agent, where the system reward is accessible to
each V2V agent, which then adjusts its actions toward an optimal policy by updating
its own DQN. The MA-MDP approach captures the inherent complexity of this dynamic
environment, thus facilitating the use of MARL techniques for efficient resource allocation
and coordination among V2V links.

Figure 2. Multi-Agent Reinforcement Learning [21].
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In this multi-agent setting, at each timestep t, each Vehicle-to-Vehicle (V2V) agent
k explores the unknown environment. They receive their observations and then take
action, thereby collectively forming a joint action. This joint action leads to a transition
of the environment to a new state. Subsequently, the agents receive new observations
based on this new state. To promote cooperation among agents, all agents share the same
reward signal.

3.2. Deep Q Networks

In scenarios with limited observation space and a small lookup table, Q learning
excels. However, challenges arise when confronted with larger state and action spaces,
thus resulting in a growing lookup table and non-stationarity. The latter occurs when many
Q values remain unchanged for extended periods, thus significantly slowing down the
learning process after multiple repetitions. To overcome these challenges, DQNs introduce a
paradigm shift by integrating Q values into a sophisticated neural network, which is termed
the DNN, as illustrated in Figure 3. This network is characterized by the parameter set θ,
thus representing its weights. The key concept involves approximating and determining
these weights θ. Once established, the DNN efficiently addresses the mapping of the Q
values, thereby enhancing stability in Q(st, at) [22].

Figure 3. Generalized structure of Deep Q Networks [23].

The Temporal Difference (TD) error, denoted by δ, is fundamental to the learning
process and is defined as given in Equation (8).

δ = R + γ max
a′

Q(s′, a′; θ′)− Q(s, a; θ) (8)

where δ represents the TD error, R is the immediate reward, γ is the discount factor
(between 0 and 1), maxa′ Q(s′, a′; θ′) represents the maximum expected future reward the
agent can achieve from the next state (s′), and Q(s, a; θ) represents estimated Q value for
taking the chosen action a in the current state s, which is also based on the current policy
parameters θ′. The loss function used during training, denoted by L, is based on the Mean
Squared Error (MSE) between predicted and target Q values as given in Equation (9).

L =
1
2

(
Qtarget − Qpred

)2
(9)

where Qtarget is calculated using the TD error and represents the target Q value. Qpred is
the predicted Q value obtained from the DNN.
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3.3. QMix Integration for Multi-Agent Reinforcement Learning

Our work seamlessly integrates QMix, a potent algorithm designed for cooperative
multi-agent systems, into our spectrum allocation framework for vehicular communication.
V2V agents, functioning as independent learners in an uncertain environment, collaborate
to dynamically explore and determine the optimal spectrum choices.

The challenges introduced by multiple agents actively exploring the environment
extend beyond traditional learning paradigms. To address these complexities, we model
the environment as fully cooperative, thus fostering collaborative adaptation among V2V
agents under dynamic conditions.

QMix, also known as “Deep Q-Mix”, strategically addresses the hurdles of cooperative
learning by introducing a central mixing network [24,25]. This network efficiently blends
the individual Q values of agents, thereby enabling seamless information sharing and
coordinated decision making.

In Figure 4, we illustrate the decentralized Q values integrating into a centralized
mixing network. Each node represents the Q value estimation network for an individual
agent (Q1(s1, a1), . . . , QN(sN , aN)), where o1 . . . oN represents the agent observation, and
a1 . . . aN represents the corresponding action. These networks estimate the Q values for
each agent’s actions in a given state, and the Q values flow through the central “Mixing
Network” block.

Figure 4. Generalized illustration of the QMix Structure [26].

Agents actively share their Q values, thus contributing to the mixing network. This
network utilizes hyper-networks to assign mixing weights to each agent’s Q value, thereby
determining their influence on the final joint action value function. The output of the
network, depicted as the node, represents this joint action value function (Qtot(s, a)).
It encapsulates the combined value for all agents taking a specific joint action in the
current state.

This collaborative decision-making process guides agents toward optimal spectrum
allocations, thereby ultimately enhancing communication and network efficiency.

Qtot(s, a) = ∑
i

wi(s) · Qi(si, ai) + V(s) (10)

where:
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Qtot(s, a) is the joint action value function for state s and joint action a.
wi(s) are the mixing weights for agent i, which are determined by the hyper-networks.
Qi(si, ai) are the individual Q values for agent i in state s and action ai.
V(s) is the state-dependent bias term in Equation (10) respectively.

3.4. State and Action Space

In the multi-agent resource sharing problem, numerous V2V agents navigate the
environment. At each timestep, individual agent k processes observation ok and takes
action ak, thus collectively forming a joint action. The action ak involves the selection of the
power level and optimal sub-band for data transmission.

4. Hybrid Training

In our approach, agents start with decentralized learning, where they individually
interact with the environment to learn. They then share this information with a central net-
work, thus forming a hybrid training process. Decentralized learning lets V2X agents adapt
independently based on local observations, but it may not always optimize collaboration.

To enhance collaboration, we use QMix, which is a centralized technique. QMix’s
central mixer network processes individual Q values from agents, thereby considering
relationships and dependencies, and generates final Q values [27]. This incentivizes agents
to consider team success, thus fostering efficient and collaborative decision making in
V2X communication. Our deployment integrates both decentralized and centralized learn-
ing for optimal outcomes. The learning and deployment procedures are summarized in
Algorithm 1 and Algorithm 2, respectively.

Algorithm 1 Collaborative spectrum sharing with multi-agent RL and QMix integration.

1: Start environment simulator, generating vehicles and links
2: Initialize Q networks for all V2V agents randomly
3: for each episode do
4: Update vehicle locations and large-scale fading
5: Reset parameters for all V2V agents
6: for each step t do
7: for each V2V agent k do
8: Observe the environment at time t
9: Choose an action using a policy

10: Share Q values with QMix
11: end for
12: Update channel small-scale fading
13: All agents take actions and receive rewards
14: for each V2V agent k do
15: Observe the environment at time t + 1
16: Store experience for learning
17: end for
18: end for
19: for each V2V agent k do
20: Sample mini-batches for learning
21: Share learned Q values with QMix
22: Optimize Q network and QMix using gradient descent
23: end for
24: end for
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Algorithm 2 Deployment scheme with QMix-enhanced agents.

1: Procedure Testing
2: Start Run Environment
3: Load QMix-Enhanced Models
4: Activate all links
5: for each test_step do
6: for each agent do
7: Update Environment
8: Update Demand
9: Select Optimal link using QMix-Enhanced Model

10: end for
11: end for

4.1. Decentralized Learning

In the initial step, Q networks serve as the learning mechanisms for individual agents
and are randomly initialized. Each V2V agent has a dedicated DQN that takes the current
observation as input and outputs the value functions corresponding to all actions. The
training process unfolds within a simulated V2V communication scenario shown in each
training episode. During an episode, dynamic adjustments are made to vehicle locations
and channel characteristics. Agents interact with the environment, receive observation,
make decisions based on their policies, and participate in decentralized learning. We train
Q networks through multiple episodes and at each episode, and all V2V agents explore
sate–action space with some policies. This decentralized learning is the key aspect of the
training phase, thus enabling agents to adapt to dynamic conditions.

4.2. Centralized Learning (QMIX)

In the centralized learning phase a central body, the QMIX, facilitates centralized
learning by collecting and integrating relevant information from all agents that coordinate
the learning process. Agents share their learning with the QMIX, thus fostering collab-
orative learning. The QMIX combines these decentralized learnings, thus resulting in a
joint action value function [28]. This joint action value function guides the actions of all
agents to achieve a common goal enhancing collaboration among them. Moreover, the
small-scale characteristics of the communication channel are updated, and agents store
their experiences. These experiences serve as valuable data for optimizing learning through
gradient descent, thus further improving decision making over time.

4.3. Deployment

In the deployment phase, the pre-trained models acquired from the training phase
are applied in real-time scenarios. During each timestep t, individual Vehicle-to-Vehicle
(V2V) agent k estimate their local channel state. They then leverage their observations of
the surrounding environment, incorporating the knowledge gained through the training
process, to select actions based on their trained Q networks. These models encapsulate
learned behaviors and optimized decision-making strategies cultivated during the train-
ing phase. The deployment procedure in Algorithm 2 is executed online and, based on
environment conditions, the trained DQN of the agent only updates when it experiences
significant changes in the environment.

In the context of live communication instances, V2V agents employ these pre-trained
models to estimate local channel characteristics in real time. Leveraging these observations
and the acquired decision-making strategies helps agents make informed decisions to
optimize communication links. The overarching goal is to ensure efficient spectrum sharing
among V2V entities, thereby contributing to the overall effectiveness of the communica-
tion network.
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5. Simulation Results and Findings

This section presents the simulation results, thus demonstrating the effectiveness of
our proposed multi-agent RL-based spectrum sharing scheme. We utilized a custom-built
simulator adhering to the evaluation methodology outlined in Annex A of 3GPP TR 36.885,
thus considering critical parameters such as vehicle drop models, traffic densities, speeds,
directional movements, and channel characteristics for comprehensive analysis.

Table 1 lists the simulation parameters reflecting realistic vehicular communication sce-
narios. The parameters like power levels, frequencies, noise characteristics, and speed were
precisely chosen for their alignment with real-world scenarios of vehicular communication.
Additionally, Table 2 specifies the channel models for both V2I and V2V links. Moreover, in
Table 2, “B1 Manhattan” refers to the typical environment or scenario being considered,
especially the metropolitan environment of Manhattan. In the context of wireless com-
munication modeling, assuming the unique characteristics of urban surroundings such as
Manhattan is fundamental due to aspects like high population density, tall buildings, and
complex propagation conditions.

All the parameters in Tables 1 and 2 were set to default values for the simulation.
However, meticulous attention to specific configurations for each figure ensures precision
and coherence in the results. The simulations were carefully designed to authenticate
the effectiveness and efficiency of our proposed resource sharing scheme in dynamic and
realistic vehicular environments.

Table 1. Simulation parameters [29].

Parameter Value

Number of V2I links M 4
Number of V2V links K 4
Carrier frequency 2 GHz
Bandwidth 4 MHz
BS antenna height 25 m
BS antenna gain 8 dBi
BS receiver noise figure 5 dB
Vehicle antenna height 1.5 m
Vehicle antenna gain 3 dBi
Vehicle receiver noise figure 9 dB
Absolute vehicle speed v 36 km/h
Vehicle drop and mobility model Urban case of A.1.2 in [29]
V2I transmit power Pc 23 dBm
V2V transmit power Pd [23, 10, 5, 0] dBm
Noise power σ2 −114 dBm
Time constraint of V2V payload T 100 ms
V2V payload size B [1, 2, . . .] ×106 bytes

Table 2. Modeling the wireless channels for V2I and V2V communications [29].

Parameter V2I Link V2V Link

Path loss model 128.1 + 37.6log10 d, d in km LOS in WINNER + B1 Manhattan
Shadowing distribution Log-normal Log-normal
Shadowing standard deviation ξ 8 dB 3 dB
Decorrelation distance 50 m 10 m
Path loss and shadowing update A.1.4 100 ms A.1.4 100 ms
Fast fading Rayleigh fading Rayleigh fading
Fast fading update Every 1 ms Every 1 ms

The neural architecture for each V2V agent’s DQN comprises three fully connected
hidden layers with 500, 250, and 120 neurons. Inside the hidden layers, the ReLU activation
function, expressed as f (x) = max(0, x) is utilized. This activation function was selected to
introduce non-linear transformations, thereby enabling the network to effectively capture
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intricate patterns and features from the input data. Throughout the training process, the
network parameters were updated using the RMSProp optimizer with a learning rate
set at 0.001. Additionally, the network was trained using the Huber loss function, thus
enhancing its ability to handle outliers and noisy data during learning. In Figures 5 and 6,
we compared the QMIX resource sharing scheme with the following three baseline methods:

(1) The multi-agent RL-based algorithm where multiple agents update their actions in a
distributed way.

(2) The single-agent RL-based algorithm where only a single agent at each moment
updates its action, while the other agent’s actions remain unchanged.

(3) The random method, which chooses the action randomly for all V2V agents.

Figure 5. Effect of V2V data size on V2I total capacity performance.

Figure 6. V2V transmission success rate across different data sizes.
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5.1. V2I Data Transfer Capability

Figure 5 delivers a powerful illustration of how the proposed QMIX scheme transcends
existing approaches, particularly the baseline MARL scheme, in ensuring seamless V2I
performance, especially as V2V data sizes inflate. Unlike the diminishing V2I transmission
rates exhibited by other methods as data loads increased, QMIX maintained an impressive
consistency, thus showcasing remarkably high rates over its competitors. From Figure 5,
we can observe that when the payload size was 1 × 1060 bytes, the corresponding improve-
ment of the QMIX was 24.91% as compared with the benchmark MARL technique. As
we increased the payload size, the efficiency of the proposed QMIX technique remained
improved at 27.7%, 33.46%, 38.67%, 42.86%, and 47.17%, respectively. Figure 5 shows that
the average improvement of the proposed technique over MARL was 35.795%. This unwa-
vering performance signifies QMIX’s superior adaptability and effectiveness in handling
diverse data demands within V2X communication scenarios.

Furthermore, QMIX established itself as the undisputed winner across the spectrum
of V2V data sizes. Regardless of the payload size, it consistently outperformed the baseline
scheme, thus achieving the highest V2I transmission rates. This consistent excellence
emphasizes QMIX’s robustness and its ability to excel in various communication scenarios,
thereby solidifying its potential for real-world applications.

By effectively addressing challenges faced by existing approaches, QMIX emerges as a
frontrunner in ensuring reliable and efficient V2X communication, thus paving the way for
a future of seamless data exchange and improved network performance.

5.2. V2V Communication Reliability

Figure 6 paints a compelling picture of how data size impacts V2V transmission
probability under various schemes. While benchmark schemes exhibited a predictable
decline in transmission success as data size increased, the proposed QMIX scheme stood
out. At small data sizes, QMIX outperformed with a remarkably higher transmission
probability, thereby highlighting its effectiveness in handling light communication loads.
This consistent success makes it an ideal choice for scenarios where reliable transmission of
smaller packets is crucial.

From the Figure 6, it is evident that as the data payload increased, the proposed
QMIX technique continued to outperform by a significant margin. For example, we have
improvements of 3.09%, 8.89%, 19.5%, and 26.67% for data sizes of 3 × 1060, 4 × 1060,
5 × 1060, and 6 × 1060 bytes, respectively. Figure 6 shows that the average improvement of
the proposed technique over MARL was 14% in the given scenario.

This consistent performance across varying data sizes signifies the strength and po-
tential of QMIX. It underscores its ability to deliver enhanced transmission performance,
even in the dynamic and challenging environment of V2V communication. The QMIX
adaptation in V2X networks can significantly improve data communication performance.

In addition, it is important to note that the number of training episodes greatly
influences the effectiveness of the QMIX method. When the training duration is very
short, agents cannot adequately explore their environment, and reinforcement learning-
based strategies may not perform better than random baseline approaches. This behavior is
demonstrated in Figure 7, where the performance of the V2I (Figure 7a) and V2V (Figure 7b)
links is shown for a fixed payload size. We can observe that, particularly in scenarios
with limited training time—around 2000 training episodes—the QMIX approach offered
significant benefits.
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(a) (b)
Figure 7. Comparison of QMIX and baseline schemes for different numbers of training episodes.
(a) Effect of V2V data size on V2I capacity. (b) V2V transmission success rate.

5.3. Discussion

In this study, we investigated the challenge of multiple Vehicle-to-Vehicle (V2V) links
interfering with the spectrum used by Vehicle-to-Infrastructure (V2I) links. This can signifi-
cantly reduce the data capacity available for V2I communication and hinder the reliability
of data transmission for V2V communication. To address this issue, we aimed to improve
both spectrum efficiency and message transmission reliability using the Manhattan urban
simulation model [29]. Our approach involved employing the multi-agent reinforcement
learning method with QMIX, where agents autonomously learn and share insights with
the central QMIX network, thereby fostering collaboration towards a common goal.

From the simulation, we observed that the RL techniques initially showed lower
performance than baseline schemes. However, as iterations progressed and the RL methods
learned, their performance became exceptional. Specifically, as we increased the V2V
payload size, our proposed approach maintained superior performance with higher V2I
data transfer capability and V2V data transmission reliability.

It is worth noting that implementing the hybrid QMIX approach requires substantial
computational resources. This is due to the initial learning phase of the agents, followed by
the sharing of insights with the central network, which necessitates additional computa-
tional settings and resources.

6. Conclusions

In this article, we have developed a resource sharing scheme based on multi-agent re-
inforcement learning in vehicular networks. We have utilized the QMIX method to address
the non-stationarity and competitive behavior of multi-agent reinforcement learning. The
proposed scheme comprises two stages such as hybrid learning and distributed implemen-
tation. The QMIX showed that the average improvement of the proposed technique over
MARL was 35.79% in V2I data transfer capability for varying data sizes, and the average
increment in message transmission probability was 14% for all data sizes.

The proposed deep reinforcement learning-based QMIX approach efficiently manages
spectrum sharing. This adaptability helps QMIX to perform well in variable environments,
thereby making it a good choice for spectrum sharing. The promising results as presented in
Section 5 highlight the impact and difference of hybrid techniques. Moreover, the proposed
QMIX method addresses network needs and uses the optimal way to send data to ensure
smooth communication and better network performance.

Currently, it is challenging to realize the framework due to the high computational
cost practically, but as high-performance chips for AI applications mature, the proposed
framework will be easy to develop.

In future work, we plan to conduct a detailed analysis and comparison of the robust-
ness of MARL schemes, including QMIX, and explore the combination of QMIX with other
distributed methods such as the Quanitle Transfer Network (QTRAN). This integration
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aims to enhance coordination and collaboration among agents in distributed systems. Ad-
ditionally, we will investigate the integration of QMIX with federated learning frameworks
such as Federated Q Learning and Federated Policy Gradient to enable localized decision-
making and reduce communication overhead, especially in applications like UAV swarms
and healthcare systems.
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Abbreviations
The following abbreviations are used in this manuscript:

Term Abbreviation
3GPP 3rd Generation Partnership Project
BS Base Station
CSI Channel State Information
D2D Device-to-Device
DNN Deep Neural Network
DQN Deep Q-Network
DRL Deep Reinforcement Learning
ITS Intelligent Transportation Systems
LTE Long-Term Evolution
MA-MDP Multi-Agent Markov Decision Process
MARL Multi-Agent Reinforcement Learning
MDP Markov Decision Process
QTRAN Quantile Transfer Network
RAS Robotics and Autonomous Systems
RB Resource Block
RL Reinforcement Learning
RSU Roadside Unit
SINR Signal-to-Interference-plus-Noise Ratio
TD Temporal Difference
VCN Vehicular Communication Networks
VN Vehicular Networks
V2I Vehicle-to-Infrastructure
V2V Vehicle-to-Vehicle)
V2X Vehicle-to-Everything communication
WMMSE Weighted Minimum Mean Square Error
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