
Citation: Harnes, H.; Morrison, D.

SoK: Analysis Techniques for

WebAssembly. Future Internet 2024, 16,

84. https://doi.org/10.3390/

fi16030084

Academic Editor: Wei Yu

Received: 11 January 2024

Revised: 20 February 2024

Accepted: 26 February 2024

Published: 29 February 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

future internet

Review

SoK: Analysis Techniques for WebAssembly
Håkon Harnes * and Donn Morrison *

Department of Computer Science, Norwegian University of Science and Technology, 7034 Trondheim, Norway
* Correspondence: haakaha@alumni.ntnu.no (H.H.); donn.morrison@ntnu.no (D.M.)

Abstract: WebAssembly is a low-level bytecode language that enables high-level languages like
C, C++, and Rust to be executed in the browser at near-native performance. In recent years, Web-
Assembly has gained widespread adoption and is now natively supported by all modern browsers.
Despite its benefits, WebAssembly has introduced significant security challenges, primarily due to
vulnerabilities inherited from memory-unsafe source languages. Moreover, the use of WebAssembly
extends beyond traditional web applications to smart contracts on blockchain platforms, where
vulnerabilities have led to significant financial losses. WebAssembly has also been used for malicious
purposes, like cryptojacking, where website visitors’ hardware resources are used for crypto min-
ing without their consent. To address these issues, several analysis techniques for WebAssembly
binaries have been proposed. This paper presents a systematic review of these analysis techniques,
focusing on vulnerability analysis, cryptojacking detection, and smart contract security. The analysis
techniques are categorized into static, dynamic, and hybrid methods, evaluating their strengths
and weaknesses based on quantitative data. Our findings reveal that static techniques are efficient
but may struggle with complex binaries, while dynamic techniques offer better detection at the
cost of increased overhead. Hybrid approaches, which merge the strengths of static and dynamic
methods, are not extensively used in the literature and emerge as a promising direction for future
research. Lastly, this paper identifies potential future research directions based on the state of the
current literature.

Keywords: WebAssembly; vulnerability analysis; browser security; cryptojacking; smart contracts

1. Introduction

The Internet has come a long way since its inception and one of the key technologies
that have enabled its growth and evolution is JavaScript. JavaScript, which was developed
in the mid-1990s, is a programming language that is widely used to create interactive and
dynamic websites. It was initially designed to enable basic interactivity on web pages,
such as form validation and image slideshows. However, it has evolved into a versatile
language that is used to build complex web applications. Today, JavaScript is one of the
most popular programming languages in the world, currently being used by 98% of all
websites [1].

Despite its popularity and versatility, JavaScript has some inherent limitations that
have become apparent as web applications have grown more complex and resource-
demanding. Specifically, JavaScript is a high-level, interpreted, dynamically typed lan-
guage, which fundamentally limits its performance. Consequently, it is not suited for de-
veloping resource-demanding web applications. To address the shortcomings of JavaScript,
several technologies, like ActiveX [2], NaCl [3], and asm.js [4], have been developed.
However, these technologies have faced compatibility issues, security vulnerabilities, and
performance limitations.

WebAssembly was developed by a consortium of companies, including Mozilla,
Microsoft, Apple, and Google, as a solution to the limitations of existing technologies.
WebAssembly is designed as a safe, fast, and portable compilation target for high-level

Future Internet 2024, 16, 84. https://doi.org/10.3390/fi16030084 https://www.mdpi.com/journal/futureinternet

https://doi.org/10.3390/fi16030084
https://doi.org/10.3390/fi16030084
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/futureinternet
https://www.mdpi.com
https://orcid.org/0009-0006-9239-1345
https://orcid.org/0009-0001-6072-4081
https://doi.org/10.3390/fi16030084
https://www.mdpi.com/journal/futureinternet
https://www.mdpi.com/article/10.3390/fi16030084?type=check_update&version=1


Future Internet 2024, 16, 84 2 of 22

languages like C, C++, and Rust, allowing them to be executed with near-native perfor-
mance in the browser. It has gained widespread adoption and is currently supported by
96% of all browser instances [5]. Moreover, WebAssembly is also being extended to desktop
applications [6], mobile devices [7], cloud computing [8], blockchain virtual machines
(VMs) [9–11], IoT [12,13], and embedded devices [14].

However, WebAssembly is not without its own set of challenges. Vulnerabilities
in memory-unsafe languages, like C and C++, can translate into vulnerabilities in Web-
Assembly binaries [15]. Unfortunately, two-thirds of WebAssembly binaries are compiled
from memory-unsafe languages [16], and these attacks have been found to be practical in
real-world scenarios [15]. Vulnerabilities have also been uncovered in WebAssembly smart
contracts [17,18], consequently causing significant financial loss. Moreover, WebAssembly
has been used for malicious purposes, such as cryptojacking, where the hardware resources
of website visitors are used for crypto mining without their consent [19]. To mitigate these
issues, several analysis techniques for WebAssembly binaries have been proposed.

In this paper, we conduct an in-depth literature review of analysis techniques for
WebAssembly binaries, with a focus on their application across diverse computing environ-
ments, including web development, cloud computing, and edge computing. To this end,
we classify the analysis techniques based on their strategy and objectives, uncovering three
primary categories: detecting malicious WebAssembly binaries (Section) 5.1), detecting
vulnerabilities in WebAssembly binaries (Section 5.2), and detecting vulnerabilities in Web-
Assembly smart contracts (Section 5.3). Moreover, we compare and evaluate the techniques
using quantitative data, highlighting their strengths and weaknesses. Lastly, one of the
main contributions of this paper is the identification of future research directions based on
the literature review conducted. In summary, this paper contributes the following:

• A comprehensive analysis of current analysis techniques for WebAssembly binaries,
using quantitative data to evaluate their strengths and weaknesses.

• A taxonomical classification of current analysis techniques for WebAssembly binaries.
• Key findings and limitations of current analysis techniques for WebAssembly bina-

ries, including the trade-offs between accuracy and overhead of static and dynamic
analysis methods.

• Identification of gaps in the literature and suggestions for future research directions.

The rest of this paper is structured as follows: Section 2 provides the necessary
background information and the current state of research in the field. Section 3 reviews
related work, highlighting previous studies and their contributions. Section 4 describes
the methodology employed in our research, including the search strategy, selection pro-
cess, data extraction, and analysis methods. The main findings of the systematic review
are detailed in Section 5, where we categorize and evaluate the analysis techniques for
WebAssembly based on their method and effectiveness. A discussion of these findings and
their implications are presented in Section 6. Finally, Section 7 concludes the paper and
suggests future research directions.

2. Background

The background section of this paper provides a detailed overview of WebAssembly.
The limitations of JavaScript and prior attempts at incorporating low-level code on the web
are first discussed. Then, an in-depth description of WebAssembly’s security mechanisms,
vulnerabilities, and use cases are presented.

2.1. History

JavaScript. Initially, the Internet was primarily used by researchers, scientists, and
other academics to share information and collaborate on projects. At this time, websites
were mostly composed of static text and images, lacking dynamic or interactive components.
The arrival of web browsers such as Netscape Navigator and Internet Explorer in the late
1990s made the Internet accessible to the general public and sparked the development of
technology to enhance website user experience with dynamic and interactive elements.



Future Internet 2024, 16, 84 3 of 22

JavaScript, created by Netscape in 1995 [20], became one of these technologies, enabling web
developers to create engaging content. Today, JavaScript is a widely used programming
language supported by all major web browsers and used on 98% of websites [1].

Despite its popularity and versatility, JavaScript has some inherent limitations that
impact its performance. As a high-level language, JavaScript abstracts away many of the
details of the underlying hardware, making it easier to write and understand. However,
this also means that the JavaScript engine has to do more work to translate the code into
machine-readable instructions. Additionally, because JavaScript is an interpreted language,
it must be parsed and interpreted every time it is executed, which can add overhead and
decrease performance. Lastly, JavaScript is dynamically typed, meaning that the type of
a variable is determined at runtime. This can make it difficult for the JavaScript engine
to optimize the code, resulting in reduced performance. These limitations can hinder
the performance of JavaScript in resource-demanding or complex applications. There is,
therefore, a need for high-performance, low-level code on the web.

ActiveX. ActiveX [2] is a deprecated framework that was introduced by Microsoft in
1996. It allowed developers to embed signed x86 binaries through ActiveX controls. These
controls were built using the Component Object Model (COM) specification, which was
intended to make the controls platform-independent. However, ActiveX controls contain
compiled x86 machine code and calls to the standard Win32 API, restricting them to x86-
based Windows machines. Additionally, they were not run in a sandboxed environment,
consequently allowing them to access and modify system resources. In terms of security,
ActiveX did not ensure safety through its technical design but rather through a trust model
based on code signing.

NaCl. Native Client (NaCl) [3] is a system introduced by Google in 2011 that allows for
the execution of machine code on the web. The sandboxing model implemented by NaCl
enables the coexistence of NaCl code with sensitive data within the same process. However,
NaCl is specifically designed for the x86 architecture, limiting its portability. To address this
limitation, Google introduced Portable Native Client (pNaCl) [21] in 2013. pNaCl builds
upon NaCl’s sandboxing techniques and uses an LLVM bitcode subset as an interchangeable
format, allowing for the portability of applications across different architectures. However,
pNaCl does not significantly improve compactness and still exposes details specific to
compilers and architectures, like the call stack layout. The portability of NaCl and pNaCl is
also limited since they are only supported in Google Chrome.

Asm.js. Asm.js [4], which was introduced by Mozilla in 2013, is a strict subset of
JavaScript that can be used as an efficient compilation target for high-level languages like
C and C++. Through the Emscripten toolchain [22], these languages can be compiled to
asm.js and subsequently executed on modern JavaScript execution engines, benefitting
from sophisticated Just In Time (JIT) compilers. This allows for near-native performance.
However, the nature of asm.js as a strict subset of JavaScript means that any extension of its
features requires modifications to JavaScript first, followed by ensuring that these changes
are compatible with asm.js, which makes the features challenging to implement effectively.

Java and Flash. It is also worth noting that Java and Flash were among the first
technologies to be used on the web, being released in 1995 and 1996, respectively, [23,24].
They offered managed runtime plugins; however, neither was capable of supporting
high-performance, low-level code. Moreover, their usage has declined due to security
vulnerabilities and performance issues.

2.2. WebAssembly

Overview. WebAssembly is a technology that aims to address performance, compati-
bility, and security issues that have plagued previous approaches. It was developed by a
consortium of tech companies, including Mozilla, Microsoft, Apple, and Google, and was
released in 2017 [25]. WebAssembly has since gained widespread adoption and is currently
supported by 96% of all browser instances [5]. Additionally, it is an official World Wide



Future Internet 2024, 16, 84 4 of 22

Web Consortium (W3C) standard [26], and is natively supported on the web. An overview
of WebAssembly is given in Figure 1.

C/C++

Rust

Python

Go

Server-side

Client-side

Standalone VMs

Source languages WebAssembly binaries Host environments Hardware architectures

x86

ARM

Figure 1. WebAssembly serves as the intermediate bytecode bridging the gap between multiple
source languages and host environments. The host environments compile the WebAssembly binaries
into native code for the specific hardware architecture.

WebAssembly is a low-level bytecode language that runs on a stack-based Virtual
Machine (VM). More specifically, instructions push and pop operands to the evaluation
stack. This architecture does not use registers; instead, values are stored in global variables
that are accessible throughout the entire module or in local variables that are scoped
to the current function. The VM manages the evaluation stack, global variables, and
local variables.

Host Environment. WebAssembly modules run within a host environment, which
provides the necessary functionality for the module to perform actions such as I/O or
network access. In a browser, the host environment is provided by the JavaScript engine,
such as V8 or SpiderMonkey. WebAssembly exports can be wrapped in JavaScript functions
using the WebAssembly JavaScript API [27], allowing them to be called from JavaScript
code. Similarly, WebAssembly code can import and call JavaScript functions. Other
host environments for WebAssembly include server-side environments like Node.js [28]
and stand-alone VMs with accompanying APIs. For instance, the WebAssembly System
Interface (WASI) [29] allows WebAssembly modules to access the file system.

Module. WebAssembly modules serve as the fundamental building blocks for deploy-
ment, loading, and compilation. A module contains definitions for types, functions, tables,
memories, and globals. In addition, a module can declare imports and exports, as well as
provide initialization through data and element segments or a start function.

Compilation. Languages like C, C++, and Rust can be compiled into WebAssembly
since it is designed as a compilation target. Toolchains like Emscripten [22] or wasm-
pack [30] can be used to compile these languages to WebAssembly. The resulting binary is
in the wasm binary format, but can also be represented in the equivalent human-readable
text format called wat. A module corresponds to one file. The WebAssembly Binary Toolkit
(WABT) [31] provides tools for converting between wasm and wat representations, as well
as for the de-compilation and validation of WebAssembly binaries.

Use Cases. WebAssembly has been adopted for various applications on the web due
to its near-native execution performance, such as data compression, game engines, and
natural language processing. However, the usage of WebAssembly is not only limited to
the web. It is also being extended to desktop applications [6], mobile devices [7], cloud
computing [8], IoT [12,13], and embedded devices [14].

2.2.1. Security

Environment. WebAssembly modules run in a sandboxed environment which uses
fault isolation techniques to separate it from the host environment. As a result of this,
modules have to go through APIs to access external resources. For instance, modules



Future Internet 2024, 16, 84 5 of 22

that run in the web browser must use JavaScript APIs to interact with the Document
Object Model (DOM). Similarly, stand-alone runtimes must use APIs, like WASI, to access
system resources like files. In addition to this, modules must adhere to the security policies
implemented by its host environment, such as the Same Origin Policy (SOP) [32] enforced
by web browsers, which restricts the flow of information between web pages from different
origins.

Memory. Unlike native binaries, which have access to the entire memory space allo-
cated to the process, WebAssembly modules only have access to a contiguous region of
memory known as linear memory. This memory is untyped and byte-addressable, and
its size is determined by the data present in the binary. The size of linear memory is a
multiple of a WebAssembly page, each being 64 KiB in size. When a WebAssembly module
is instantiated, it uses the appropriate API call to allocate the memory that is needed for its
execution. The host environment then creates a managed buffer, typically an ArrayBuffer,
to store the linear memory. This means that the WebAssembly module accesses the physical
memory indirectly through the managed buffer, which ensures that it can only read and
write data within a limited area of the memory.

Control Flow Integrity. WebAssembly enforces structured control flow, organizing
instructions into well-nested blocks within functions. It restricts branches to the end of
surrounding blocks or within the current function, with multi-way branches targeting
only pre-defined blocks. This prevents unrestricted go-tos or executing data as bytecode,
eliminating attacks like shellcode injection or the misuse of indirect jumps. Additionally,
execution semantics ensure safety for direct function calls through explicit indexing and
protected returns with a call stack. Indirect function calls undergo runtime checks for type
signatures, establishing coarse-grained, type-based control-flow integrity. Additionally,
the LLVM compiler infrastructure has been adapted to include a fine-grained control flow
integrity feature, specifically designed to support WebAssembly [33].

2.2.2. Vulnerabilities

Inherent vulnerabilities in the source code can lead to subsequent vulnerabilities in
WebAssembly modules [15]. Specifically, buffer overflows in memory-unsafe languages
like C and C++ can overwrite constant data or the heap in WebAssembly modules. Despite
WebAssembly’s sandboxing, these vulnerabilities allow malicious script injection into
the module’s data section, which is accessible via JavaScript APIs. An example of this
is the Emscripten API [22], which allows developers to access data from WebAssembly
modules and inject these into the DOM, which can lead to Cross Site Scripting (XSS)
attacks [34]. Notably, two-thirds of WebAssembly binaries are compiled from memory-
unsafe languages [16], and these attacks have been shown to be practical in real-world
scenarios [15]. For instance, Fastly, a cloud platform that offers edge computing services,
experienced a 45 min disruption on 8 June 2021, when a WebAssembly binary with a
vulnerability was deployed [35]

2.2.3. Smart Contracts

Smart contracts are computer programs that are stored on a blockchain, designed
to automatically execute once predetermined conditions are met, eliminating the need
for intermediaries. As initially proposed by Nick Szabo in 1994 [36], long before the
advent of Bitcoin, they have since gained widespread popularity alongside the rise of
blockchain technology and cryptocurrencies. The inherent properties of blockchain, such
as transparency, security, and immutability, make smart contracts particularly appealing
for cryptocurrency transactions. This ensures that once the terms of the contract are agreed
upon and coded into the blockchain, they can be executed without the possibility of fraud
or third-party interference. Smart contracts can facilitate a variety of transactions, from
the transfer of cryptocurrency between parties to the automation of complex processes in
finance, real estate, and beyond. Due to its near-native performance, WebAssembly has
been adopted by blockchain platforms, such as EOSIO [10] and NEAR [11], as their smart



Future Internet 2024, 16, 84 6 of 22

contract runtime. Ethereum has included WebAssembly in the roadmap for Ethereum 2.0,
positioning it as the successor to the Ethereum Virtual Machine (EVM) [9].

However, as with any technology, smart contracts are not without their challenges
and vulnerabilities. The immutable nature of blockchain means that once a smart contract
is deployed, it cannot be modified, making the correction of vulnerabilities in its code
challenging. Several incidents have highlighted the potential financial and security risks
associated with vulnerabilities in WebAssembly smart contracts. For instance, random
number generation vulnerabilities led to the theft of approximately 170,000 EOS tokens [17].
Similarly, the fake EOS transfer vulnerability in the EOSCast smart contract has led to the
theft of approximately 60,000 EOS tokens [18]. The forged transfer notification vulnerability
in EOSBet has resulted in the loss of 140,000 EOS tokens [18]. Based on the average
price of EOS tokens at the time of the attacks, the combined financial impact of these
three vulnerabilities amounted to roughly USD 1.9 million. Additionally, around 25% of
WebAssembly smart contracts have been found to be vulnerable [37].

2.2.4. Cryptojacking

Cryptojacking, also known as drive-by mining, involves using a website visitor’s
hardware resources for mining cryptocurrencies without their consent. Previously, cryp-
tojacking was implemented using JavaScript. However, in recent years WebAssembly
has been utilized due to its computational efficiency. The year after WebAssembly was
released, there was a 459% increase in cryptojacking [38]. The following year, researchers
found that over 50% of all sites using WebAssembly were using it for cryptojacking [19]. To
counter this trend, researchers developed several static and dynamic detection methods for
identifying WebAssembly-based cryptojacking.

While there are theories suggesting that WebAssembly can be used for other malicious
purposes, like tech support scams, browser exploits, and script-based keyloggers [39],
evidence of such misuse in real-world scenarios has not been documented. As a result,
there are no analysis techniques for detecting such malicious WebAssembly binaries. Con-
sequently, discussions about malicious WebAssembly binaries in this paper mainly refer to
crypto mining binaries.

3. Related Work

This section discusses related work. Specifically, related studies are presented and the
differences between those studies and our paper are discussed.

In a similar vein to this paper, Kim et al. [40] survey the various techniques and
methods for WebAssembly binary security. However, their focus is on general secu-
rity techniques for WebAssembly, while our paper specifically focuses on analysis tech-
niques for WebAssembly. We both discuss cryptojacking detection and vulnerability
detection for WebAssembly, but we go further by also examining vulnerability analysis for
WebAssembly smart contracts. Additionally, we use different classification systems and
performance metrics.

Tekiner et al. [41] focus on surveying cryptojacking detection techniques by strictly
evaluating and comparing state-of-the-art methods. In contrast, our paper examines
analysis techniques for WebAssembly, including cryptojacking detection, vulnerability
analysis for WebAssembly binaries, and vulnerability analysis for WebAssembly smart
contracts. We also use different classification systems and performance metrics.

Romano et al. [42] investigate the bugs in WebAssembly compilers, specifically exam-
ining the Emscripten [22], AssemblyScript [43], and WebAssembly-Bindgen [44] compilers.
They discover bugs in the Emscripten compiler that could potentially cause significant
security issues. Our work, on the other hand, focuses on security in WebAssembly binaries
using analysis techniques, rather than examining the security of the compilers themselves.



Future Internet 2024, 16, 84 7 of 22

4. Methodology

This section outlines the methodology used to conduct the systematic review. The
literature review aims to identify, evaluate, and synthesize the findings from previous
studies on vulnerability analysis, malicious WebAssembly binaries, and smart contracts
within the WebAssembly context.

4.1. Search Strategy

The primary sources for the literature search were Google Scholar and Scopus. The
search terms used were a combination of keywords related to WebAssembly and its secu-
rity aspects. These included “WebAssembly”, “WebAssembly security”, “WebAssembly
vulnerability analysis”, “malicious WebAssembly binaries”, “cryptojacking”, and “Web-
Assembly smart contracts”, as well as their synonyms and related terms. Boolean operators
(AND, OR) were used to refine the search queries, aiming to capture a broad spectrum of
relevant research.

The search was actively conducted from August 2022 to December 2022. Given
the emerging nature of WebAssembly and its security landscape, we did not apply any
publication date restrictions in our search criteria. This approach allowed us to include all
relevant studies, from the inception of WebAssembly to the latest advancements, ensuring
our review reflects the complete historical and contemporary context of WebAssembly
security research.

4.2. Selection Process

The selection process was designed to include studies that had developed analysis
methods and tools specifically for WebAssembly. Given the novelty of the field, all studies
implementing such techniques were considered. However, exclusions were made for
papers not directly related to vulnerability analysis, malicious WebAssembly binaries, or
smart contracts. Furthermore, only peer-reviewed journal articles were included, ensuring
the credibility and reliability of the results.

An additional inclusion criterion was the application of the proposed analysis tech-
nique on at least ten samples. This criterion was set to ensure that included studies had
their methods tested adequately, providing a measure of reliability and applicability of the
findings. The sample size for each method is presented in the following sections in the aim
of illustrating the extent to which each technique has been tested and validated.

4.3. Data Extraction and Analysis

Data extraction was performed on the selected papers, focusing on implementation
details, the application domain (vulnerability analysis, detection of malicious binaries,
or smart contracts), sample size, and the performance of the methods. The papers used
different metrics for evaluating the performance of their methods, so we converted their
results into a standardized set of metrics to have a basis for comparison.

For evaluating the performance of the analysis techniques, we opted to use precision,
recall, and F1 scores. Precision measures the proportion of retrieved items that are relevant,
while recall measures the proportion of relevant items that are retrieved. A high number
of false positives will decrease the precision, while a high number of false negatives will
decrease the recall. The F1 score is the harmonic mean of precision and recall and provides
a way to combine these two metrics into a single value.

These metrics are mathematically defined as:



Future Internet 2024, 16, 84 8 of 22

Precision =
TP

TP + FP
(1)

Recall =
TP

TP + FN
(2)

F1 score = 2 × Precision × Recall
Precision + Recall

(3)

These metrics are used instead of accuracy because they are better suited for evaluating
the performance of analysis techniques in the presence of imbalanced datasets, which have
been common in the literature. In addition to these metrics, the performance of static-based
methods has been evaluated using the detection time, while the performance of dynamic-
based methods has been evaluated using the runtime overhead. These metrics provide
a way to compare the different analysis techniques and assess their relative strengths
and weaknesses.

5. Analysis Techniques for WebAssembly

This section presents the results of our literature review on analysis techniques for
WebAssembly. The techniques can be broadly classified into three categories:

1. Detecting malicious WebAssembly binaries (Section 5.1);
2. Detecting vulnerabilities in WebAssembly binaries (Section 5.2);
3. Detecting vulnerabilities in WebAssembly smart contracts (Section 5.3).

The analysis techniques can be further classified as either static, dynamic, or hybrid
methods. Some techniques are static-based, meaning that they analyze the WebAssembly
bytecode or intermediate representation without executing the binary. Other techniques
are dynamic-based, meaning they analyze the behavior of the WebAssembly binary as it
is being executed. Finally, some techniques are hybrid-based, meaning that they combine
both static and dynamic analysis to detect potential security issues. The classification is
summarized in Table 1.

Table 1. Classification of analysis techniques for WebAssembly.

Category Static Analysis Dynamic Analysis Hybrid Analysis

Detecting malicious
WebAssembly binaries (Section 5.1)

MineSweeper [45] SEISMIC [46]

MinerRay [47] RAPID [48]

MINOS [49] OutGuard [50]

MineThrottle [51]

CoinSpy [52]

Detecting vulnerabilities in
WebAssembly binaries (Section 5.2)

Wassail [53] Szanto et al. [54] WASP2 [55]

Wasmati [56] TaintAssembly [57]

WASP1 [58] Wasabi [59]

Fuzzm [60]

WAFL [61]

Detecting vulnerabilities in
WebAssembly smart contracts
(Section 5.3)

EVulHunter [62] EOSFuzzer [18]

WANA [63] WASAI [64]

EOSAFE [37]

EOSIOAnalyzer [65]



Future Internet 2024, 16, 84 9 of 22

5.1. Detecting Malicious WebAssembly Binaries

As previously mentioned, WebAssembly has been used by adversaries for malicious
purposes, like cryptojacking (Section 2.2.4). To protect against such attacks, several detec-
tion techniques have been proposed. In this section, we will review these techniques and
evaluate their performance.

Techniques based on static analysis (Section 5.1.1) and dynamic analysis (Section 5.1.2)
are discussed in the following sections. Additionally, a comparative analysis of the detection
techniques is presented (Section 5.1.3).

5.1.1. Static Analysis

MineSweeper. MineSweeper [45] detects cryptojacking based on the presence of
cryptographic functions in WebAssembly binaries. MineSweeper implements two variants:
The first variant is specialized for detecting the CryptoNight algorithm [66], which is
commonly used for cryptomining, while the second variant is more generic and can detect
any cryptographic function that may be used for cryptomining. A cryptographic fingerprint
is computed by counting the number of cryptographic operations in each function in the
WebAssembly binary. In the case of the CryptoNight variant, these fingerprints are then
compared with the fingerprints of the primitive components of the CryptoNight algorithm.
In the generic case, a candidate function is labeled as a cryptographic function if the amount
of cryptographic operations exceeds a threshold. The authors conducted experiments to
validate the effectiveness of their method, achieving 100% recall and precision for both
variants. However, it is worth noting that the authors theorized a potential limitation of
the method, suggesting that, under certain conditions, it might produce false positives.
This is because benign programs, such as games and cryptographic libraries, also utilize
cryptographic functions, which could theoretically be misidentified by MineSweeper as
indicators of cryptojacking.

MinerRay. MinerRay [47] constructs and analyzes an Inter-Procedural Control Flow
Graph to detect cryptojacking. MinerRay first converts JavasScript and asm.js code into
WebAssembly binaries. Then, the WebAssembly binaries are translated into an intermediate
representation, from which Intra-Procedural Control Flow Graphs are constructed for each
function. These Intra-Procedural Control Flow Graphs are then linked together to create an
Inter-Procedural Control Flow Graph that represents the entire program. MinerRay uses the
Inter-Procedural Control Flow Graph to identify potential hashing algorithms by analyzing
the control flow of the program and looking for patterns that match the semantics of hashing
functions. To determine whether the user is informed about cryptomining, MinerRay
employs a dynamic approach that explores the onclick events of HTML objects, which may
instantiate WebAssembly cryptominers. It then checks whether the WebAssembly APIs,
such as WebAssembly.instantiate, can be invoked. Out of 901 websites with cryptominers,
the authors found that only 16 websites informed users of the background crypto mining
and just three of those asked for consent before starting the mining process.

MINOS. MINOS [49] uses an image-based classification deep learning approach to
identify cryptojacking. First, MINOS converts the WebAssembly binary into a grayscale
image. This image is then used as input to a Convolutional Neural Network (CNN),
which has been trained on a comprehensive dataset of malicious and benign WebAssembly
binaries. The CNN attempts to determine whether the WebAssembly binary performs
cryptojacking based on the patterns it observes in the grayscale image. An advantage of
MINOS is that it is lightweight and can detect cryptojacking in under a second. This makes
it a useful tool for real-time cryptojacking detection.

5.1.2. Dynamic Analysis

SEISMIC. SEISMIC [46] uses signature-matching to identify cryptojacking. It adopts
an In-Line Reference Monitor (IRM) approach, which involves dynamically computing
the semantic features of the WebAssembly binary at runtime. To this end, an instruction
counter is inserted into the global section of the WebAssembly binary for each instruction



Future Internet 2024, 16, 84 10 of 22

to be profiled. The semantic features of the WebAssembly binary are then computed
using the aforementioned instruction counters. To identify cryptojacking, the computed
semantic features of the WebAssembly binary are compared with the semantic signatures of
known mining binaries. This approach was found to be accurate in detecting cryptojacking,
but it imposes a significant runtime overhead, which can affect the performance of the
WebAssembly application.

RAPID. RAPID [48] identifies cryptojacking by monitoring JavaScript API calls and
system resource usage. To this end, JavaScript API usage is collected using Chrome
debugging features. The system resources, that is, the memory, network, and processor
usage are collected by executing a Chromium instance inside a docker container and
collecting the data through the docker stats API [67]. Then, a Support Vector Machine
(SVM) is employed as a classification model.

OutGuard. OutGuard [50] uses features related to the JavaScript runtime execution,
event loads, networking, and cryptojacking libraries to detect cryptojacking. Specifically,
the number of web workers and parallel tasks, the existence of WebAssembly modules,
WebSockets and hashing algorithms, and the usage of PostMessage- and MessageLoop
event loads are used as the feature set. These seven distinct features are used to build an
SVM classification model. A limitation of this approach is that the identification of hashing
algorithms is static and does not account for string obfuscation.

MineThrottle. MineThrottle [51] uses the frequency distribution of instructions to
detect cryptojacking. The idea is that miners execute certain instructions more frequently
than benign applications, and this can be used to identify the mining activity. To implement
this, MineThrottle first detects potential mining-related code blocks using block-level
statistical features and then instruments each block using block-level program profiling.
The effective mining speed (i.e., the instructions per cycle) of the WebAssembly program is
then periodically calculated, and if it is similar to known mining programs, the program is
labeled as a miner.

CoinSpy. CoinSpy [52] is a method for detecting cryptojacking by monitoring com-
pute, memory, and network usage from within the browser. The computational behavior is
monitored using the JavaScript stack profiler, and memory usage is measured by monitor-
ing the JavaScript heap and WebWorker threads. Network usage is tracked by summing
the bytes from all in-flight requests at each millisecond. The key observation used for
cryptojacking detection is that compute and memory usage increase significantly when
the Proof of Work (PoW) algorithm is executing, and that network usage only increases
when the processor is in an idle state. Using these features, a CNN classification model was
constructed. The authors argue that CoinSpy should be able to detect future cryptomining
algorithms that other dynamic detectors will miss due to their specificity.

5.1.3. Comparative Analysis

This section presents the comparative analysis of the detection techniques outlined in
the above sections. The results of the analysis are summarized in Tables 2 and 3.

Table 2. Data for static detection techniques for identifying malicious WebAssembly binaries.

Dataset Performance

Scheme Feature(s) Classifier Source Samples Precision Recall F1 DT*

MineSweeper [45]
(2018) WebAssembly code Matching or

threshold Alexa 1M 748 100% 100% 100% -

MinerRay [47]
(2020) WebAssembly code ICFG Alexa 1.2M 3825 99% 100% 99% 1.9 s

MINOS [49]
(2021) WebAssembly code CNN Tranco 100K,

PublicWWW 682 93% 97% 95% 0.0259 s

* Abbreviations: detection time (DT).



Future Internet 2024, 16, 84 11 of 22

Table 3. Data for dynamic detection techniques for identifying malicious WebAssembly binaries.

Dataset Performance

Scheme Feature(s) Classifier Source Samples Precision Recall F1 Overhead

SEISMIC [46]
(2018)

WebAssembly code,
instruction count
obtained at runtime

Matching

Asteroids,
A-Star,
Tanks,
Bullet (1000),
CoinHive_v0,
CoinHive,
Basic4GL,
HushMiner,
CreaturePack
FunkyKarts,
NFWebMiner,
YAZECMiner

12 96% 100% 98% 100%

RAPID [48]
(2018)

JavaScript API calls,
memory, processor and
network usage

SVM Alexa 330K 71,450 97% 96% 96% 9–40%

OutGuard [50]
(2019)

Parallel tasks,
WebAssembly, hashing
algorithms, WebSockets,
PostMessage event load,
MessageLoop event
load

SVM,
or RF

Alexa 1M,
Alexa 600K 29,700 99% 97% 98% 2%

CoinSpy [52]
(2020)

JavaScript stack
execution
time, JavaScript heap,
network usage

CNN
Alexa 1M,
Alexa 100K,
PublicWWW

2000 Accuracy: 97% 0%

MineThrottle [51]
(2020) WebAssembly code

processor usage Matching Alexa 1M 659 100% 98% 99% 0%

Dataset. Most detection techniques have been evaluated using websites collected from
the wild, with the Alexa sites being the most commonly used. Only SEISMIC evaluated
their method using a curated list of binaries. Most schemes used a sufficient number of
samples, but there were some exceptions, such as SEISMIC, MineThrottle, and MINOS,
which had a smaller number of samples, potentially affecting the validity of their results.

Performance. The performance of the detection techniques was evaluated using met-
rics such as precision, recall, F1 score, overhead, and detection time. Among the static-based
methods, MineSweeper and MinerRay had the highest F11 scores, while MINOS had the
lowest. However, MINOS also had the fastest detection time, making it suited for real-time
cryptojacking detection. MineThrottle, Outguard, and SEISMIC had the highest F1 scores
among the dynamic-based methods. However, SEISMIC also had the highest overhead. In
contrast, MineThrottle and Outguard had negligible overhead.

5.2. Detecting Vulnerabilities in WebAssembly Binaries

Although WebAssembly was designed with security in mind, vulnerabilities still exist
(Section 2.2.2). As a result, various techniques for detecting vulnerabilities in WebAssembly
binaries have been proposed. This section presents these techniques and discusses their
versatility, which is determined by factors such as compatibility with different runtimes,
support for the WASI, and whether they require high-level source code for analysis.



Future Internet 2024, 16, 84 12 of 22

Techniques based on static analysis (Section 5.2.1), dynamic analysis (Section 5.2.2),
and hybrid analysis (Section 5.2.3) are discussed in the following sections. Additionally, a
comparative analysis of the detection techniques is presented (Section 5.2.4).

5.2.1. Static Analysis

Wassail. Wassail [53] was the first static analysis method for detecting vulnerabilities
in WebAssembly binaries. It uses a compositional, summary-based analysis approach that
strictly focuses on information flow. For each WebAssembly function, it computes a sum-
mary that describes how information flows within that function, and these summaries are
then used during the subsequent analysis of function calls. The information flow analysis is
expressed as a data flow analysis on a Control Flow Graph (CFG), and the information flow
of the entire program is approximated by composing the function summaries. The authors
claim that similar approaches have been shown to scale well [68,69], but the scalability of
Wassail has not been evaluated.

Wasmati. Wasmati [56] detects vulnerabilities in WebAssembly binaries by construct-
ing a Code Property Graph (CPG). Vulnerabilities are detected by searching for specific
patterns in the CPG sub-graphs, which include the execution order, execution path, data
dependencies, and control flows. An issue with this approach is that the number of nodes
in the CPG grows rapidly because the target of indirect calls cannot be determined statically.
To address this, Wasmati optimizes the CPG generation process by adding additional anno-
tations, caching intermediate results, and using efficient graph traversal algorithms. As a
result, the authors found that constructing the CPG only took an average of 58 s per binary.
They also found that Wasmati was able to effectively find vulnerabilities in WebAssembly
binaries while providing a low false positive rate.

WASP1. WASP1 [58] is a concolic execution engine for WebAssembly modules that
can be used for uncovering vulnerabilities and bugs. Concolic execution, which combines
concrete execution with symbolic execution and explores one execution path at a time, is
employed to explore all the feasible paths of the program. Specifically, symbolic execution
is used to generate the concrete inputs for exploring multiple execution paths, to maximize
code coverage. To demonstrate the feasibility of uncovering vulnerabilities, the authors
constructed WASP-C, a symbolic execution framework for testing C programs using WASP1.
WASP-C takes a C program as input, annotates it, compiles it to WebAssembly, and
analyzes it using WASP1. They found that WASP-C was effective at uncovering bugs and
vulnerabilities. However, a limitation of WASP-C is that it requires a high-level source code
to uncover vulnerabilities, meaning it can only be used to analyze open source programs.

5.2.2. Dynamic Analysis

Szanto et al. Szanto et al. [54] proposed a taint-tracking technique for detecting vulner-
abilities in WebAssembly binaries. They developed a VM that runs in native JavaScript and
implemented a taint tracking system that allows the user to monitor the flow of sensitive
data through the execution of the WebAssembly binary. To this end, they allocate a tainted
label for each allocable byte in the memory section and each variable on the stack. This
method allows for taint tracking without modifying the structure of the WebAssembly
binary. The authors found that the runtime overhead of this method scales mostly linearly,
with an overhead of up to 100%.

TaintAssembly. TaintAssembly [57] is another technique that uses taint-tracking to
detect vulnerabilities in WebAssembly binaries. Unlike Szanto et al., who developed their
own VM, TaintAssembly implemented taint-tracking by modifying the V8 JavaScript engine
used in Google Chrome and Node.js [28]. TaintAssembly implements basic taint-tracking
functionality for variables of type i32, i64, f32, f64, as well as tainting in linear memory
and a probabilistic variant of taint. However, unlike Szanto et al.’s approach, the structure
of the WebAssembly module must be modified before taint labels can be set for all variables.
TaintAssembly was able to achieve a runtime overhead of only 5–12%, which is far less
than Szanto et al.’s approach.



Future Internet 2024, 16, 84 13 of 22

Wasabi. Wasabi [59] is a general-purpose framework for dynamically analyzing Web-
Assembly binaries. To this end, Wasabi performs binary instrumentation. Specifically, it
inserts calls to analyze functions written in JavaScript into the WebAssembly binary. Then,
instruction counting, call graph extraction, memory access tracing, and taint analysis can
be performed at runtime. Wasabi also allows for selective instructions; that is, it only
instruments instructions that are relevant for a particular analysis. The authors found
the runtime overhead to vary between 2% and 163%, depending on the application and
instructions being analyzed.

Fuzzm. Fuzzm [60] is a binary-only fuzzer for WebAssembly that uses the popular
AFL [70] framework. Native AFL compiles applications from source code and inserts code
to track path coverage. However, since Fuzzm is a binary-only fuzzer, it does not have
access to the source code. To provide coverage information for the AFL fuzzer, Fuzzm uses
static binary instrumentation to insert code at all branches, generating AFL-compatible cov-
erage information. The authors found that Fuzzm is effective and imposes a low runtime
overhead. Additionally, its implementation is not tied to a specific runtime. Fuzzm also
implements a canary-based protection mechanism to prevent memory corruption vulnera-
bilities.

WAFL. WAFL [61] is also a binary-only fuzzer for WebAssembly. It uses the AFL++
[71] framework, a community-driven fork of AFL. To generate coverage for the AFL++
fuzzer, they implement a set of patches to the WAVM [72] runtime. The WAVM runtime
uses Ahead-of-time (AOT) compilation, and WAFL also adds lightweight VM snapshots.
This makes WAFL performant, in some cases, even outperforming the native AFL x86-64
harnesses compiled from source. However, WAFL is inherently tied to the WAVM runtime,
which limits its potential use cases.

5.2.3. Hybrid Analysis

WASP2. WASP2 [55] detects vulnerabilities in WebAssembly binaries based on known
vulnerabilities. It does this by analyzing the static and dynamic features of the Web-
Assembly binary and comparing this with known vulnerabilities. Specifically, WASP2 trains
a deep learning vulnerability classification model by mapping the static features of known
vulnerable binaries in x86 or ARM to static features in the corresponding WebAssembly
binary representation. Then, the model is used to statically analyze the WebAssembly
binary. Finally, the identified vulnerable subroutines are dynamically analyzed using
Wasabi [59]. The authors found that WASP2 is able to accurately find known vulnerabilities
in WebAssembly binaries.

5.2.4. Comparative Analysis

This section presents the comparative analysis of the detection techniques outlined in
the above sections. The results from the analysis are summarized in Table 4.

Runtime Compatibility. The versatility of the proposed detection techniques is deter-
mined by their runtime compatibility, WASI support, and whether they require a high-level
source code for their analysis. Some schemes, like TaintAssembly, are inherently tied to a
specific runtime, which limits their usefulness. Other schemes, like Wasabi, are not tied
to any specific runtime and can be applied more generally. Additionally, schemes that
do not support WASI, like Szanto et al.’s method, are fundamentally limited since they
cannot analyze most WebAssembly binaries used on servers or embedded devices. Finally,
schemes that require high-level source code for analysis, like WASP1, are limited to the
analysis of open source projects.

Overhead. The overhead for dynamic detection methods varies greatly. Wasabi and
Szanto et al. have the highest overhead, reaching up to 163% and 100%, respectively. Szanto
et al.’s method has a constant overhead, while Wasabi’s overhead varies depending on the
type and number of instructions being analyzed. This means that Wasabi’s overhead can be
as low as 2% in practice. In contrast, TaintAssembly and Fuzzm demonstrate much lower
overheads, within the range of 5-12% and 5-6%, respectively. The lower overhead associated



Future Internet 2024, 16, 84 14 of 22

Table 4. Data for detecting vulnerabilities in WebAssembly binaries.

Type Scheme Technique Runtime Binary-Only WASI Support Overhead

Static Wassail [53]
(2020) Compositional information flow - ✓ - -

Wasmati [56]
(2022) CPG - ✓ - -

WASP1 [58]
(2022) Concolic execution - ✗ - -

Dynamic Szanto et al. [54]
(2018) Taint tracking

WebAssembly
VM
(custom)

✓ ✗ 100%

TaintAssembly [57]
(2018) Taint tracking V8 engine

(modified) ✓ ✓ 5–12%

Wasabi [59]
(2019) Binary instrumentation Any

runtime ✓ ✓ 2–163%

Fuzzm [60]
(2021) Fuzzing

Any
runtime w/
WASI-
support

✓ ✓ 5–6%

WAFL [61]
(2021) Fuzzing WAVM

(modified) ✓ ✓ -

Hybrid WASP2 [55]
(2021) Known vulnerabilities - ✓ ✓ -

✓: Feature is supported. ✗: Feature is not supported.

with TaintAssembly indicates that integrating taint-tracking into VMs can be a viable option
for increased security with low-to-moderate overhead. However, this integration must
carefully consider the balance between security improvements and potential performance
trade-offs for each specific use case.

5.3. Detecting Vulnerabilities in WebAssembly Smart Contracts

Several vulnerabilities have been discovered in WebAssembly smart contracts, leading
to significant financial loss (Section 2.2.2). As a result, several techniques for detecting
such vulnerabilities have been developed. This section presents these techniques, their
capabilities, and their performance.

Techniques based on static analysis (Section 5.3.1) and dynamic analysis (Section 5.3.2)
are discussed in the following sections. Additionally, a comparative analysis of the detection
techniques is presented (Section 5.3.3).

5.3.1. Static Analysis

EVulHunter. EVulHunter [62] was the first static analysis tool designed to detect
vulnerabilities in EOSIO smart contracts. It uses the open source analysis framework
Octopus [73] to construct a CFG of the smart contract. The CFG is then traversed to detect
vulnerabilities based on predefined patterns. Although EVulHunter is effective at detecting
fake notification vulnerabilities, it has low precision when detecting fake EOS transfers.
The authors believe this is due to the limitations of using predefined patterns and suggest
that more advanced analysis techniques, such as symbolic execution, are necessary.

WANA. WANA [63] uses symbolic execution and a set of test oracles to detect vulner-
abilities in smart contracts. It is cross-platform, meaning that it can detect vulnerabilities
in both EOSIO and Ethereum smart contracts. First, Ethereum smart contracts, which are
written in Solidity, are converted into Ewasm (Ethereum-flavored WebAssembly) using



Future Internet 2024, 16, 84 15 of 22

the SOLL [74] compiler. Then, the symbolic execution engine traverses the paths of the
WebAssembly binary. WANA performs vulnerability analysis based on the data collected
during symbolic execution using the proposed test oracles. Unlike EVulHunter, WANA can
also detect blockinfo dependency vulnerabilities and effectively detect fake EOS transfer
vulnerabilities.

EOSAFE. EOSAFE [37] also uses symbolic execution to detect vulnerabilities in EOSIO
smart contracts. Unlike WANA, EOSAFE addresses the problem of path explosion, where
the number of feasible paths in a program grows exponentially with the program size. To
mitigate this issue, EOSAFE allows users to set the call depth and timeout parameters that
are used when symbolically executing the program. Additionally, during vulnerability
detection, EOSAFE first identifies valuable functions (i.e., functions that have the ability to
invoke actions or change on-chain state) and only analyzes those. This approach allows it
to accurately detect more vulnerabilities than previous methods.

EOSIOAnalyzer. EOSIOAnalyzer [65] detects vulnerabilities in EOSIO smart con-
tracts by analyzing the ICFG of the program. The ICFG is the combination of the CFG
and the Call Graph (CG) of the program, allowing EOSIOAnalyzer to analyze the data
propagation relationships between functions when they call each other. After the ICFG is
constructed, the WebAssembly code is translated into a high-level intermediate representa-
tion. Then, EOSIOAnalyzer applies a data flow analysis algorithm to determine the data
propagation relationships between functions. Finally, it identifies suspicious functions and
further analyzes their complete execution paths. To address the issue of path explosion,
EOSIOAnalyzer implements a call depth threshold.

5.3.2. Dynamic Analysis

EOSFuzzer. EOSFuzzer [18] uses black-box fuzzing to detect vulnerabilities in EOSIO
smart contracts. To this end, EOSFuzzer first performs static analysis on the WebAssembly
code and Application Binary Interface (ABI). The results of this analysis are then used to
generate fuzzing inputs, which are applied to the smart contract through the Cleos [75]
command-line client. Finally, EOSFuzzer performs vulnerability analysis based on test
oracles. Although EOSFuzzer was found to be relatively efficient, it has the lowest precision
and recall of all methods proposed. Additionally, EOSFuzzer uses random seeds for fuzzing,
resulting in low code coverage.

WASAI. WASAI [64] uses concolic fuzzing to detect vulnerabilities in EOSIO smart
contracts. To address the weaknesses of EOSFuzzer, it strategically generates seeds to aid
the fuzzing in exploring as many feasible paths as possible. This is achieved by performing
symbolic execution to feedback on the seed mutation. This results in double the code
coverage than EOSFuzzer. WASAI was able to detect the most vulnerabilities out of all the
proposed techniques. It additionally has high precision and recall and was found to be
resilient to code obfuscation.

5.3.3. Comparative Analysis

This section presents the comparative analysis of the detection techniques outlined in
the above sections. The results from the analysis are summarized in Table 5.

Vulnerability Detection. The proposed detection techniques are able to detect dif-
ferent types of vulnerabilities. EVulHunter is only able to detect two out of five types of
vulnerabilities, while WANA, EOSIOAnalyzer, and EOSFuzzer are able to detect three out
of five types. EOSAFE is able to detect four out of five vulnerabilities. WASAI is the only
method that is able to detect all five vulnerabilities, making it the most effective detection
method.

Performance. WANA and WASAI have the highest F1-score among the proposed
detection techniques, with 100% and 99%, respectively. EOSFuzzer and EVulHunter have
the lowest F1 scores, with 88% and 93%, respectively. In terms of detection time, EOSIOAn-
alyzer has the slowest detection time at 7.6 s. In contrast, WANA has a detection time of
only 0.21 s while providing high precision and recall.



Future Internet 2024, 16, 84 16 of 22

Table 5. Data for detecting vulnerabilities in WebAssembly smart contracts.

Vulnerability Detection Performance

Type Scheme Technique FE* FN* BD* RB* MAV* Precision Recall F1 DT*

Static EVulHunter [62]
(2019) CFG ✓ ✓ ✗ ✗ ✗ 89% 100% 93% 1–3 s

WANA [63]
(2020)

Symbolic
execution ✓ ✓ ✓ ✗ ✗ 100% 100% 100% 0.21 s

EOSAFE [37]
(2021)

Symbolic
execution ✓ ✓ ✗ ✓ ✓ 100% 96% 98% -

EOSIOAnalyzer [65]
(2022) ICFG ✓ ✓ ✓ ✗ ✗ 93% 100% 96% 7.6 s

Dynamic EOSFuzzer [18]
(2020) Fuzzing ✓ ✓ ✓ ✗ ✗ 88% 88% 88% -

WASAI [64]
(2022) Concolic fuzzing ✓ ✓ ✓ ✓ ✓ 100% 98% 99% -

* Abbreviations: fake EOS (FE), fake notification (FN), Blockinfo dependency (BD), rollback (RB), missing
authorization verification (MAV), and detection time (DT).
✓: Vulnerability is patched. ✗: Vulnerability is not patched.

6. Discussion

This section presents the results of the literature review. It begins by summarizing the
key findings, followed by a discussion of the limitations of current analysis techniques, and
lastly a discussion on the applicability of the analysis techniques in other domains.

6.1. Key Findings

Methods based on static analysis use techniques such as signature matching and
symbolic execution which do not require the program to be executed. This allows them
to impose a low overhead but can also result in a lower accuracy. For example, MINOS
has the fastest detection time at under one second but also has the lowest F1-score of all
cryptojacking detection methods. Methods that rely solely on signature or keyword match-
ing can be easily bypassed through the use of obfuscation techniques [46,76]. Additionally,
methods that rely on semantic execution may be limited by the path explosion problem.

Methods based on dynamic analysis execute the program in a controlled environment
to extract behavioral features that can be used for further analysis. To do this, various
techniques such as taint tracking, binary instrumentation, fuzzing, and monitoring system
resources have been proposed. This typically results in higher overhead but also a better
performance than static-based methods. For example, Wasabi is able to perform heavy-
weight dynamic analysis through binary instrumentation, but it might also incur a high
overhead. Since dynamic analysis is based on behavioral features, it is less susceptible to
evasion through obfuscation techniques. However, it can still be bypassed in some cases,
such as by throttling processor usage.

Static and dynamic techniques are not mutually exclusive but complementary tech-
niques. A hybrid approach can leverage the low overhead of static techniques and the high
accuracy of dynamic techniques. In such an approach, static techniques can be used to
identify candidate functions and dynamic techniques can then be employed to analyze
them accurately. Currently, only WASP2 employs such a hybrid approach.

6.2. Limitations

The evaluation strategies for each detection method differ substantially. Some methods
are evaluated using imbalanced datasets, while others use balanced datasets. Additionally,
the sample sizes used for evaluation also differ between the detection methods. To address
these variations, we used precision, recall, and F1 as performance metrics instead of



Future Internet 2024, 16, 84 17 of 22

accuracy. However, variations in evaluation strategies can still impact the validity of
the results. For example, EVulHunter reported an F1-score of 93%, but other studies
found its F1 score to be 17% and 23% [18,65]. However, using the results from these
complementary studies may further threaten the validity of the results as they may contain
implementation bugs.

Many cryptojacking detection methods do not distinguish between cryptomining and
cryptojacking. Cryptomining refers to the use of a user’s resources to mine cryptocurrency
with the user’s explicit consent. This has been used as an alternative revenue source by
organizations such as UNICEF [77]. Cryptojacking, on the other hand, refers to the use of
a user’s resources to mine cryptocurrency without their explicit consent. Currently, only
MinerRay is able to differentiate between these two activities. This differentiation may
result in a 1–2% increase in false positives [47].

The datasets used for evaluation can impact the results of the evaluation. Crypto-
jacking websites often modify or move their scripts to different domains to avoid being
blacklisted. Additionally, the CoinHive shutdown [16,78] resulted in a decrease in cryp-
tojacking activity. As a result, the accuracy of cryptojacking detection methods may vary
depending on when the dataset was collected.

6.3. Applicability of WebAssembly Analysis Techniques in Other Domains

The comparison between WebAssembly and native programs raises important ques-
tions about the transferability of analysis techniques across these domains. Specifically, can
tools like MineSweeper, designed for WebAssembly, be adapted to detect malicious appli-
cation software in native binaries? Conversely, can traditional virus scanning technologies
be effectively used for scanning malicious WebAssembly binaries?

Tools like MineSweeper focus on analyzing WebAssembly binaries for patterns in-
dicative of cryptojacking activities, leveraging the specific structure and execution model
of WebAssembly. Adapting such tools for native programs would require addressing the
broader spectrum of malicious behaviors that native applications might exhibit, along
with the consideration of different binary formats, execution flows, and interaction with
the operating system. Thus, analysis techniques for WebAssembly binaries are likely not
directly transferable to native programs.

Traditional virus scanning technologies are designed to detect a wide range of mali-
cious signatures and behaviors in native applications. These technologies could potentially
identify known malicious patterns or signatures within WebAssembly binaries. However,
the effectiveness of this approach may be limited by the specific WebAssembly architecture.
That is, the specific exploitation techniques and vulnerabilities relevant to WebAssembly
might not align with those typically encountered in native applications, and vice versa.

7. Conclusions

In this paper, we conducted a comprehensive review of analysis techniques for Web-
Assembly. To this end, we constructed a taxonomical classification and applied it to analysis
techniques proposed in the literature. We classified the techniques into three categories:
detecting malicious WebAssembly binaries, detecting vulnerabilities in WebAssembly
binaries, and detecting vulnerabilities in WebAssembly smart contracts. We analyzed
these techniques using quantitative data and discussed their strengths and weaknesses.
Then, key findings and limitations were presented. Specifically, we found that static meth-
ods have low overhead but lower accuracy, while dynamic analysis has higher overhead
but higher accuracy. We also identified potential areas for future research, including the
security of WebAssembly in non-web environments, analysis techniques for malicious Web-
Assembly binaries, the feasibility of obfuscating WebAssembly code, and the prevalence of
WebAssembly-based cryptojacking on the web. This paper provides a valuable contribu-
tion to the field by offering a comprehensive understanding of current analysis techniques
for WebAssembly, including their use cases and limitations, as well as suggestions for
future research.



Future Internet 2024, 16, 84 18 of 22

Research Directions

Generally, the proposed WebAssembly analysis techniques are focused on the web
environment. As WebAssembly is being extended for use beyond the web, current analysis
techniques do not cover all possible use cases. There have been studies on the use of
WebAssembly in non-web environments [79], but few have specifically focused on its
security in these contexts. Further research addressing the security of WebAssembly in
non-web environments is needed.

The proposed detection techniques for detecting malicious WebAssembly binaries are
biased towards cryptojacking. WebAssembly can also be used for other malicious purposes,
like tech support scams, browser exploits, and script-based keyloggers [39]. Currently,
there are no methods for detecting these types of malicious uses of WebAssembly. Further
research is encouraged in this direction.

The proposed methods for detecting cryptojacking can be circumvented through code
obfuscation, which has previously rendered static detection methods obsolete [80]. The
obfuscation of WebAssembly code is common on the web [16,45]. However, only one
preliminary study [76] has investigated the feasibility of obfuscation for WebAssembly,
and the researchers only evaluated it using one static detection technique. The effects on
dynamic detection techniques were not explored. Additionally, the study used a small
dataset, potentially undermining the validity of the results. Some authors of cryptojacking
detection techniques argue that obfuscation is impractical due to the added runtime over-
head and the resulting decrease in revenue from reduced hash rates. However, the effects
of the obfuscated WebAssembly code on runtime and hash rates have not been studied.
More research in this area is needed.

The prevalence of WebAssembly-based cryptojacking on the web is unclear. There
have been two studies on this topic, one by Musch et al. [19] in 2018 and the other
by Hilbig et al. [16] in 2021. Musch et al. found that over 50% of sites using WebAssembly
were doing so for cryptojacking, while Hilbig et al. found that this number had been
marginalized to 1%. This decrease was attributed to the shutdown of CoinHive, which is
supported by other studies [78]. However, even after the shutdown of CoinHive, other
studies have found the prevalence of WebAssembly-based cryptojacking to be as high as
10% [49]. Moreover, Hilbig et al. used VirusTotal [81] for detecting cryptojacking, which has
been proven to be easily bypassed through code obfuscation [46]. Therefore, the results of
this study may be inaccurate due to false negatives. Further research in this area is needed.

Author Contributions: Conceptualization, H.H.; methodology, H.H.; investigation, H.H.; method-
ology, H.H.; data curation, H.H.; visualization, H.H.; writing—original draft preparation, H.H.;
writing—review and editing, H.H. and D.M.; supervision, D.M. All authors have read and agreed to
the published version of the manuscript.

Funding: This research received no external funding

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflicts of interest.



Future Internet 2024, 16, 84 19 of 22

Abbreviations
The following abbreviations are used in this manuscript:

ABI Application Binary Interface
AOT Ahead-of-Time
CFG Control Flow Graph
CG Call Graph
CNN Convolutional Neural Network
COM Component Object Model
CPG Code Property Graph
DOM Document Object Model
EVM Ethereum Virtual Machine
ICFG Inter-Procedural Control Flow Graph
IRM In-Line Reference Monitor
JIT Just in Time
NaCl Native Client
pNaCl Portable Native Client
PoW Proof of Work
SOP Same Origin Policy
SVM Support Vector Machine
VM Virtual Machine
W3C World Wide Web Consortium
WABT WebAssembly Binary Toolkit
WASI WebAssembly System Interface
XSS Cross-Site Scripting

References
1. w3Techs. Usage Statistics of JavaScript as Client-Side Programming Language on Websites, December 2022. Available online:

https://w3techs.com/technologies/details/cp-javascript (accessed on 4 November 2022).
2. Contributors to Wikimedia projects. ActiveX-Wikipedia. 2022. Available online: https://en.wikipedia.org/w/index.php?title=

ActiveX&oldid=1102963222 (accessed on 4 November 2022).
3. Google.Native Client-Chrome Developers. 2021. https://developer.chrome.com/docs/native-client (accessed on 4 November

2022).
4. mdn web docs. asm.js-Game Development | MDN. 2022. Available online: https://developer.mozilla.org/en-US/docs/Games/

Tools/asm.js?source=post_page (accessed on 4 November 2022).
5. Can I Use WebAssembly | Can I Use... Support Tables for HTML5, CSS3, etc. 2022. Available online: https://caniuse.com/wasm

(accessed on 12 November 2022).
6. Møller, A. Technical perspective: WebAssembly: A quiet revolution of the Web. Commun. ACM 2018, 61, 106–106.
7. Pop, V.A.B.; Virtanen, S.; Sainio, P.; Niemi, A. Secure migration of WebAssembly-based mobile agents between secure enclaves.

Master’s Thesis, University of Turku, Turku, Finland. 2021.
8. Fastly. Fastly Docs. 2022. Available online: https://docs.fastly.com/products/compute-at-edge (accessed on 23 November 2022).
9. Ewasm. Ethereum WebAssembly (Ewasm)-Ethereum WebAssembly. 2021. Available online: https://ewasm.readthedocs.io/en/

mkdocs (accessed on 7 November 2022).
10. Eosio. EOS Virtual Machine: A High-Performance Blockchain WebAssembly Interpreter–EOSIO. 2021. Available online: https:

//eos.io/news/eos-virtual-machine-a-high-performance-blockchain-webassembly-interpreter (accessed on 9 November 2022).
11. NEAR What Is a Smart Contract?|NEAR Documentation. Available online: https://docs.near.org/develop/contracts/

whatisacontract, 2022. (accessed on 11 November 2022).
12. Liu, R.; Garcia, L.; Srivastava, M. Aerogel: Lightweight Access Control Framework for WebAssembly-Based Bare-Metal IoT

Devices. In Proceedings of the 2021 IEEE/ACM Symposium on Edge Computing (SEC), San Jose, CA, USA, 14–17 December
2021; IEEE: Piscataway, NJ, USA, 2021; pp. 94–105.

13. Mäkitalo, N.; Mikkonen, T.; Pautasso, C.; Bankowski, V.; Daubaris, P.; Mikkola, R.; Beletski, O. WebAssembly modules as
lightweight containers for liquid IoT applications. In Proceedings of the International Conference on Web Engineering, Biarritz,
France, 18–21 May 2021; Springer: Cham, Switzerland, 2021; pp. 328–336.

14. Scheidl, F. Valent-Blocks: Scalable high-performance compilation of WebAssembly bytecode for embedded systems. In
Proceedings of the 2020 International Conference on Computing, Electronics & Communications Engineering (iCCECE), Southend,
UK, 17–18 August 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 119–124.

https://w3techs.com/technologies/details/cp-javascript
https://en.wikipedia.org/w/index.php?title=ActiveX&oldid=1102963222 
https://en.wikipedia.org/w/index.php?title=ActiveX&oldid=1102963222 
https://developer.chrome.com/docs/native-client
https://developer.mozilla.org/en-US/docs/Games/Tools/asm.js?source=post_page
https://developer.mozilla.org/en-US/docs/Games/Tools/asm.js?source=post_page
https://caniuse.com/wasm
https://docs.fastly.com/products/compute-at-edge
https://ewasm.readthedocs.io/en/mkdocs
https://ewasm.readthedocs.io/en/mkdocs
https://eos.io/news/eos-virtual-machine-a-high-performance-blockchain-webassembly-interpreter
https://eos.io/news/eos-virtual-machine-a-high-performance-blockchain-webassembly-interpreter
https://docs.near.org/develop/contracts/whatisacontract
https://docs.near.org/develop/contracts/whatisacontract


Future Internet 2024, 16, 84 20 of 22

15. Lehmann, D.; Kinder, J.; Pradel, M. Everything Old is New Again: Binary Security of WebAssembly. In Proceedings of the
29th USENIX Security Symposium (USENIX Security 20), 12–14 August 2020; USENIX Association: Berkeley, CA, USA, 2020;
pp. 217–234.

16. Hilbig, A.; Lehmann, D.; Pradel, M. An Empirical Study of Real-World WebAssembly Binaries: Security, Languages, Use
Cases. In Proceedings of the Web Conference 2021, Ljubljana Slovenia, 19–23 April 2021; WWW ’21; pp. 2696–2708. https:
//doi.org/10.1145/3442381.3450138.

17. PeckShield. Defeating EOS Gambling Games: The Tech Behind Random Number Loophole . Medium 2018. Available online: https:
//peckshield.medium.com/defeating-eos-gambling-games-the-tech-behind-random-number-loophole-cf701c616dc0 (accessed
in December 2022).

18. Huang, Y.; Jiang, B.; Chan, W.K. EOSFuzzer: Fuzzing EOSIO Smart Contracts for Vulnerability Detection. In Proceedings of
the 12th Asia-Pacific Symposium on Internetware, Singapore, 1–3 November 2020; ACM: New York, NY, USA, 2020. https:
//doi.org/10.1145/3457913.3457920.

19. Musch, M.; Wressnegger, C.; Johns, M.; Rieck, K. New Kid on the Web: A Study on the Prevalence of WebAssembly in the
Wild. In Proceedings of the International Conference on Detection of Intrusions and Malware, and Vulnerability Assessment,
Gothenburg, Sweden, 19–20 June 2019; Springer: Cham, Switzerland, 2019; pp. 23–42.

20. Contributors to Wikimedia projects. JavaScript-Wikipedia. 2001. Available online: https://en.wikipedia.org/w/index.php?title=
JavaScript&oldid=1126827786 (accessed on 3 December 2022).

21. Projects, T.C. Introduction to Portable Native Client. 2022. Available online: https://www.chromium.org/nativeclient/pnacl/
introduction-to-portable-native-client (accessed on 2 December 2022).

22. Emscripten. Main—Emscripten 3.1.26-git (dev) Documentation. 2022. Available online: https://emscripten.org (accessed on 1
December 2022).

23. Contributors to Wikimedia Projects. Java (Programming Language)-Wikipedia. 2022. Available online: https://en.wikipedia.
org/w/index.php?title=Java_(programming_language)&oldid=1126888277 (accessed on 2 December 2022).

24. Contributors to Wikimedia Projects. Adobe Flash-Wikipedia. 2022. Available online: https://en.wikipedia.org/w/index.php?
title=Adobe_Flash&oldid=1126708043 (accessed on 2 December 2022).

25. Haas, A.; Rossberg, A.; Schuff, D.L.; Titzer, B.L.; Holman, M.; Gohman, D.; Wagner, L.; Zakai, A.; Bastien, J. Bringing the web up
to speed with WebAssembly. In Proceedings of the 38th ACM SIGPLAN Conference on Programming Language Design and
Implementation, Barcelona, Spain, 18–23 June 2017; pp. 185–200.

26. w3c. World Wide Web Consortium (W3C) Brings a New Language to the Web as WebAssembly Becomes a W3C Recommendation.
2019. Available online: https://www.w3.org/2019/12/pressrelease-wasm-rec.html.en (accessed on 16 November 2022).

27. Mozilla Using the WebAssembly JavaScript API-WebAssembly | MDN. 2022. Available online: https://developer.mozilla.org/
en-US/docs/WebAssembly/Using_the_JavaScript_API (accessed on 29 November 2022).

28. Node.js. Node.js. 2022. Available online: https://nodejs.org/en (accessed on 27 November 2022).
29. Wasi. WASI|. 2022. Available online: https://wasi.dev (accessed on 25 November 2022).
30. Rustwasm. Wasm-Pack. 2022. Available online: https://rustwasm.github.io/wasm-pack (accessed on 23 November 2022).
31. WebAssembly. Wabt. 2022. Available online: https://github.com/WebAssembly/wabt (accessed on 26 November 2022).
32. w3c. Same Origin Policy-Web Security. 2022. Available online: https://www.w3.org/Security/wiki/Same_Origin_Policy

(accessed on 26 November 2022).
33. Docs, W. Security-WebAssembly. 2022. Available online: https://webassembly.org/docs/security/#users (accessed on 3

November 2022).
34. McFadden, B.; Lukasiewicz, T.; Dileo, J.; Engler, J. Security chasms of wasm. 2018. NCC Group Whitepaper. Available

online: https://git.edik.cn/book/awesome-wasm-zh/raw/commit/e046f91804fb5deb95affb52d6348de92c5bd99c/spec/us-
18-Lukasiewicz-WebAssembly-A-New-World-of-Native_Exploits-On-The-Web-wp.pdf (accessed in November 2022).

35. Fastly. Summary of June 8 Outage. 2021. Available online: https://www.fastly.com/blog/summary-of-june-8-outage (accessed
on 29 November 2022).

36. Szabo, N. Smart Contracts. 1994. Available online: https://www.fon.hum.uva.nl/rob/Courses/InformationInSpeech/CDROM/
Literature/LOTwinterschool2006/szabo.best.vwh.net/smart.contracts.html (accessed on 5 February 2024).

37. He, N.; Zhang, R.; Wang, H.; Wu, L.; Luo, X.; Guo, Y.; Yu, T.; Jiang, X. EOSAFE: Security Analysis of EOSIO Smart Contracts.
In Proceedings of the 30th USENIX Security Symposium (USENIX Security 21), Vancouver, BC, Canada, 11–13 August 2021;
USENIX Association: Berkeley, CA, USA, 2021; pp. 1271–1288.

38. Alliance, C.T. The Illicit Cryptocurrency Mining Threat. 2018. Available online: https://cyberthreatalliance.org/wp-content/
uploads/2018/09/CTA-Illicit-CryptoMining-Whitepaper.pdf (accessed on 25 November 2022).

39. Lonkar, A.; Chandrayan, S. The dark side of WebAssembly. In Proceedings of the Virus Bulletin Conference, October 2018; Virus
Bulletin: Montreal, Canada, 2018.

40. Kim, M.; Jang, H.; Shin, Y. Avengers, Assemble! Survey of WebAssembly Security Solutions. In Proceedings of the 2022 IEEE
15th International Conference on Cloud Computing (CLOUD), Barcelona, Spain, 10–16 July 2022; IEEE: Piscataway, NJ, USA,
2022; pp. 543–553. https://doi.org/10.1109/CLOUD55607.2022.00077.

https://doi.org/10.1145/3442381.3450138
https://doi.org/10.1145/3442381.3450138
https://peckshield.medium.com/defeating-eos-gambling-games-the-tech-behind-random-number-loophole-cf701c616dc0
https://peckshield.medium.com/defeating-eos-gambling-games-the-tech-behind-random-number-loophole-cf701c616dc0
https://doi.org/10.1145/3457913.3457920
https://doi.org/10.1145/3457913.3457920
https://en.wikipedia.org/w/index.php?title=JavaScript&oldid=1126827786 
https://en.wikipedia.org/w/index.php?title=JavaScript&oldid=1126827786 
https://www.chromium.org/nativeclient/pnacl/introduction-to-portable-native-client
https://www.chromium.org/nativeclient/pnacl/introduction-to-portable-native-client
https://emscripten.org
https://en.wikipedia.org/w/index.php?title=Java_(programming_language)&oldid=1126888277
https://en.wikipedia.org/w/index.php?title=Java_(programming_language)&oldid=1126888277
https://en.wikipedia.org/w/index.php?title=Adobe_Flash&oldid=1126708043
https://en.wikipedia.org/w/index.php?title=Adobe_Flash&oldid=1126708043
https://www.w3.org/2019/12/pressrelease-wasm-rec.html.en
https://developer.mozilla.org/en-US/docs/WebAssembly/Using_the_JavaScript_API
https://developer.mozilla.org/en-US/docs/WebAssembly/Using_the_JavaScript_API
https://nodejs.org/en
https://wasi.dev
https://rustwasm.github.io/wasm-pack
https://github.com/WebAssembly/wabt
https://www.w3.org/Security/wiki/Same_Origin_Policy
https://webassembly.org/docs/security/#users
https://git.edik.cn/book/awesome-wasm-zh/raw/commit/e046f91804fb5deb95affb52d6348de92c5bd99c/spec/us-18-Lukasiewicz-WebAssembly-A-New-World-of-Native_Exploits-On-The-Web-wp.pdf
https://git.edik.cn/book/awesome-wasm-zh/raw/commit/e046f91804fb5deb95affb52d6348de92c5bd99c/spec/us-18-Lukasiewicz-WebAssembly-A-New-World-of-Native_Exploits-On-The-Web-wp.pdf
https://www.fastly.com/blog/summary-of-june-8-outage
https://www.fon.hum.uva.nl/rob/Courses/InformationInSpeech/CDROM/Literature/LOTwinterschool2006/szabo.best.vwh.net/smart.contracts.html
https://www.fon.hum.uva.nl/rob/Courses/InformationInSpeech/CDROM/Literature/LOTwinterschool2006/szabo.best.vwh.net/smart.contracts.html
https://cyberthreatalliance.org/wp-content/uploads/2018/09/CTA-Illicit-CryptoMining-Whitepaper.pdf
https://cyberthreatalliance.org/wp-content/uploads/2018/09/CTA-Illicit-CryptoMining-Whitepaper.pdf
https://doi.org/10.1109/CLOUD55607.2022.00077


Future Internet 2024, 16, 84 21 of 22

41. Tekiner, E.; Acar, A.; Uluagac, A.S.; Kirda, E.; Selcuk, A.A. SoK: Cryptojacking Malware. In Proceedings of the 2021 IEEE
European Symposium on Security and Privacy (EuroS&P), Vienna, Austria, 6–10 September 2021; IEEE: Piscataway, NJ, USA,
2021; pp. 120–139.

42. Romano, A.; Liu, X.; Kwon, Y.; Wang, W. An Empirical Study of Bugs in WebAssembly Compilers. In Proceedings of the 2021
36th IEEE/ACM International Conference on Automated Software Engineering (ASE), Melbourne, Australia, 15–19 November
2021; pp. 42–54. https://doi.org/10.1109/ASE51524.2021.9678776.

43. Assemblyscript. AssemblyScript. 2022. Available online: https://www.assemblyscript.org (accessed on 24 November 2022).
44. Rustwasm. Wasm-Bindgen. 2022. Available online: https://github.com/rustwasm/wasm-bindgen (accessed on 23 Novem-

ber 2022).
45. Konoth, R.K.; Vineti, E.; Moonsamy, V.; Lindorfer, M.; Kruegel, C.; Bos, H.; Vigna, G. Minesweeper: An in-depth look into drive-by

cryptocurrency mining and its defense. In Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communications
Security, Toronto, BC, Canada, 15–19 October 2018; pp. 1714–1730.

46. Wang, W.; Ferrell, B.; Xu, X.; Hamlen, K.W.; Hao, S. SEISMIC: SEcure In-lined Script Monitors for Interrupting Cryptojacks. In
Computer Security; Springer International Publishing: Cham, Switzerland, 2018; pp. 122–142. https://doi.org/10.1007/978-3-319-
98989-1_7.

47. Romano, A.; Zheng, Y.; Wang, W. MinerRay: Semantics-aware analysisfor ever-evolving cryptojacking detection. In Proceedings
of the 35th IEEE/ACM International Conference on Automated Software Engineering, Virtual Event, Australia, 21–25 December
2020; ACM: New York, NY, USA, 2020. https://doi.org/10.1145/3324884.3416580.

48. Rodriguez, J.D.P.; Posegga, J. RAPID: Resource and API-Based Detection Against In-Browser Miners. In Proceedings of the 34th
Annual Computer Security Applications Conference, San Juan, PR, USA, 3–7 December 2018; ACM: New York, NY, USA, 2018.
https://doi.org/10.1145/3274694.3274735.

49. Naseem, F.N.; Aris, A.; Babun, L.; Tekiner, E.; Uluagac, A.S. MINOS: A Lightweight Real-Time Cryptojacking Detection System.
In Proceedings of the NDSS, Virtual, 21–25 February 2021.

50. Kharraz, A.; Ma, Z.; Murley, P.; Lever, C.; Mason, J.; Miller, A.; Borisov, N.; Antonakakis, M.; Bailey, M. Outguard: Detecting
In-Browser Covert Cryptocurrency Mining in the Wild. In Proceedings of the The World Wide Web Conference on-WWW’19, San
Francisco, CA, USA; 13–17 May 2019; ACM Press: New York, NY, USA, 2019. https://doi.org/10.1145/3308558.3313665.

51. Bian, W.; Meng, W.; Zhang, M. MineThrottle: Defending against Wasm In-Browser Cryptojacking. In Proceedings of the Web
Conference 2020, Taipei, Taiwan, 20–24 April 2020; WWW ’20; pp. 3112–3118. https://doi.org/10.1145/3366423.3380085.

52. Kelton, C.; Balasubramanian, A.; Raghavendra, R.; Srivatsa, M. Browser-Based Deep Behavioral Detection of Web Cryptomining
with CoinSpy. In Proceedings of the 2020 Workshop on Measurements, Attacks, and Defenses for the Web. Internet Society, San
Diego, CA, USA, 23 February 2020. https://doi.org/10.14722/madweb.2020.23002.

53. Stiévenart, Q.; De Roover, C. Compositional information flow analysis for webassembly programs. In Proceedings of the 2020
IEEE 20th International Working Conference on Source Code Analysis and Manipulation (SCAM), Adelaide, SA, Australia, 28
September–2 October 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 13–24. WASSAIL.

54. Szanto, A.; Tamm, T.; Pagnoni, A. Taint tracking for WebAssembly. arXiv 2018. arXiv:1807.08349.
55. Sun, P.; Garcia, L.; Han, Y.; Zonouz, S.; Zhao, Y. Poster: Known Vulnerability Detection for WebAssembly Binaries. 2021. Available

online: https://www.researchgate.net/publication/351101053_Poster_Known_Vulnerability_Detection_for_WebAssembly_
Binaries (accessed in November 2022).

56. Lopes, P.D.R. Discovering vulnerabilities in webassembly with code property graphs. Master’s Thesis, Instituto Superior Técnico,
Lisbon, Portugal. 2021.

57. Fu, W.; Lin, R.; Inge, D. Taintassembly: Taint-based information flow control tracking for webassembly. arXiv 2018,
arXiv:1802.01050.

58. Marques, F.; Fragoso Santos, J.; Santos, N.; Adão, P. Concolic Execution for WebAssembly. In Proceedings of the 36th European
Conference on Object-Oriented Programming (ECOOP 2022), Berlin, Germany, 6–10 June 2022; Ali, K., Vitek, J., Eds.; Leibniz
International Proceedings in Informatics (LIPIcs); Volume 222, pp. 11:1–11:29. https://doi.org/10.4230/LIPIcs.ECOOP.2022.11.

59. Lehmann, D.; Pradel, M. Wasabi: A framework for dynamically analyzing webassembly. In Proceedings of the Twenty-Fourth
International Conference on Architectural Support for Programming Languages and Operating Systems, Providence, RI, USA,
13–17 April 2019; pp. 1045–1058.

60. Lehmann, D.; Torp, M.T.; Pradel, M. Fuzzm: Finding Memory Bugs through Binary-Only Instrumentation and Fuzzing of
WebAssembly. arXiv 2021, arXiv:2110.15433. https://doi.org/10.48550/ARXIV.2110.15433.

61. Haßler, K.; Maier, D. WAFL: Binary-Only WebAssembly Fuzzing with Fast Snapshots. In Proceedings of the Reversing and
Offensive-oriented Trends Symposium, Vienna, Austria, 18–19 November 2021; pp. 23–30.

62. Quan, L.; Wu, L.; Wang, H. EVulHunter: Detecting Fake Transfer Vulnerabilities for EOSIO’s Smart Contracts at Webassembly-
level. arXiv 2019, arXiv:1906.10362.

63. Wang, D.; Jiang, B.; Chan, W.K. WANA: Symbolic Execution of Wasm Bytecode for Cross-Platform Smart Contract Vulnerability
Detection. arXiv 2020, arXiv:2007.15510. https://doi.org/10.48550/ARXIV.2007.15510.

64. Chen, W.; Sun, Z.; Wang, H.; Luo, X.; Cai, H.; Wu, L. WASAI: Uncovering Vulnerabilities in Wasm Smart Contracts. In Proceedings
of the 31st ACM SIGSOFT International Symposium on Software Testing and Analysis, Virtual, Republic of Korea, 18–22 July
2022; ISSTA 2022; pp. 703–715. https://doi.org/10.1145/3533767.3534218.

https://doi.org/10.1109/ASE51524.2021.9678776
https://www.assemblyscript.org
https://github.com/rustwasm/wasm-bindgen
https://doi.org/10.1007/978-3-319-98989-1_7
https://doi.org/10.1007/978-3-319-98989-1_7
https://doi.org/10.1145/3324884.3416580
https://doi.org/10.1145/3274694.3274735
https://doi.org/10.1145/3308558.3313665
https://doi.org/10.1145/3366423.3380085
https://doi.org/10.14722/madweb.2020.23002
https://www.researchgate.net/publication/351101053_Poster_Known_Vulnerability_Detection_for_WebAssembly_Binaries
https://www.researchgate.net/publication/351101053_Poster_Known_Vulnerability_Detection_for_WebAssembly_Binaries
https://doi.org/10.4230/LIPIcs.ECOOP.2022.11
https://doi.org/10.48550/ARXIV.2110.15433
https://doi.org/10.48550/ARXIV.2007.15510
https://doi.org/10.1145/3533767.3534218


Future Internet 2024, 16, 84 22 of 22

65. Li, W.; He, J.; Zhao, G.; Yang, J.; Li, S.; Lai, R.; Li, P.; Tang, H.; Luo, H.; Zhou, Z. EOSIOAnalyzer: An Effective Static Analysis
Vulnerability Detection Framework for EOSIO Smart Contracts. In Proceedings of the 2022 IEEE 46th Annual Computers,
Software, and Applications Conference (COMPSAC), Los Alamitos, CA, USA, 27 June–1 July 2022; IEEE: Piscataway, NJ, USA,
2022. https://doi.org/10.1109/compsac54236.2022.00124.

66. Coolstory. CryptoNight–CryptoNote Protocol–BitcoinWiki. BitcoinWiki 2018 . Available online: https://bitcoinwiki.org/wiki/
cryptonote (accessed in November 2022).

67. Docker. Develop with Docker Engine API. 2022. Available online: https://docs.docker.com/engine/api (accessed on 3
November 2022).

68. Blackshear, S.; Gorogiannis, N.; O’Hearn, P.W.; Sergey, I. RacerD: compositional static race detection. Proc. ACM Program. Lang.
2018, 2, 1–28.

69. Journault, M.; Miné, A.; Ouadjaout, A. Modular static analysis of string manipulations in C programs. In Proceedings of the
International Static Analysis Symposium, Freiburg, Germany, 29–31 August 2018; Springer: Cham, Switzerland, 2018; pp. 243–262.

70. Google. AFL. 2022. Available online: https://github.com/google/AFL (accessed on 3 November 2022).
71. Fioraldi, A.; Maier, D.; Eißfeldt, H.; Heuse, M. AFL++: Combining Incremental Steps of Fuzzing Research. In Proceedings of the

14th USENIX Workshop on Offensive Technologies (WOOT 20), Boston, MA, USA, 10–11 August 2020.
72. WAVM. WAVM. 2021. Available online: https://wavm.github.io (accessed on 3 November 2022).
73. FuzzingLabs. Octopus. 2022. Available online: https://github.com/FuzzingLabs/octopus (accessed on 5 November 2022).
74. Second State. SOLL. 2022. Available online: https://github.com/second-state/soll (accessed on 5 November 2022).
75. Eosio. Cleos–EOSIO. 2022. Available online: https://eos.io/for-developers/build/cleos (accessed on 29 November 2022).
76. Bhansali, S.; Aris, A.; Acar, A.; Oz, H.; Uluagac, A.S. A First Look at Code Obfuscation for WebAssembly. In Proceedings of

the 15th ACM Conference on Security and Privacy in Wireless and Mobile Networks, San Antonio, TX, USA, 16–19 May 2022;
WiSec’22; pp. 140–145. https://doi.org/10.1145/3507657.3528560.

77. Liao, S. UNICEF wants you to mine cryptocurrency for charity. Verge 2018 . Available online: https://www.theverge.com/2018
/4/30/17303624/unicef-mining-cryptocurrency-charity-monero (accessed in November 2022).

78. Varlioglu, S.; Gonen, B.; Ozer, M.; Bastug, M. Is cryptojacking dead after coinhive shutdown? In Proceedings of the 2020
3rd International Conference on Information and Computer Technologies (ICICT), San Jose, CA, USA, 9–12 March 2020; IEEE:
Piscataway, NJ, USA, 2020; pp. 385–389.

79. Spies, B.; Mock, M. An Evaluation of WebAssembly in Non-Web Environments. In Proceedings of the 2021 XLVII Latin American
Computing Conference (CLEI), Cartago, Costa Rica, 25–29 October 2021; pp. 1–10. https://doi.org/10.1109/CLEI53233.2021.96
40153.

80. Singh, J.; Singh, J. Challenge of malware analysis: malware obfuscation techniques. Int. J. Inf. Secur. Sci. 2018, 7, 100–110.
81. VirusTotal. VirusTotal-Home. 2022. Available online: https://www.virustotal.com/gui/home/upload (accessed on 2

December 2022).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1109/compsac54236.2022.00124
https://bitcoinwiki.org/wiki/cryptonote
https://bitcoinwiki.org/wiki/cryptonote
https://docs.docker.com/engine/api
https://github.com/google/AFL
https://wavm.github.io
https://github.com/FuzzingLabs/octopus
https://github.com/second-state/soll
https://eos.io/for-developers/build/cleos
https://doi.org/10.1145/3507657.3528560
https://www.theverge.com/2018/4/30/17303624/unicef-mining-cryptocurrency-charity-monero
https://www.theverge.com/2018/4/30/17303624/unicef-mining-cryptocurrency-charity-monero
https://doi.org/10.1109/CLEI53233.2021.9640153
https://doi.org/10.1109/CLEI53233.2021.9640153
https://www.virustotal.com/gui/home/upload

	Introduction
	Background
	History
	WebAssembly
	Security
	Vulnerabilities
	Smart Contracts
	Cryptojacking


	Related Work
	Methodology
	Search Strategy
	Selection Process
	Data Extraction and Analysis

	Analysis Techniques for WebAssembly
	Detecting Malicious WebAssembly Binaries
	Static Analysis
	Dynamic Analysis
	Comparative Analysis

	Detecting Vulnerabilities in WebAssembly Binaries
	Static Analysis
	Dynamic Analysis
	Hybrid Analysis
	Comparative Analysis

	Detecting Vulnerabilities in WebAssembly Smart Contracts
	Static Analysis
	Dynamic Analysis
	Comparative Analysis


	Discussion
	Key Findings
	Limitations
	Applicability of WebAssembly Analysis Techniques in Other Domains

	Conclusions
	References

