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Abstract: In the current era of social media, the proliferation of images sourced from unreliable
origins underscores the pressing need for robust methods to detect forged content, particularly
amidst the rapid evolution of image manipulation technologies. Existing literature delineates two
primary approaches to image manipulation detection: active and passive. Active techniques intervene
preemptively, embedding structures into images to facilitate subsequent authenticity verification,
whereas passive methods analyze image content for traces of manipulation. This study presents
a novel solution to image manipulation detection by leveraging a multi-stream neural network
architecture. Our approach harnesses three convolutional neural networks (CNNs) operating on
distinct data streams extracted from the original image. We have developed a solution based on two
passive detection methodologies. The system utilizes two separate streams to extract specific data
subsets, while a third stream processes the unaltered image. Each net independently processes its
respective data stream, capturing diverse facets of the image. The outputs from these nets are then
fused through concatenation to ascertain whether the image has undergone manipulation, yielding a
comprehensive detection framework surpassing the efficacy of its constituent methods. Our work
introduces a unique dataset derived from the fusion of four publicly available datasets, featuring
organically manipulated images that closely resemble real-world scenarios. This dataset offers a
more authentic representation than other state-of-the-art methods that use algorithmically generated
datasets based on image patches. By encompassing genuine manipulation scenarios, our dataset
enhances the model’s ability to generalize across varied manipulation techniques, thereby improving
its performance in real-world settings. After training, the merged approach obtained an accuracy of
89.59% in the set of validation images, significantly higher than the model trained with only unaltered
images, which obtained 78.64%, and the two other models trained using images with a feature
selection method applied to enhance inconsistencies that obtained 68.02% for Error-Level Analysis
images and 50.70% for the method using Discrete Wavelet Transform. Moreover, our proposed
approach exhibits reduced accuracy variance compared to alternative models, underscoring its
stability and robustness across diverse datasets. The approach outlined in this work needs to provide
information about the specific location or type of tempering, which limits its practical applications.
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1. Introduction

Fake news, the dissemination of false information via social networks, has become
a pervasive issue in today’s digital landscape. Such misinformation has the potential to
deceive and garner more attention than factual news due to its deliberate crafting to evoke
strong reactions [1]. Notably, events like the Higgs Boson exploration in 2012 generated a
flurry of false information, with as many as 600 tweets per minute [2]. Of particular concern
is the use of manipulated images, which can implicitly lend credibility to false narratives,
thereby eroding public trust [3,4].

While numerous studies delve into identifying manipulation in images, many focus
on datasets containing only specific tampering types for example [5,6], or contain datasets
algorithmically generated such as [7]. Other papers use numerous more specific types of
manipulation; for example, Liu and Pun [8] mentioned a kind of manipulation to remove
parts of an image and replace them with surroundings. Besides, Rocha et al. [9] mentioned
healing as a manipulation capable of softening features.

With the intention of categorizing manipulations in as few types as possible while
still addressing all forms of manipulation, this paper adopts the categorization of image
manipulations proposed by [10,11]. Along with copy-move and splicing, this categorization
recognizes retouching as a manipulation technique that involves slightly modifying an
image content without completely hiding large portions. Those modifications include
applying filters, highlights, resizing, inpainting, or rotating parts of an image.

There are two general approaches to identifying image manipulation: active and
passive. Active techniques, also known as preemptive, aim to preemptively insert struc-
tures in an image that can be used to detect any future changes. These structures can be
visible to the human eye, like in watermarking, or hidden using steganography techniques.
Manipulation can be reliably detected by assessing the integrity of the inserted structure.
However, this approach requires that the structure be inserted correctly in a trustworthy
image capture before any manipulation, as these methods only enable the detection of
modifications post-insertion [12].

Meanwhile, passive methods, also known as blind methods, use only the content
already present in an image and do not require any prior action, making them better
suited for use in social media. To detect image forgery, passive methods can either analyze
artifacts intrinsic to a digital image or search for inconsistencies in the content of an image.
According to Lubna and Chowdhury [12], the artifacts present in digital images can be
divided into three types: acquisition, format, and manipulation.

Acquisition artifacts are introduced in the image either by imperfections created by the
manufacture of camera sensors called fixed-pattern noise or by programs used by cameras
to process sensor data before storage; the introduction of artifacts in this manner usually
follows a predictable pattern, and any divergences to it is evidence of manipulation.

Format artifacts, introduced in the digital storage of images by algorithms like the
jpeg compression, by removing information less relevant to human eyes, areas of the image
with artifacts of this type different than expected indicate the image was manipulated.
Manipulation artifacts, that get introduced during image manipulation by a program, like
the application of a blur filter that alters areas of an image in predictable patterns, the
presence of those known artifacts in areas of an image is evidence of manipulation.

The other possible approach involves analyzing the content of an image for incon-
sistencies. Some inconsistencies are duplicated portions of an image, unnaturally sharp
edges, shadow inconsistencies, and perspective inconsistencies [13]. Unfortunately, all
those methods of detection have their pros and cons. There is no absolute best method
capable of detecting all types of manipulation. Therefore, to better understand detection
methods and their limitations, it is essential to understand how images can be manipulated
in the first place [14].

There has yet to be a consensus on classifying all image manipulations; however, most
papers recognize the existence of at least two types, copy-move, and splicing. In copy-move
forgery, an area of an image is duplicated and pasted over another area of the same image.
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In splicing, however, an area of another image is pasted over the image. This manipulation
can add new meaning to the image or conceal information; the resulting image is a fusion
of two different images.

Following the discussion on various approaches to identifying image manipulation, it
is essential to highlight how this paper contributes to advancing the field. While existing
studies often focus on datasets limited to specific tampering types or utilize algorithmically
generated datasets (e.g., [15–18]), this research employs a more comprehensive dataset.
Notably, this dataset is manually curated and designed to encompass a broad spectrum
of realistically manipulated images, covering all types of manipulation encountered in
real-life scenarios.

This methodological improvement overcomes the limitations of previous studies,
ensuring that the detection model is trained on diverse and representative data. By incor-
porating a wider range of manipulations, including subtle retouching techniques such as
filters, highlights, resizing, and inpainting, the proposed approach enhances the model’s
ability to generalize and accurately detect manipulation across various contexts.

Furthermore, our approach capitalizes on established passive detection methods
within a multi-stream neural network architecture, as outlined in the abstract. This in-
tegration enables the utilization of knowledge acquired from traditional detection meth-
ods to enhance the accuracy of neural network-based approaches. By leveraging this
synergy, our method aims to significantly mitigate overfitting, a prevalent challenge in
such methodologies.

Besides this introductory section, the following sections aim to explain better how
the proposed approach works; in Section 2, we discuss several relevant related works.
Section 3 presents the methods, the dataset used, and the model architecture; then,
Section 4 discusses the results we obtained. Finally, Section 5 presented the final con-
siderations and suggestions to improve the approach.

2. Related Works

A problem in defining the search string consisted of the significant variability of
terms used to refer to the addressed subject. For example, terms sometimes used to
refer to counterfeits are “falsification”, “tampering”, “counterfeiting”, “adulteration”,
“forgery”, “manipulation”, “edited”, “doctored” or “altered”. After some tests, we defined
the following search string: “image AND (tamper OR forged OR forgery) AND (detect
OR localize) AND NOT video”. This search returned a considerable amount of work. To
delimit the search, using the first search string, we adopted the following criteria:

• The presented detection method must follow the passive approach;
• The Detection method should primarily focus on verifying digital images’

authenticity; and
• Must be in the top five most relevant results of each base that follows the other criteria.

With this research, we find 15 works. However, most of the papers returned on this
initial search did not claim to be capable of detecting all types of manipulation and primarily
focused on a single type, therefore, to include works related to general identification, terms
such as “global” or “universal” were tested. Unfortunately, not all works that detect all
types of manipulation used those terms, so the search key had to be made less specific:
“image AND (tamper OR forged OR forgery) AND (detect OR localize)” and to limit the
search the following criteria were employed:

• Introduce a method of detecting general-purpose manipulated images in their text;
• The presented detection method must follow the passive approach;
• The presented method should not require file formats with data compression;
• The Detection method should primarily focus on verifying digital images’ authenticity;
• The paper was published in the last five years; and
• The paper must have the most relevant results of each base that follow the

other criteria.
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From this search, three additional works were incorporated, bringing the total to
18 selected works. Among the selected works, similarities emerge in their operational
methodologies, despite variances in their detection approaches. We identified commonali-
ties based on the detected manipulations, denoted as Det. Man. (D for duplication, S for
splicing, and R for retouching with a slash used to distinguish them where applicable), their
treatment of color space, techniques employed for feature extraction to extract pertinent
image details, and the detection methods utilized to identify image manipulation. These
shared characteristics are meticulously detailed in Table 1, which serves as a comprehensive
overview of their collective attributes and methodologies.

Table 1. Comparative analysis of researched works.

ID Det.
Man. Color Space Feature Extraction Detection Dataset References

1 D/S YCbCr, Y values
used

Blocks with DCT using
doubly stochastic model

Classifiers of type: SVM and
ELM CASIA(V1,V2) [19]

2 D Grayscale
Keypoints by proposed

method and local
simetry plus LPT

Correlation of characteristics
by: angle and distance

MICC-F220,
MICC-F600, CMH [5]

3 D RGB Blocks by LIOP and DT Correlation of characteristics
by: double g2NN IMD, MICC-F600 [6]

4 D YCbCr, Y values
used

Blocks by SWT and
DCT

Correlation of characteristics
by: distance and threshold

value
CoMoFoD, UCID [20]

5 D/S YCbCr, Cr values
used

Signal Decomposition
by HHT

Classifiers of type: SVM, KNN
and ANN

CASIA(V1,V2),
MICC-F2000,
MICC-F600,
MICC-F220,
CoMoFoD,
Proprietary

[21]

6 D Grayscale Keypoints 2D DWT and
SIFT

Correlation of characteristics
by: proposed method CoMoFoD, MICC-F [22]

7 D RGB
Blocks by histogram

HSV and color
moments

Correlation of characteristics
by: threshold value

MICC-F220,
MICC-F2000,

MICC-F8multi
[23]

8 D RGB Blocks by 2D DWT and
SIFT

Correlation of characteristics
by: threshold value Proprietary [17]

9 D Grayscale Blocks by DWT Correlation of characteristics
by: threshold value Proprietary [24]

10 D/S RGB none FPN analysis IMD, Proprietary [25]

11 D Grayscale
Keypoints by Harris
Corner Detector and

BRISK

Correlation of characteristics
by: Hamming Distance and
Neared Neighbot Distance

Ratio

CoMoFoD,
MICC-F220 [26]

12 S/R RGB Proposed by authors
based on SRSC

Classifiers of type: FLD,
LibSVM and ensemble

classifier
Proprietary [27]

13 D RGB Blocks by FWHT Correlation of characteristics
by: threshold value CoMoFoD [15]

14 D/S Grayscale Proposed by the authors Classifiers of type: SVM with
RBF kernels Columbia [28]

15 D RGB Blocks by QDCT Classifiers of type: SVM with
RBF kernels Proprietary [16]

16 D/S/R RGB Automatic Machine learning on FPN data IFS-TC, RTD [29]

17 D/S/R Grayscale Bilateral Filters and
DWT Feature selection Proprietary [18]

18 D/S/R RGB Atrous spatial pyramid
pooling Machine learning on FPN data

CASIA(V1,V2),
Nim.16, Korus,

Coverage, DSO-1, IFC,
FaceSwap, Nim.16,

Nim.17dev2,
MFC18dev1

[30]

The detection methods found can be categorized as classifiers capable of determining
alterations in JPEG artifacts, classifiers to detect duplicated areas, and methods that compare
detected features to determine correlation or fixed pattern noise (FPN).
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To understand methods based on fixed pattern noise, it is first necessary to understand
the image capture process. Image acquisition aims to transform an image into a discrete and
numerical representation that a computer can store and process. This approach requires
a sensor capable of capturing a range of energy from the electromagnetic spectrum and
generating as output an electric signal proportional to the captured energy level; then, a
digitizer must convert the analog signal into digital information that can be represented in
binary form.

The manufacturing process of most sensors responsible for capturing images in digital
cameras introduces imperfections that cause minor differences in light sensitivity [31]. The
divergences of all the sensors present in a camera introduce a variation in the values of the
pixels of images registered by these cameras, resulting in unevenness similar to a signature
in all the images it generates [32].

The FPN of a sensor is constant; however, it varies from sensor to sensor. In Sensors of
the Charged-Coupled Device (CCD) type, the FPN varies randomly, while in sensors of
the Complementary Metal Oxide Semiconductor (CMOS) type, due to its perpendicular
capture system, the FPN forms vertical bars, as can be seen in Figure 1 taken from [33].

Figure 1. Comparison of FPN present in CCD and CMOS sensors. (left) FPN of a CCD sensor (right)
FPN pf a CMOS sensor.

The work by [25] assumes that the FPN information of the camera used for capture is
previously known and then calculates the FPN of the image for validation by comparing
the two and marking significantly different areas as being possibly altered.

On the other hand, methods based on classifiers use filtered features to determine if
there is a correlation between parts of the image or alteration of the compression through
machine learning [34]. In deep learning [35–37], convolutional neural networks (CNNs)
are increasingly being used for image classification [38–40].

In this field, several authors are working to reduce the complexity of the classifi-
cation step, considering the use of big data [41–43] and making this evaluation more
efficient [44–46]. Finally, correlation-based methods compare features by similarity to
determine whether they contain Duplication, often using a final step to eliminate a por-
tion of the found correlations. In this context, unsupervised learning methods are also
applied [47].

All datasets in our literature review focus on detecting Duplication and Splicing
manipulations. Their most significant divergences are the images used for alteration, the
size of the altered area, and the application of subsequent modifications to hide falsification
on the manipulated areas. The work by [48], which is the only one focused on detecting
manipulation retouching, had to algorithmically generate its dataset. The datasets used
by analyzed works focused only on the detection of Duplication type are MICC-F220,
MICC-F600, MICC-F, MICC-F2000, MICC-F8multi, IMD, CMH, CoMoFoD, and UCID.

The datasets encompassing Duplication and Splicing manipulations consist of CASIA
v1.0, CASIA v2.0, Columbia, and the Image Manipulation Database. CASIA v1.0 and v2.0
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feature manually tampered images with splicing and duplication manually introduced.
In contrast, the Columbia and Image Manipulation Dataset are generated by algorithmi-
cally by editing patches of an image. The Columbia dataset exclusively contains splicing
changes, while the Image Manipulation Database includes both duplication and splicing.
Both datasets feature different alterations classified as retouching, aimed at camouflaging
other modifications.

The absence of a standardized dataset across these investigations poses challenges
in comparing the effectiveness of methods solely based on reported accuracy metrics.
Additionally, the reliability of results obtained on datasets algorithmically generated by
manipulating image patches may introduce unwanted biases and not accurately reflect the
expected accuracy in real-world scenarios. Furthermore, the limited range of manipulations
detected by these methods, along with other specific limitations such as the requirement
for compression differences in images (e.g., [19,21,27,28]), or the necessity for information
about the FPN of capture devices used (e.g., [25,29,30]), further restricts their applicability.
Moreover, the unavailability of some datasets, as they were created by the authors and are
not publicly accessible, adds another layer of complexity to the evaluation process.

To tackle these challenges, this study employs a meticulously curated dataset com-
prising four publicly available datasets featuring images manually tampered by humans.
Importantly, this dataset does not impose restrictions on the types of manipulations, aiming
to closely mimic real-life scenarios and facilitate generalization across a broader spectrum
of manipulations. Furthermore, the multi-stream CNN approach enables the utilization
of knowledge acquired from traditional passive methods. This approach allows for the
extraction of data streams that may contain pertinent information for the model’s analysis.

3. Materials and Methods

In this section, we present the methodology adopted for image manipulation detec-
tion, which integrates Error-Level Analysis (ELA) and Discrete Wavelet Transform (DWT)
alongside a novel multi-stream neural network architecture.

Our decision to adopt a multi-stream neural network architecture was driven by
the recognition that traditional passive methods could offer valuable insights to guide
the learning process of a Convolutional Neural Network (CNN) for image manipulation
detection. Rather than aiming to identify the optimal method outright, we viewed this
choice as an initial exploration of the potential capabilities such an architecture may offer.
In line with this perspective, we selected two streams based on methodologies outlined
in previous literature, with the intention of extracting different facets of image data. This
approach was motivated by our desire to integrate diverse aspects of passive image analysis,
serving as a foundational step in our investigation into the effectiveness of multi-stream
architectures for detecting image manipulation.

The multi-stream architecture comprises three distinct CNNs, each operating on a
unique data stream extracted from the original image. Two of these streams were selected
based on methodologies outlined in prior literature, which will be explained in detail in
the subsequent sections. Each stream is designed to analyze specific data subsets, while the
third stream processes the unaltered image itself. By adopting this multi-stream framework,
our aim is to leverage the strengths of traditional passive methods and integrate them into
a unified detection system.

3.1. Error-Level Analysis

Error-Level Analysis is a passive detection method traditionally used by human
forensics specialists to make differences in format artifacts of jpeg images more evident, it
works by taking the difference between a jpeg image at different quality levels, making any
difference in compression rate more evident on the resulting image [48], an example of this
process can be seen in the Figure 2 and the code used to generate the images is presented in
Listing 1.
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Listing 1. Error-Level analysis implementation in pseudocode.

# Static method that performs Error Level Analysis (ELA) on an image using
JPEG compression.

# Returns a normalized difference image between the original image and a JPEG
-compressed version of the image.

FUNCTION method_1_ela(image , quality)
# Create another image with jpeg compression of the given quality
save_image_as_jpeg(image , temp_image , quality)
compressed_image = open_image(temp_image)

# Calculate the image difference between the original and the JPEG -
compressed image
difference_image = image - compressed_image

# Normalize the difference image for contrast by assigning a value of 255
to the brightest points , while proportionally adjusting the values of

all other points based on their distance from the brightest point.
normalized_difference = difference_image.normalizeContrast ()
RETURN normalized_difference

END FUNCTION

Figure 2. Example of ELA. (Left), image with power button manipulated. (Right) Resulting im-
age after ELA, usually mostly black, except for the two manipulated areas that have differences
in compression.

In this example, the resulting image on the bottom is mostly black, but edited areas
have more color in them, however, ELA results aren’t always so easily interpreted and
traditionally need a forensics specialist to look at the results, however, this paper proposed
using ELA as a feature extraction step and feeding it to a Convolutional Neural Network in
order to perform the authenticity analysis of an image automatically.

3.2. Discrete Wavelet Transform

DWT stands for denoising [49], which is a mathematical technique used for analyzing
signals that can be applied to images [50]. It is a way of decomposing an image into a set
of frequency components, with each component representing a different level of detail or
resolution [51].

In image manipulation detection, DWT is often used for feature selection as it allows
for efficient compression of image data while preserving important image features. The
DWT algorithm works by dividing an image into four smaller blocks or "sub-bands"
of different frequencies: The LL (low-low) sub-band, which contains the low-frequency
information, and the LH (low-high), HL (high-low), and HH (high-high) sub-bands, which
contain the high-frequency information [52].

The equations to perform DWT can be found in Equations (1) and (2) and the equation
to reverse the process known as inverse DWT is presented in Equation (3).

Wφ(j0, k) =
1√
M

∑
M

f (x)φj0,k(x) (1)
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Wψ(j, k) =
1√
M

∑
k

f (x)ψj,k(x) (2)

f (x) =
1√
M

∑
k

Wφ(j0, k)φj0,k(x)

+
1√
M

∞

∑
i=i0

∑
k

Wψ(j, k)ψj,k(x).
(3)

This work uses the technique proposed by [18], referred to in the rest of this work as
DWT method for abbreviation purposes, which makes use of DWT, Bilateral Filters, and
the Laplace operator to remove less meaningful features of an image, resulting in an image
only with features containing sharp pixel variation, which is a common indicator of forgery.

This technique works by initially the image is converted to grayscale, then DWT is ap-
plied to decompose the image information into sub-bands, then the image is reconstructed
after discarding the LL band and a bilateral filter, and the Laplace operator is applied, the
result is an image where sharp pixel transitions are more easily visible, however when
filters are used to mask the manipulation this method fails to highlight the manipulated
areas. This work incorporates the image resulting from this method as one of the streams
in a Convolutional Neural Network, utilizing it for feature selection to enhance the model’s
ability to detect large pixel transitions.

An example of the result of this process can be seen in Figure 3 that was taken from
the RTD and the code used to generate the images is presented in Listing 2.

Listing 2. DWT based method implementation in pseudocode.

FUNCTION method_2_dwt(image)
# Convert image to grayscale and perform discrete wavelet transform
gray_image = convertToGrayscale(image)
coeffs = discreteWaveletTransform(gray_image)
(LL , (LH, HL, HH)) = coeffs

# Reconstruct the image using only the high -frequency components
high_freq_components = (None , (LH, HL , HH))
joinedLhHlHh = inverseDiscreteWaveletTransform(high_freq_components)

# Apply bilateral filter to smooth the image while preserving edges
blurred = bilateralFilter(joinedLhHlHh , 9, 75, 75)

# Apply Laplacian edge detection to highlight edges
kernel_size = 3
imgLapacian = laplacianEdgeDetection(blurred , kernel_size)

# Convert negative values to zero
final_image = convertScaleToAbs(imgLapacian)

RETURN final_image
END FUNCTION
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Figure 3. Example of DWT method. (Left), image power button manipulated. (Right) Results of the
DWT (variations are enhanced).

3.3. Proposed Method

The proposed approach first consists of applying the ELA method and the method
proposed by [18], both used as a feature selection step to generate two extra sets of images
serving as the distinct streams for the subsequent model architecture.

Subsequently, the original dataset and the two new sets of images are shuffled and
utilized for training and evaluation of three distinct CNNs. Following training, the
three models are frozen to preserve the acquired knowledge and then merged. Ad-
ditional learning layers are appended, and the combined model is fine-tuned through
training. These steps are visually represented in Figure 4, providing an overview of the
system architecture.

Figure 4. Illustration of the proposed approach.

This approach aims to explore the accuracy of each stream individually in addition
to their combination. For this, we individually trained three distinct models and a model
composed of all three streams, plus additional learning layers. Stream A uses only the
original images without alterations as input, Stream B uses only images with feature
selection by ELA, and Stream C uses only images with feature selection by the DWT-based
method. Finally, the models are combined and four layers are added to generate the Merged
model, which uses images from all three streams as input.

Initially, we considered employing pre-trained models to integrate passive methods
into our research. For an initial assessment of their performance compared to custom
models, we selected the MobileNetV2 pre-trained model due to its lightweight nature.
We conducted preliminary tests, comparing the performance of MobileNetV2 combined
with four dense layers, each incorporating l2 regularization and followed by a batch
normalization layer, against Model ‘A’ as detailed later. Results of this comparison are
presented in Figures 5 and 6.
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Figure 5. Comparing the accuracy of a custom model to MobileNetV2. (left) Custom model accuracy
during training (right) Pre trained MobileNetV2 accuracy during training.

Figure 6. Comparing loss of a custom model to MobileNetV2. (left) Custom model loss during
training (right) Pre trained MobileNetV2 loss during training.

The tests revealed a tendency for pre-trained models to overfit to the training im-
ages. Additionally, attempts to mitigate overfitting by unfreezing some of the pre-trained
layers yielded similar results. Moreover, employing another pre-trained model, such as
InceptionResNetV2, did not demonstrate superior performance compared to the custom
model. Consequently, these findings lead us to conclude that pre-trained models may not
be well-suited for image manipulation detection.

With that in mind, we decided to create three identical custom CNNs and imple-
ment regularization methods to minimize overfitting to produce results capable of gen-
eralizing to a more extensive set of images and facilitating the comparison of the three
individual models.

The primary challenge in developing the neural networks for this study was address-
ing the issue of overfitting, where the models tend to perform well on training data but
struggle to generalize to new, unseen data. To address this, we conducted a series of
experiments aimed at evaluating the impact of various model architectures on accuracy.
These experiments involved exploring different configurations such as altering the number
and size of convolutional and dense layers, as well as implementing diverse regularization
methods. While we did not gather specific data from these experiments, they were instru-
mental in guiding our selection process and ultimately led to the development of the final
model architecture outlined in Figure 7.

Through this exploration, we discovered that simply increasing the number of layers
did not yield significant accuracy improvements. On the contrary, it heightened the risk of
overfitting. Consequently, we opted to craft a model comprising five convolutional layers,
each followed by a batch normalization layer and a max pooling layer. The outputs from
these layers were then flattened and channeled through four dense layers, each supported
by a batch normalization layer. Additionally, to mitigate overfitting, L2 regularization was
applied to both the convolutional and dense layers, as illustrated in Figure 7.
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Figure 7. Illustration of the architecture used in the three individual models.

The chosen values for the convolutional layers were set as 16, 32, 64, 128, and 64, each
utilizing a 3 by 3 kernel. Similarly, the dense layers were configured with sizes of 128, 128,
64, and 32.

The final proposed merged model is a culmination of individual models A, B, and
C. Initially, the last non-output layers of models A and B were combined through a con-
catenation layer. Subsequently, this combined output was further merged with the last
non-output layer of model C through another concatenation layer. To facilitate learning,
two dense layers with 64 neurons each were added, accompanied by batch normalization
layers. Notably, all layers of the individual models were frozen to preserve the acquired
knowledge during training.

While Dropout layers were initially considered, our experimentation revealed that
Batch Normalization exhibited superior performance within the same training time, align-
ing with findings by Singh et al. [53]. The optimizer employed was Adam, with accuracy
serving as the primary metric during training. For the Loss function, Binary Cross En-
tropy was utilized. Rectified Linear Unit activation functions were applied across all
layers, with the exception of the output layer, which employed the sigmoid function for
classification purposes.

3.4. Dataset Assembly

The initial step in executing our experiments involved compiling the final dataset.
To achieve this, we meticulously curated authentic and manipulated images from four
distinct datasets. These datasets were chosen for their robust representation of real-life
scenarios, as they involved human manipulation of images, with an emphasis on creating
manipulations that were challenging to detect. The size of the dataset was limited due
to the low availability of humanly manipulated images, which require significant time
and effort to create. Additionally, biases may have been introduced due to the skill set of
individuals selected to manipulate the images. Nevertheless, efforts were made to ensure
that biases were minimized by selecting datasets that inherently did not impose restrictions
on the types of manipulations that could be performed.

• CASIA V2.0: proposed in [54], contains 7491 authentic images and 5123 manipulated
images containing Splicing and or Duplication operations with retouching operations
applied on top to mask alterations;
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• Realistic Tampering Dataset: Proposed by [55,56] containing 220 authentic and
220 Splicing and or Duplication manipulations made to the original images with the
objective of being realistic. Retouching operations are sometimes applied to help hide
Compositing and Duplication manipulations. In addition, this dataset provides masks
of tampered areas and information about capture devices used;

• IMD2020: Proposed by [57], it consists of four parts, first a dataset containing 80 au-
thentic images manipulated to generate 1930 images tampered realistically and using
all types of manipulation, with their respective manipulation masks. Then the second
part consists of 35,000 authentic images captured by 2322 different camera models, the
images were collected online and reviewed manually by the authors. The third has
35,000 algorithmically generated images with retouching manipulations. Finally, the
last part has 2759 authentic images acquired by the authors with 19 different camera
models designed for sensor noise analysis;

• CASIA V1.0: Proposed in [54], Contains 800 authentic images, 459 Duplicate-type
manipulation images, and 462 Splicing images. This dataset has no retouching opera-
tions applied.

By not imposing limitations on the number of manipulations used, certain types of
manipulations may be overrepresented in the dataset. Furthermore, only one of the selected
datasets provides information on the types of manipulation performed on each image,
leaving uncertainty regarding the exact biases present. However, the hope is that the
proportion of manipulations in the dataset mirrors that of real-world scenarios.

To balance the dataset and incorporate realistically manipulated images, we divided
the images into two folders. The first folder consists of 7491 authentic images from the
CASIA V2.0 dataset. The second folder contains 7491 manipulated images sourced from
the realistic images part of the IMD2020 dataset, Realistic Tampering Dataset (RTD), CASIA
V2.0, and an additional 218 images from CASIA V1.0, in order to make number of manip-
ulated and pristine images equal. However, it remains uncertain whether there is a 50%
incidence of manipulation in real-world applications, potentially introducing classifier bias.
Table 2 illustrates the distribution of images from each dataset.

Table 2. Images used from each Dataset for to Assemble our Dataset.

CASIA V1.0 CASIA V2.0 IMD2020 RTD Total

Authentic 0 7491 0 0 7491
Tampered 218 5123 1930 220 7491

Therefore, as explained in Table 2 the final dataset used in this paper consists of
14,982 images in total, half original and half Manipulated, since some of the images were
not supported by model all images were converted to .jpg format.

The second step of the final program is to apply the methods described to the
dataset, as both methods generate an image as output. The result is two new sets of
images with specific inconsistencies enhanced, using methods from the TensorFlow library
whenever applicable.

The dataset was divided into three parts: 70% for training, 20% for validation, and 10%
for testing. Each image was resized to 224 by 224 pixels to match the input size required by
MobileNetV2, a pre-trained neural network that was initially considered but ultimately not
used in favor of a custom model due to improved performance.

The experiment consisted of first creating two additional sets of images using the
two selected passive methods. Subsequently, three convolutional neural networks were
trained: Model A using the original dataset, and Models B and C utilizing the outputs of
the selected passive methods. These models were then combined by concatenating them at
the penultimate layer. Additionally, an extra dense layer followed by a batch regularization
layer was introduced so the model could learn how to combine the results, this combination
is the final merged model.
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To enhance accuracy and mitigate overfitting, three techniques were employed. First, a
model checkpoint callback was implemented, which saved the model weights correspond-
ing to the minimum validation loss achieved during training. Second, an early stopping
condition was defined, terminating training after 50 epochs without any improvement in
validation loss.

The third technique used to reduce overfitting was the use of dataset augmentation
techniques applied at the end of every epoch to the training images, which randomly
flipped the image in the four-axis and changed the brightness, contrast, saturation, and hue
of the images randomly.

The experiments were conducted on a system with the following specifications: Win-
dows 11 operating system, Intel(R) Core(TM) i5-8300H CPU 2.30GHz, 16GB RAM, GeForce
GTX 1050 graphics card, Python version 3.10, CUDA version 11.2, cuDNN version 8.1.1,
and TensorFlow version 2.10.0. The training was performed with a batch size of 32 over a
total of 500 epochs, as the dataset exhibited significant variation in manipulations, leading
to fluctuation in the loss of validation images.

4. Results and Discussion

After training, the final Accuracy obtained by the merged model was 89.59% in
the set of test images, higher than the model trained just with original images, which
obtained 78.64%.

The Figures 8–11 illustrate the area under the curve (AUC) of the Receiver Operating
Characteristic (ROC) for the models, assessed across both validation and test datasets, high-
lighting their performance capabilities. Complementarily, Figures 12–15 present detailed
graphics depicting the accuracy and loss metrics during the training phase for models A, B,
C and the specifically proposed merged model, showcasing each model’s progression and
comparative effectiveness throughout the training process.

Figure 8. Model A area under curve (ROC) for the training and test datasets. (left) Results obtained
on the validation dataset. (right) Results obtained on the test dataset.
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Figure 9. Model B area under curve (ROC) for the training and test datasets. (left) Results obtained
on the validation dataset. (right) Results obtained on the test dataset.

Figure 10. Model C area under curve (ROC) for the training and test datasets. (left) Results obtained
on the validation dataset. (right) Results obtained on the test dataset.

Figure 11. Proposed Model area under curve (ROC) for the training and test datasets. (left) Results
obtained on the validation dataset. (right) Results obtained on the test dataset.
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Figure 12. Model A Training Data, the lines in blue refer to results on the 80% of images used for
training while those in orange refer to the 20% of images dedicated to validation. The X-axis shows
the current training generation. (left) Y-axis shows Accuracy during model A training (right) Y-axis
shows loss during model A training.

Figure 13. Model B Training Data, the lines in blue refer to results on the 80% of images used for
training while those in orange refer to the 20% of images dedicated to validation. The X-axis shows
the current training generation. (left) Y-axis shows Accuracy during model B training (right) Y-axis
shows loss during model B training.

Figure 14. Model C Training Data, the lines in blue refer to results on the 80% of images used for
training while those in orange refer to the 20% of images dedicated to validation. The X-axis shows
the current training generation. (left) Y-axis shows Accuracy during model C training (right) Y-axis
shows loss during model C training.
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Figure 15. Proposed Model Training Data, the lines in blue refer to results on the 80% of images used
for training while those in orange refer to the 20% of images dedicated to validation. The X-axis
shows the current training generation. (left) Y-axis shows Accuracy during the proposed training
(right) Y-axis shows loss during the proposed model training.

The culmination of these analyses is encapsulated in Table 3, which details the final re-
sults achieved after activating the predetermined stop conditions, offering a comprehensive
overview of model efficacious and operational efficiencies.

Table 3. Performance Metrics on Lowest Validation Loss Epoch and Total Training Epochs.

Model A Model B Model C Merged Model

Training Accuracy 80.73% 91.85% 71.06% 93.85%
Validation Accuracy 78.43% 88.81% 68.85% 88.91%

Test Accuracy 78.64% 68.02% 50.70% 89.59%
Test ROC 0.87 0.76 0.75 0.96

Total Epochs 125 148 117 152
Best Epoch 75 98 67 102

5. Conclusions and Future Work

This study provides a comprehensive review of passive forensic methods designed to
detect manipulated images, emphasizing their underlying principles and efficacy. Building
upon this foundation, we employ a novel approach that integrates two distinct detection
methods within a multi-stream convolutional neural network (CNN) framework. This
innovative methodology allows us to harness the strengths of each individual method
while mitigating their respective limitations, thereby enhancing overall detection accuracy.
Moreover, our analysis is conducted on a meticulously curated dataset comprising a diverse
range of image manipulations, ensuring the robustness and generalizability of our findings.
Through this combined effort, we aim to advance the field of image manipulation detection
by offering a unified and effective solution capable of addressing real-world challenges.

After training, our novel merged method demonstrated a remarkable accuracy of
89.59% on validation images, showcasing the advantages of our multi-stream CNN ap-
proach compared to individual streams. In contrast to models utilizing singular detection
methodologies, such as Error Level Analysis (ELA) and the method proposed by [18],
which were employed as separate streams in our multi-stream model, our merged model
showcased superior performance. This comparison highlights the advantage of analyzing
multiple streams concurrently, showcasing the synergistic effects of integrating diverse de-
tection methods within a unified framework. Additionally, the individual streams achieved
the following accuracies: the model trained solely on original images obtained an accu-
racy of 78.64%, while the ELA-based model achieved 68.02%, and the model utilizing the
method proposed by [18] achieved 50.70%.

The amalgamation of differently trained models on the same image dataset highlights
the potential of leveraging various passive detection techniques to improve overall per-
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formance. This concept is validated by the superior accuracy achieved by our final model
compared to its constituent models, indicating the efficacy of using insight of passive
methods to select streams for CNN analysis in a multi-stream model.

The study’s limitations primarily revolve around the size and scope of the dataset, cou-
pled with the lack of comprehensive knowledge regarding the manipulations performed
on the images. The absence of detailed documentation regarding the specific manipula-
tions applied to each image impedes a thorough analysis of detection performance across
different manipulation types. Furthermore, the study lacks a thorough statistical analysis
and discussion of false positives/negatives. While the study demonstrates the potential for
multi-stream CNN architectures, the absence of localization of manipulated areas repre-
sents a further avenue for exploration. Additionally, the study did not thoroughly explore
the selection of optimal streams based on passive methods.

However, the findings hold broader implications, highlighting the potential of multi-
stream CNN architectures in image manipulation detection. By integrating diverse passive
detection methods, this approach not only enhances detection accuracy but also underscores
the importance of combining complementary techniques for robust detection. Moreover,
the study emphasizes the necessity for standardized datasets and rigorous evaluation
metrics in the field of image forensics. These insights can inform future research aimed at
developing more effective and reliable methods for detecting manipulated images, thereby
enhancing the integrity and trustworthiness of digital media.

This research lays the groundwork for several avenues of expansion and real-world
application. Firstly, further exploration could focus on enhancing the dataset used, in-
corporating more diverse and meticulously documented manipulations to improve the
model’s robustness and generalization capabilities. Additionally, future studies could delve
into developing methods for localizing manipulated areas within images, which would
significantly enhance the practical utility of image manipulation detection systems.

Moreover, the multi-stream CNN architecture demonstrated in this research presents
a promising framework for integrating various detection techniques. Expanding upon
this, researchers could explore the selection of optimal streams based on passive methods,
thereby refining the model’s ability to detect a wide range of manipulation types with
greater accuracy.

In real-world scenarios, the findings of this research could be applied in various fields,
including digital forensics, media authentication, and content moderation on social media
platforms. By deploying robust image manipulation detection systems developed from this
research, organizations and individuals can better safeguard against the dissemination of
misleading or falsified visual content, thereby upholding the integrity and trustworthiness
of digital media.
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Abbreviations
The following abbreviations are used in this manuscript:

CID Content identifier
CNN Convolutional neural network
COV Computer vision
DEL Deep learning
DIF Digital image forensics
DWT Discrete Wavelet Transform
IMP Image processing
FP False positive
FN False negative
HCI Human-computer interaction
MLP Multilayer perceptron
R-CNN Region-based convolutional neural networks
RI Region of interest
RPN Region proposal network
TC Totally connected
TF True negative
TP True positive
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