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Abstract: With the recent advances in machine learning (ML), several models have been successfully
applied to financial and accounting data to predict the likelihood of companies’ bankruptcy. However,
time series have received little attention in the literature, with a lack of studies on the application of
deep learning sequence models such as Recurrent Neural Networks (RNNs) and the recent Attention-
based models in general. In this research work, we investigated the application of Long Short-Term
Memory (LSTM) networks to exploit time series of accounting data for bankruptcy prediction. The
main contributions of our work are the following: (a) We proposed a multi-head LSTM that models
each financial variable in a time window independently and compared it with a single-input LSTM
and other traditional ML models. The multi-head LSTM outperformed all the other models. (b) We
identified the optimal time series length for bankruptcy prediction to be equal to 4 years of accounting
data. (c) We made public the dataset we used for the experiments which includes data from 8262
different public companies in the American stock market generated in the period between 1999 and
2018. Furthermore, we proved the efficacy of the multi-head LSTM model in terms of fewer false
positives and the better division of the two classes.

Keywords: bankruptcy prediction; deep learning; multi-head; Recurrent Neural Networks; stock
market

1. Introduction

Predicting corporate bankruptcy is one of the most fundamental tasks in credit risk
assessment. Especially after the 2007/2008 financial crisis, it has become a top priority for
most financial institutions, fund managers, and lenders, due to the substantial financial
damage that can result from corporate default. Indeed, corporate failure may result in high
social costs and further propagate recession, especially when it involves a large number
of companies simultaneously and affects the entire economy [1]. Since the 2008 financial
crisis, researchers and practitioners have made several efforts to build models that can
efficiently assess the likelihood of company default, especially for public companies in the
stock market. Regulators also benefit from accurate bankruptcy forecasting models since
they can monitor the financial health of institutions and curb systemic risks [2].

Since Altman presented his bankruptcy forecasting model in 1968 [3], research has
shown that accounting-based ratios and stock market data can signal whether a firm is
likely to face severe difficulties, such as bankruptcy. Although default prediction models
have been studied for decades, we still lack a definite theory of predicting corporate fail-
ure [4]. The lack of a theoretical framework led to the adoption of a common development
methodology where research is more focused on identifying discriminant features using a
trial-and-error approach [5,6].

Future Internet 2024, 16, 79. https://doi.org/10.3390/fi16030079 https://www.mdpi.com/journal/futureinternet

https://doi.org/10.3390/fi16030079
https://doi.org/10.3390/fi16030079
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/futureinternet
https://www.mdpi.com
https://orcid.org/0000-0002-6592-7451
https://orcid.org/0000-0003-1808-4487
https://orcid.org/0000-0003-4669-512X
https://orcid.org/0000-0003-3528-0260
https://doi.org/10.3390/fi16030079
https://www.mdpi.com/journal/futureinternet
https://www.mdpi.com/article/10.3390/fi16030079?type=check_update&version=1


Future Internet 2024, 16, 79 2 of 20

The advent of machine learning (ML) and its advances offered novel possibilities for
bankruptcy prediction in terms of learning models with several attempts using different
ML algorithms and techniques such as the Support Vector Machine (SVM) [7], boosting
techniques [8], discriminant analysis [9], and neural networks. Moreover, different ar-
chitectures have been evaluated to identify effective decision boundaries for this binary
classification problem, such as the least absolute shrinkage and selection operator [10], the
dynamic slacks-based model [11], and two-stage classification [12].

However, a common element of these models is the punctual application of market-
based and accounting-based variables, while time series have received little attention, and
there is insufficient literature concerning the application of the most recent deep learning
models for sequence data such as Recurrent Neural Networks and Attention-based models.
In this paper, we compare two different Recurrent Neural Network (RNN) architectures
based on Long Short-Term Memory (LSTM) units to predict bankruptcy from a time series
of accounting data. In general, RNN-based models have been seldom investigated in the
recent literature. In particular, we used a single-input RNN and a multi-head RNN that
modeled each financial variable within a time window, independently exploiting the latent
representation learned only in the last stage of the bankruptcy classification process. The
idea of building a multi-head architecture aimed to investigate whether an attention method
pipeline can outperform a classical RNN setting when learning a latent representation of
the company by focusing on each time series independently.

The main contributions of this paper are the following:

• We proposed a multi-head LSTM for bankruptcy prediction on time series data.
• We investigated the optimal time window of financial variables to predict bankruptcy

with a comparison among the main state-of-the-art approaches in machine learning
and deep learning. Experiments were performed on public companies traded in the
American stock market with data available between 2000 and 2018.

• We anonymized our dataset and made it public for the scientific community for further
investigations and to provide a benchmark for future studies on this topic.

• We analyzed our models on the test set, using T-SNE [13] to show the ability of our
models to capture patterns. We also performed an in-depth analysis of false positives.

2. Related Works

In traditional methods to forecast bankruptcies, Altman’s Z-score is the most promi-
nent approach, but the Kralicek quick test and Taffler’s model also use scoring method-
ologies to provide ordinal rankings of default risk [14,15]. Altman, as well as Beaver and
William, used discriminant analysis, which has been widely employed following their
works, while Ohlson was the first to introduce a binary response model using explanatory
variables and applying a logistic function [16,17]. Scoring methodologies have also been
used to produce a binary response given a pre-set threshold. For example, Altman sug-
gested the use of two thresholds, 1.81 and 2.99. According to this, an Altman’s Z-score
above the 2.99 threshold means that firms are not predicted to default in the next two
years, a score below 1.81 indicates that they are predicted to default, while a score between
the two thresholds lies in a “zone of ignorance” where no clear decision can be taken.
However, even though many practitioners use these thresholds, in Altman’s view, this is an
unfortunate practice since over the past 50 years, credit-worthiness dynamics and trends
have changed so dramatically that the original zone cutoffs are no longer relevant [18].

Even though many authors continue to work on traditional bankruptcy models, the ex-
ploration of machine learning applications for corporate default has been more prevalent
in recent years [5,6,12,19–22]. Barboza et al. showed that, on average, machine learning
models exhibit 10% higher accuracy compared to traditional ones. Specifically, in this
study, Support Vector Machines (SVMs), Random Forests (RFs), and bagging and boosting
techniques were tested for predicting bankruptcy events and compared with results from
discriminant analysis, logistic regression, and neural networks. The authors found that
bagging, boosting, and RFs outperformed all other models [23]. However, Altman, in his
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recent book, discussed a trade-off between models’ performance and explainability when
using machine learning models, expressing skepticism as to whether practitioners would
adopt “black-box” methods but acknowledging the superiority of the models in assessing
corporate distress [18].

Considering that the results regarding the superiority of these models are still inconclu-
sive, new studies exploring different models, contexts, and datasets are relevant. Machine
learning techniques like ensembles of classifiers were first explored for default prediction
by Nanni et al. [24]. Kim et al. showed that the ensembles greatly outperformed standalone
classifiers [25]. Wang et al. further analyzed the performance of ensemble models, finding
that bagging outperformed boosting in average accuracy for all credit databases they used,
as well as type I and type II errors [26]. In [27], some evidence was presented regarding
the need to consider time series for survival probability estimation over the years and
bankruptcy prediction, with some benchmarks that also prove that neural networks, when
properly designed, can achieve better results with time-dependent accounting variables.

Barboza et al. also argued that a firm’s failure will likely be caused by difficulties
over time, not just the year before bankruptcy. To incorporate the dynamic behavior of
firms, they added new variables reflecting changes in financial metrics such as growth
measures and changes [23]. Findings dating back to 1966 show that firms exhibit failure
tendencies as much as five years before the actual event [16]. On the other hand, in 1998,
Mossman et al. pointed out that models are only capable of predicting bankruptcy two
years before the event, which improves to three years if used for multi-period corporate
default prediction [28,29]. In most studies, ratios are analyzed backward in time starting
with the bankruptcy event and going back until the model becomes unreliable or inaccurate.
The time threshold for developing good classification models is two or three years, at most
five, while Altman mentioned in his book that there are certain characteristics of bonds
at birth that can significantly influence their default likelihood over up to ten years after
issuance [16,18,28,29].

However, most of the bankruptcy prediction models in the literature do not take
advantage of the sequential nature of the financial data. This lack of multi-period models
was also emphasized in Kim et al.’s literature review [30]. One of the few studies that have
leveraged the sequential nature of accounting data is that of Vochozka et al., who examined
the performance of a Long Short-Term Memory (LSTM) model for bankruptcy prediction
in the Czech manufacturing sector [31]. Kim et al. also used quarterly accounting data
for non-financial industry companies and daily market data from January 2007 through
December 2019 in both RNN and LSTM models, finding that RNNs made reasonable
predictions in most situations, while both LSTMs and RNNs outperformed the logistic
regression, Support Vector Machine, and Random Forest methodologies [32]. However,
to the best of our knowledge, there are no studies of corporate bankruptcy that have
examined a similar number of observations or leveraged time series data considering
different time windows to predict defaults. Since it is difficult to make a fair comparison
with the available literature (most of the datasets are either small or not usable with deep
learning; or, more commonly, they have not been publicly released), we compared our deep
learning model with all the algorithms presented in this section on our dataset. The dataset
was publicly released for further investigations and comparisons, and it is available on
GitHub (https://github.com/sowide/bankruptcy_dataset, accessed on 26 February 2024).
See Section 4 for more details.

3. Recurrent Neural Networks

A Recurrent Neural Network (RNN) is a deep learning architecture that aims to process
sequences of values in the form x(1), x(2).. . . ., x(t). This ability is due to the network’s
parameter sharing across different parts of a model, which makes it possible to extend
and apply the model to examples of different forms. Moreover, parameter sharing also
allows the model to preserve generalization across the sequence since the same parameters
(weights) are used for each value of the time index, while a traditional fully connected

https://github.com/sowide/bankruptcy_dataset
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feed-forward network would have separate parameters for each input feature. The time
index refers to the position in the sequence. A Recurrent Neural Network is generally
composed of a single unit of processing that produces an output y at each time step and has
recurrent connections in general from the hidden units a<j> and optionally from the output.
When an RNN has only recurrent connections from the hidden units, it processes an entire
sequence and then produces a single output. Figure 1 shows a generic RNN structure
that processes a sequence of t elements with recurrent connections only from the hidden
units. Input, output, and recurrent hidden states are propagated using different weight
matrices whose elements are learned during training via the back-propagation through
time algorithm [33]. Equations (1) and (2) describe the internal behavior of an RNN unit.
The initial hidden state a0 is generally equal to zero. In general, for a generic time index j,
the hidden state is computed as a weighted sum of the previous state aj−1 and the current
input xj plus a bias term. After that, an activation function σ is applied to the result as
in fully connected networks. The output at each time step only depends on the current
internal state plus a different bias by. The two activation functions to estimate the hidden
state and the output may differ. Additionally, the weight matrices Waa, Wxa, and Wya play
crucial roles in the computations:

• Waa: Weight matrix from the previous hidden state a<j−1> to the current hidden
state a<j>.

• Wxa: Weight from the input at time j (x<j>) to the current hidden state a<j>.
• Wya: Weight matrix from the hidden state a<j> to the output y<j>.

a<j> = σ(Waa · a<j−1> + Wxa · x<j> + ba) (1)

y<j> = σ(Wya · a<j> + by) (2)

RNNUnrolled RNN
Figure 1. (Left) A generic structure of an unrolled Recurrent Neural Network with recurrent con-
nections from the hidden layer. (Right) The resulting RNN when presented as a single unit with
recurrent connections.

In this way, Recurrent Neural Networks can process entire sequences and can use
contextual information when mapping inputs into outputs. Unfortunately, for standard
RNN architectures, the range of context that can be in practice is quite limited, especially
for long sequences and for more than one sequence in the input (matrix input). The major
issue is that the influence of a given input on the hidden state, and therefore on the network
output, either decays or blows up exponentially as it cycles around the network’s recurrent
connections. This effect is often referred to in the literature as the vanishing gradient
problem [34]. Several approaches have been presented to solve this issue like the Long-Short
Term Memory (LSTM) architecture [35] and the Gated Recurrent Unit (GRU) [36]. In both
architectures, several additional components (called gates) are introduced inside the unit to
extend the memory of the network in case of a long sequence so that the first part of each



Future Internet 2024, 16, 79 5 of 20

sequence is not forgotten when producing the output (long-term dependency problem) and
to prevent the gradient from vanishing. We describe LSTM since it is the architecture used in
this research work and because the GRU unit can be taken back to a particular case of the
LSTM unit. The basic idea is to employ a unit state sj to retain the information taken from
earlier time indexes in the sequence. The unit is composed of three gates:

1. Forget Gate: This determines the amount of information that should be retrieved from
the previous unit state.

2. Input Gate: This defines the amount of information from the new input x<j> that
should be used to update the unit’s internal state.

3. Output Gate: This defines the output of the unit as a function of its current unit state.

An example of an LSTM unit is presented in Figure 2. Every connection is weighted
by a different matrix whose elements are estimated using back-propagation through time
as in basic RNNs.

σ σ tanh σ

 
x<j>

 

a<j-1>

fj ij x

S<j-1>
 

x + S
<j>

oj

tanh

x

a
<j>

Forget Gate Input Gate Output Gate

LSTM Unit

Figure 2. The internal structure of an LSTM unit with Forget, Input, and Output Gates and the
respective activation functions.

4. Dataset

In this section, we present the dataset used in the experiments, which we have made
available to the scientific community. The procedure used to build the dataset can be
described as follows:

1. We collected data on 8262 different public companies in the American stock market
between 1999 and 2018. We selected the same companies used in [37,38] since these
companies were considered a good approximation of the American stock market
(NYSE and NASDAQ) in those time intervals.

2. For these firms, we collected 18 financial variables, often used for bankruptcy predic-
tion, for each year. In bankruptcy prediction, it is common to consider accounting
information and up-to-date market information that may reflect the company’s lia-
bility and profitability. We selected the variables listed in Table 1 as the minimum
common set found in the literature [3,10,39] and to have a dataset for twenty years
without missing observations.

3. For all the experiments presented in Section 5, we only considered firms with at least
5 years of activity since we aimed to first identify the time window that optimized the
bankruptcy prediction accuracy.

Each company was labeled every year depending on its status the following year.
According to the Security Exchange Commission (SEC), a company in the American market
is considered bankrupted in two cases:
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• If the firm’s management files Chapter 11 of the Bankruptcy Code to “reorganize” its
business—management continues to run the day-to-day business operations, but all
significant business decisions must be approved by a bankruptcy court.

• If the firm’s management files Chapter 7 of the Bankruptcy Code—the company stops
all operations and goes completely out of business.

In both cases, we labeled the fiscal year before the chapter filing as “bankruptcy” (1).
Otherwise, the company was considered healthy (0). In light of this, our dataset enables a
model to learn how to predict bankruptcy at least one year before it happens.

Table 1. The 18 numerical bankruptcy features.

Variable Name Variable Name

Current assets Total assets
Cost of goods sold Total long-term debt
Depreciation and amortization EBIT
EBITDA Gross profit
Inventory Total current liabilities
Net income Retained earnings
Total receivables Total revenue
Market value Total liabilities
Net sales Total operating expenses

There is typically a strong imbalance in bankruptcy datasets since the number of firms
that declare default each year is usually a small percentage below 1% of the available firms
in the market. However, in some periods, bankruptcy rates are higher than usual— for
example, during the Dot-Com Bubble in the early 2000s and the Great Recession between
2007 and 2008. Our dataset reflects this condition, as shown in Figure 3. The dataset firm
distribution by year is presented in Table 2.

Figure 3. Rate of bankruptcy in the dataset (2000–2019) with financial variables in the period 1999–2018.

Table 2. Firm distribution by year in the dataset.

Year Total Firms Bankrupt Firms Year Total Firms Bankrupt Firms

2000 5308 3 2010 3743 23
2001 5226 7 2011 3625 35
2002 4897 10 2012 3513 25
2003 4651 17 2013 3485 26
2004 4417 29 2014 3484 28
2005 4348 46 2015 3504 33
2006 4205 40 2016 3354 33
2007 4128 51 2017 3191 29
2008 4009 59 2018 3014 21
2009 3857 58 2019 2723 36
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Moreover, each company in the dataset was categorized using the Standard Industrial
Classification (SIC) system, developed by the US government to classify businesses based
on their primary economic activities. The SIC codes not only distinguish firms but also
enable more granular categorization by specifying major groups within each firm [40].
Major groups represent specific subcategories that define the business-type activities un-
dertaken by these companies. The inclusion of SIC codes and major groups allowed us
to conduct a deep analysis of bankruptcy trends across a wide range of industries. This
classification system helps researchers and analysts gain insights into the economic factors
and market dynamics affecting various sectors of the American economy, making it a
valuable resource for studying bankruptcy patterns and their implications for different
industries and major groups. Additionally, we generated the frequency distribution chart
in Figure 4 to represent the companies’ distribution across different divisions within our
dataset. This histogram provides a clear overview of the prevalence of companies in each
division, highlighting which sectors of the economy were more heavily represented among
the bankrupt firms. It helped us evaluate the overall dataset composition and identify any
potential trends or disparities in bankruptcy occurrences across divisions. In this work,
we performed a comprehensive examination of the dataset, with a particular focus on the
division distribution.

Finally, the resulting dataset of 78,682 firm-year observations was divided into three
subsets according to the time period: a training set, a validation set, and a test set. We
used data from 1999 to 2011 for training, data from 2012 to 2014 for validation and model
comparison, and the remaining years from 2015 to 2018 as a test set to assess the ability of
the models to generalize their prediction to unseen data.
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Figure 4. Distribution of companies by division.

5. Hardware Specifications

All the experiments described in this work were performed using a Linux Ubuntu
server with the following hardware specifications:

• CPU: Intel i9-10900 @2.80 GHZ
• GPU: Nvidia RTX 3090 (24 GB).
• RAM: 32 GB DDR4—2667 MHz.
• Motherboard: Z490-A PRO (MS-7C75).



Future Internet 2024, 16, 79 8 of 20

6. Metrics

We implemented the bankruptcy prediction as a binary prediction task where the
positive class (1) indicated bankruptcy in the next year and the negative class (0) meant
that a company was classified as healthy in the next year. In order to compare our models
and prove their effectiveness, we used different metrics that took into account the imbal-
anced condition of the validation and test sets. Consider the following quantities for the
default prediction:

• True Positive (TP): The number of actually defaulted companies that were correctly
predicted as bankrupted.

• False Negative (FN): The number of actually defaulted companies that were wrongly
predicted as healthy firms.

• True Negative (TN): The number of actually healthy companies that were correctly
predicted as healthy.

• False Positive (FP): The number of actually healthy companies that were wrongly
predicted as bankrupted by the model.

Since the validation and test sets were both imbalanced with a prevalence of healthy
companies, we did not compare the models in terms of model accuracy. Indeed, the
proportion of correct matches would be ineffective in assessing the model performance.
Instead, we computed each class’s precision, recall, and F1 scores. This is highlighted
because, in predicting bankruptcy, an error has a different cost depending on the class that
has been incorrectly predicted. The consequences of erroneously classifying a financially
distressed company as healthy incur a significantly higher cost than misclassifying a healthy
company as financially distressed. In light of this, the precision achieved for a class is the
accuracy of that class’ predictions. The recall (sensitivity) is the ratio of the class instances
that were correctly detected as such by the classifier. The F1 score is the harmonic mean
of precision and recall: whereas the regular mean treats all values equally, the harmonic
mean gives more weight to low values. Consequently, we obtained a high F1 score for a
certain class only if its precision and recall were high. Equations (3)–(5) report how these
quantities are computed for the positive class. The definitions for the negative class are the
same but with positives exchanged for negatives.

Precision =
TP

(TP + FP)
(3)

Recall =
TP

(TP + FN)
(4)

F1score =
2

1
Precision + 1

Recall
(5)

Moreover, we report three global metrics for the classifier that were selected because
they enabled an overall evaluation of the classifier for both classes without being influenced
by the dataset imbalance:

• The Area Under the Curve (AUC) measures the ability of a classifier to distinguish
between classes and is used as a summary of the Receiver Operating Characteristic
(ROC) curve. The ROC curve is created by plotting the true-positive rate (TPR) against
the false-positive rate (FPR) at various threshold settings.

• The macro F1 score is computed as the arithmetic mean of the F1 score of all the classes.
• The micro F1 score is used to assess the quality of multi-label binary problems. It

measures the F1 score of the aggregated contributions of all classes, giving the same
importance to each sample.

Finally, we used two other metrics that are often evaluated in bankruptcy prediction
models. Because bankruptcy is a rare event, using the classification accuracy to measure a
model’s performance can be misleading since it assumes that type I errors (Equation (6))
and type II errors (Equation (7)) are equally costly. The cost of false negatives is much
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greater than the cost of false positives for a financial institution. In light of this, we explicitly
computed and reported type I and type II errors and compared the models focusing in
particular on type II errors and the recall of the positive class.

Type I error =
FP

TN + FP
(6)

Type I I error =
FN

TP + FN
(7)

7. Temporal Window Selection

Before considering the use of time series with deep learning, we investigated a key
question: how many years should be taken into account to maximize bankruptcy prediction
performance? When considering more than one year of accounting variables, different
trade-offs should be considered:

• Some firms can only be considered for certain time windows if they have only recently
been made public.

• Some firms can be excluded depending on the time window, although they existed in
the past, because of an acquisition or merging operation.

• By extending the training and testing window, the number of companies available for
training and testing will inevitably decrease. Moreover, one should consider that a
time window above a certain number of years introduces a statistical bias that limits
the analysis to only structured companies that have been on the market for several
years. At the same time, it leads to ignoring relatively new companies, which usually
have smaller market capitalization and thus are riskier and present a higher probability
of default, especially in an overall adverse economic environment.

To answer these questions, we experimented with different machine learning models to
identify the most promising time window length. In particular, we used the same ML models
that have been considered the most effective in the literature for bankruptcy prediction [18]:
Support Vector Machine (SVM); Logistic Regression (LR); Random Forest (RF); AdaBoost
(AB); Gradient Boosting (GB); Extreme Gradient Boosting (XGB); and two other tree-based
boosting ML models, LightGBM (LGBM) [41] and CatBoost (CB) [42]. Although they have not
been used previously for bankruptcy prediction, these models recently achieved outstanding
performances in other tasks when compared with AB, GB, and XGB.

All the models were trained on the same training set (1999–2011) and compared using
the validation set (2012–2014). The training set was balanced because, otherwise, a bias
would occur that would cause the less representative class for bankruptcy to be wrongly
classified and learned. For this reason, every model was evaluated over 100 independent
and different runs. For every run, the training set was balanced with all the bankruptcy
examples and a random choice of healthy examples from the same period.

We compared all the models using the average Area Under the Curve (AUC) on the
100 runs. The AUC is the measure of the ability of a classifier to distinguish between classes
and is used as a summary of the Receiver Operating Characteristic (ROC) curve. Every
model implemented a binary classification task where the positive class (1) represented
bankruptcy, and the negative class (0) represented the healthy status.

To deal with the constraints previously listed, we evaluated all the companies using a
time window of accounting variables spanning 1–5 years. For RF, AB, GB, XGB, LGBM,
and CB, we used the same number of estimators (equal to 500) for a fair comparison,
while the other specific parameters were taken equal to the defaults provided in the Scikit-
Learn implementations.

In Table 3 we report the average results obtained on the validation set for every model
depending on the number of years considered (window length, WL). Figure 5 summarizes
the comparison. As expected and according to the previous literature, the ensemble models
usually reached better results. In particular, we found that for WL = 4, the Random Forest
with 500 estimators obtained, on average, a greater AUC on the validation set. On the other
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hand, for the WL = 5 case, the best model found was CatBoost. In both cases, the two ML
algorithms achieved better performance compared with the other baselines. For this reason,
we considered both CB and RF for the subsequent analysis.

Table 3. Average AUC on the validation set depending on the number of years considered (window
length, WL). The best results for WL = 4 and WL = 5 are highlighted in boldface.

ML Model
Average AUC

WL = 1 WL = 2 WL = 3 WL = 4 WL = 5

Support Vector Machine 0.635 0.641 0.594 0.589 0.587
Logistic Regression 0.731 0.648 0.676 0.705 0.702
AdaBoost 0.647 0.655 0.664 0.642 0.719
Random Forest 0.745 0.733 0.731 0.759 0.760
Gradient Boosting 0.716 0.702 0.729 0.685 0.742
XGBoost 0.678 0.730 0.695 0.699 0.726
CatBoost 0.724 0.729 0.686 0.749 0.771
LightGBM 0.751 0.699 0.671 0.741 0.736

WL = 1 WL = 2 WL = 3 WL = 4 WL = 5
Window Length

0.50

0.55

0.60

0.65

0.70

0.75

0.80

AU
C

SVM
Logistic Regression
Adaboost
Random Forest

Gradient boosting
Xgboost
LightGBM
CatBoost

Figure 5. Average AUC on the validation set over 100 runs for each model for different window
lengths (WL) in years. The training set was randomly balanced for every run, while the validation set
was imbalanced.

It is important to note that none of the ML models considered were designed to work
on time series data, thus they considered all the variables as independent features. As
expected, increasing the window length led to a longer training time on average for all the
models (Table 4). However, all the models required just a few seconds of training with our
hardware settings. However, the ensemble models performed better than SVM and LR with
more variables and a larger window length. Moreover, using the 18 accounting variables for
4 or 5 consecutive years yielded a better result in terms of AUC, in particular with Random
Forest (0.759 for WL = 4) and CatBoost (0.771 for WL = 5). A possible consideration is that
although RF and CB showed similar overall performance, the computation time required
to train CB was almost six times that required for RF. However, the computation time was
not relevant in our experiments since the dataset was not particularly large. In light of
this, we selected WL = 4 and WL = 5 to further study time series data with Recurrent
Neural Networks.



Future Internet 2024, 16, 79 11 of 20

Table 4. Average training time (seconds) on the validation set depending on the window length (WL).
Times in seconds refer to the average training time for a single run.

ML Model
Average Training Time (s)

WL = 1 WL = 2 WL = 3 WL = 4 WL = 5

Support Vector Machine 0.032 0.036 0.036 0.034 0.033
Logistic Regression 0.018 0.022 0.023 0.024 0.026
AdaBoost 0.826 1.246 1.560 1.769 1.994
Random Forest 0.799 0.973 1.033 1.034 1.059
Gradient Boosting 1.022 1.833 2.545 3.097 3.555
XGBoost 0.421 0.422 0.493 0.478 0.483
CatBoost 6.670 7.059 7.088 7.383 7.398
LightGBM 0.187 0.195 0.191 0.184 0.179

8. LSTM Architectures for Bankruptcy Prediction

According to [43], LSTM performs better than a GRU when the sequence is short,
although with a matrix input. For this reason, we chose the LSTM approach for our
experiments since we were considering eighteen different time series as input, each with
a short sequence length, as determined in the first experiments presented in Section 7.
In order to study the application of RNNs to bankruptcy prediction, we evaluated two
different architectures:

• Single-input LSTM: This is the most common approach with RNNs. The input was a
matrix with 18 rows (the number of accounting variables) and a number of columns
equal to the time window selected for the experiment. Moreover, the LSTM unit was
composed of a sequence of units as long as the time window. Finally, a dense layer
with a Softmax function was used as an output layer for the final prediction.

• Multi-head LSTM: This is one of the main contributions of our research concerning the
current state of the art. To deal with a smaller training set due to the temporal window
selection and the class imbalance, we developed several smaller LSTM architectures,
one for each accounting variable to be analyzed by the model, named LSTM heads.
Each network included a short sequence of units equal to the input sequence length
and contributed to the latent representation of the company learned by utilizing the
accounting variables. Indeed, th output of the multi-head layer was then concatenated
and exploited by a two-layer feed-forward network with a Softmax function in the
output layer. This architecture aimed to test whether an attention method based on a
latent representation of the company that focused on each time series independently
could outperform a classical RNN setting.

Figure 6 summarizes the main differences between the two architectures. The source
code for the multi-head LSTM architecture is publicly available on GitHub (https://github.
com/sowide/Multi-head_LSTM_for_bankruptcy-prediction, accessed on 1 February 2024).

https://github.com/sowide/Multi-head_LSTM_for_bankruptcy-prediction
https://github.com/sowide/Multi-head_LSTM_for_bankruptcy-prediction
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Figure 6. Top image: The multi-head LSTM setting where each financial time series serves as the
input to a different shorter and smaller LSTM unit. The representation learned by each head is then
concatenated and exploited as the input to a subsequent feed-forward network. Bottom image: The
classical RNN setting where the input for our bankruptcy task is a single matrix with 18 rows and
j columns.

9. Results

In this section, we present the results we achieved for bankruptcy prediction using the
two RNN architectures presented in Section 8. Firstly, we compare the RNNs with the best
model found in the preliminary experiments presented in Section 5 using the validation set
(2012–2014), and, finally, we show the results obtained on the previously unseen test set
(2015–2018) to assess the generalization ability of our models.

9.1. LSTM Training and Validation

The two LSTM architectures were trained with exactly the same parameters for a fair
comparison. The main hyper-parameters were the following:

• Epochs = 1000.
• Learning rate = 10−4.
• Batch size = 32 (default Keras value).

To make sure the results were unaffected by unrelated factors, we chose to keep
the parameters of both LSTM architectures the same and only compare the performance
differences between them based on architectural differences. Instead of investigating the
impact of different settings on the results, we wanted to see how their designs affected
their performance. However, it is worth noting that, while both architectures began
with comparable parameters, they were independently optimized using the validation set
and weight initialization approaches. Moreover, we used the early stopping technique
to prevent the network from overfitting, and we employed the validation set to select
the hyper-parameters. In particular, to deal with the imbalance in the training set, we
performed 500 runs for each LSTM architecture by considering a randomly balanced
training set every time.

After this, we first compared single-input LSTM, multi-head LSTM, and previous results
achieved with Random Forest and CatBoost on the same validation set. Figure 7 shows the
model comparison for the temporal windows of 4 and 5 years. Table 5 summarizes
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this result in terms of the average AUC achieved in the 500 runs. For each run, the
models’ weights were randomly initialized. In light of this result, it is clear that, at least
in terms of the AUC, the Recurrent-Network-based deep learning models outperformed
traditional classifiers.

Multi-head LSTM LSTM Random Forest CatBoost
0.50

0.55
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0.65

0.70

0.75

0.80

0.85

AU
C 

va
lu

es

WL = 4

Multi-head LSTM LSTM Random Forest CatBoost
0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85
WL = 5

Figure 7. The box plot shows the locality, spread, and skewness groups of the AUC values through
their quartiles achieved for each model over 500 runs with a different balanced training set. The lines
(whiskers) extending from the boxes indicate the variability outside the upper and lower quartiles.
The the orange line represents the median between the first and third quartiles. The circular points
(fliers) are those past the end of the whiskers.

Table 5. Average and max AUC achieved on the validation set (2012–2014) by Random Forest,
CatBoost, single-input LSTM and multi-head LSTM. The average training time for each model is also
reported for WL = 4 and WL = 5.

Avg AUC Max AUC Avg Training Time (s) Avg AUC Max AUC Avg Training Time (s)

Multi-head LSTM 0.813356 0.837 103.86 0.79 0.828 82.60
LSTM 0.8026 0.8415 51.80 0.7928 0.864 42.86
Random Forest 0.75 0.777 1.035 0.762 0.794 1.062
CatBoost 0.731 0.767 7.388 0.750 0.797 7.432

WL = 4 WL = 5

9.2. Statistical Analysis

The experimental results described in the previous section and presented in Table 5
were computed as an average over 500 different runs and show that our model achieved
much better AUCs with respect to the other models (LSTM, Random Forest, and CatBoost).
We further analyzed these results to prove that our model’s performance was statistically
significant. According to [44], a common way to test whether the difference between two
classifiers’ results over different datasets or runs is non-random is to compute a paired
t-test, which checks whether the difference in their average performance is significantly
different from zero.

However, one of the t-test’s requirements is that the differences between the two
random variables compared are distributed normally. As we show in Figure 8, none of the
performance differences between each model and our multi-head LSTM architecture were
normally distributed; for this reason, according to [45], we used the Wilcoxon Signed-Rank
(WSR) test ([46]), a non-parametric alternative to the paired t-test that ranks the differences
in the performance of two classifiers for each run, ignoring the signs, and compares the
ranks for the positive and negative differences. We set to 0.05 the p-value under which
we rejected the null hypothesis (the two distributions had the same median, and thus the
performance difference could be considered random).
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Figure 8. Performance score distributions with respect to our multi−head LSTM model on the
500 runs over the validation set. Since none of the random variables was normally distributed, we
decided to use the WSR test.

In our case, we achieved a p-value equal to 0 for each comparison with multi-head
LSTM over the same 500 runs when models were trained using the same balanced training
set, and the AUC was evaluated over the same unbalanced validation set. In light of these
results, we can conclude that our model showed better performance in the period between
2012 and 2014. Finally, since the main goal of this analysis is to build a model that can
generalize on unseen samples that were not used during the design phase, we report the
next section, our final analysis of the performance of the best models on the test set to better
prove the benefits of our approach.

10. Final Analysis on the Test Set

In light of the results achieved on the validation set, we selected the optimal single-
input LSTM, the optimal multi-head LSTM, and the optimal Random Forest models. We
defined the optimal model as that which met the following three conditions:

• Lowest difference between training and validation loss to ensure that the highest AUC
was not achieved as a consequence of overfitting.

• Lowest validation loss.
• Highest AUC on the validation set.

We experimented with the best models on the previously unseen test set (companies
between 2015 and 2018). We again compared the single-input LSTM, multi-head LSTM,
and Random Forest classifiers. Figure 9 shows the model comparison in terms of AUC.
In Table 6, we report detailed results for each model in terms of recall on the bankruptcy
class, type I and II errors, and the micro and macro F1 scores. As expected from the previous
results obtained for the AUC on the validation set, the best model was still multi-head
LSTM, which achieved the best result on the test set. In addition, to gain a deeper insight
into our model’s performance on the test set, we leveraged the BAC (balanced accuracy)
metric, which is the arithmetic mean of sensitivity and and specificity.

WL = 4 WL = 5
Window Length

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

AU
C

Random Forest
LSTM

Multi-head LSTM

Figure 9. AUC values on the test set (2015–2018) for Random Forest, single-input LSTM, and
multi-head LSTM when varying the temporal window (WL).
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Table 6. Overall results on the test set (2015–2018) with single-input LSTM and multi-head LSTM.
Rec indicates recall and Pr indicates precision. The best results were achieved for WL = 4 by multi-
head LSTM.

LSTM Multi-Head LSTM LSTM Multi-Head LSTM

TP 88 75 89 71
TN 1233 2158 1071 2085
FN 8 21 2 20
FP 1591 666 1573 559
AUC score 0.832 0.847 0.802 0.825
BAC 0.677 0.773 0.692 0.784
Micro F1 0.772 0.797 0.777 0.793
Macro F1 0.53 0.55 0.528 0.542
Type I error 21.74 18.45 22.65 20.5
Type II error 23.95 28.125 21.97 21.97
Rec bankruptcy 0.76 0.71 0.78 0.78
Pr bankruptcy 0.106 0.117 0.106 0.115
Rec healthy 0.782 0.815 0.773 0.795
Pr healthy 0.989 0.988 0.99 0.99

WL = 4 WL = 5

Since the model showed very high precision over the healthy class (Table 6), which was
also the majority class in the validation and test sets, the slope differences were probably
due to the higher number of correct predictions in the validation set during learning.
However, it is possible to observe that no overfitting or underfitting phenomena affected
our model, as is also shown by the good results on the unseen test set (Figure 9).

Therefore, we can conclude that RNNs have an impact on bankruptcy prediction
performance. However, the attention model induced by multi-head LSTM seemed to
achieve better results for all the metrics (AUC and micro and macro F1 scores) with a
temporal window equal to 4 years. On the other hand, considering the minimization of the
false-negative rate, the models with WL = 5 achieved, in general, the lowest type II errors.

10.1. Further Analysis on the Test Set

Understanding the distribution and the relationships within the feature space is crucial
for gaining insights into the behavior of a model. Among the methodologies employed for
representing high-dimensional data, one of the most powerful approaches is t-distributed
stochastic neighbor embedding (T-SNE) [13]. T-SNE preserves the non-linear structure
of data points and tends to maintain the relative distances between neighboring points,
which can reveal clusters and patterns. The analysis reported in this subsection aimed to
study the distribution of both healthy and bankrupt firms in a reduced-dimensional space,
focusing on the capabilities of multi-head and single-input LSTM in identifying an optimal
decision boundary.

We first leveraged T-SNE for the original input to visualize the data in a two-dimensional
space while preserving the pairwise similarities between data points. Each data point
represented a firm, allowing us to gain an intuitive understanding of its inherent structures.
The results are shown in Figure 10a. We performed an analysis using the best window lengths
identified on the validation set (WL = 4 and WL = 5). We could infer that bankruptcy-prone
firms usually did not cluster in a specific region of the feature space of the input. This
observation highlights how challenging it is to classify bankrupt companies because there is
some degree of overlap with healthy ones.

Following the outcomes achieved from the T-SNE analysis of the original test set, we
focused on how the LSTM networks represented each firm in their latent space before
classifying them, as depicted in Figure 10. These snapshots offer some insights into the
decision boundaries identified by the two recurrent architectures. The decision boundaries
for LSTM are depicted in Figure 10b, and those for multi-head networks in Figure 10c.
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Figure 10. Two-dimensional t-distributed stochastic neighbor embedding (T-SNE) visualization of
the test set. Each data point represents a firm. Subfigure (a) represents plain test data for WL = 4 and
5, (b) displays embeddings from single-input LSTM, and (c) shows embeddings from multi-head
LSTM. These snapshots offer insights into the data’s intrinsic structure and the modeling impact
on the representation.

Our analysis revealed that these embeddings effectively distributed firms, with
bankrupt firms forming distinct clusters. This demonstrates the models’ ability to cap-
ture meaningful patterns in the data, particularly concerning bankruptcies. The models
consistently demonstrated the ability, whether the window length was equal to 4 or 5, to
discriminate between healthy and bankrupt firms in a two-dimensional environment. The
models’ constant ability to identify significant patterns linked to financial distress showed
their robustness. By comparing the latent representations achieved by single-input LSTM
with those achieved by the multi-head model, it was evident that the multi-head model
achieved a more scattered representation that led to smaller overlaps between healthy and
bankrupt firms. This result is also in line with the results presented in Table 6, checking
the number of false positives (FPs) achieved by the two models. Thanks to this, multi-
head LSTM outperformed single-input LSTM in terms of AUC, BAC, and FP for both
window lengths.
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For this reason, we decided to further study the false positives with an additional
analysis, as presented in the following section.

10.2. False-Positive Analysis

In bankruptcy prediction, an error has a different cost depending on the class that
has been incorrectly predicted. The cost of predicting a company going into default as
healthy (FN) is much higher than the cost of predicting a healthy one as bankrupt (FP). Both
networks achieved a small number of false negatives but a considerable number of false
positives that affected the performance. Moreover, in light of the evidence presented in the
previous section about the different levels of overlap between bankrupt and healthy firms
achieved by the multi-head and single-input LSTM models, we decided to further analyze
the latent representation (embedding) of the false positives achieved by both networks
to better prove the benefits introduced by the multi-head LSTM architecture.

For this analysis, we again leveraged T-SNE dimensionality reduction to display the
distribution of false positives. The results are depicted in Figure 11 for window lengths of
4 and 5 years.
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Figure 11. Visualization of false positives using T-SNE: false-positive distribution in a high-
dimensional feature space visualized using T-SNE. Subfigure (a) represents the embeddings from
single-input LSTM, and (b) shows the embeddings from multi-head LSTM.

Examining the embedding obtained from both models, one may observe how the false
positives were close to the bankruptcy clusters presented in the previous section, presenting
a considerably smaller overlap ratio with healthy firms in the case of multi-head LSTM.

Furthermore, to complete our analysis, we considered how the false positives were
distributed across the financial industries since economic conditions and market dynamics
can significantly impact the behavior of businesses within a particular industry. With this
aim, we leveraged the SIC codes presented in Section 4 to understand if industry-specific
factors can contribute to misclassification.

Table 7 presents the false positives for both models across different SIC divisions under
different test set conditions (WL = 4 and WL = 5), as well as the respective percentages. We
could make the following observations:
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• Across all divisions, the multi-head model outperformed LSTM for both window
lengths in terms of the number of false positives. This shows how much better multi-
head LSTM was in classifying and identifying alive and bankrupt firms.

• Examining the variation in false positives with an emphasis on window length re-
vealed an interesting pattern. When considering multi-head LSTM, the greater the
window length, the lower the percentage of false positives. This can be explained by
multi-head LSTM’s capacity to identify structures and patterns that could be missed
when the window was set to 4 years. Conversely, since single-input LSTM’s perfor-
mance had more variance, no definitive conclusions could be drawn about it, making
it difficult to understand how the false positives changed across various time windows.
This is because there were equal numbers of positive and negative variations.

These observations regarding the sectors and spatial distribution of false positives pro-
vide important guidance for improving model parameters, maximizing predictive precision,
and eventually improving our models’ applicability in bankruptcy prediction tasks.

Table 7. Division distribution in the test set for each model. This table provides an overview of the
distribution of companies across various divisions within the test set, including the total number
of companies belonging to each category. However, for LSTM and multi-head LSTM models, only
instances of false positives are reported, along with their distribution among different divisions.
Additionally, percentages are presented to express the ratio of false positives in relation to the total
data present in the test set.

Division
Test Set LSTM (False Positive) Multi-Head LSTM (False Positive)

WL = 4 WL = 5 WL = 4 WL = 5 WL = 4 WL = 5

A 17 15 12 (70%) 9 (60%) 4 (23%) 3 (20%)
B 152 142 84 (55%) 79 (52%) 34 (22%) 29 (20%)
C 30 28 13 (43%) 14 (50%) 5 (17%) 6 (21%)
D 1476 1382 824 (55%) 790 (57%) 326 (22%) 284 (21%)
E 254 248 107 (42%) 139 (56%) 77 (30%) 44 (18%)
F 106 99 73 (69%) 71 (72%) 34 (32%) 28 (28%)
G 213 202 134 (62%) 131 (65%) 104 (49%) 95 (47%)
H 66 63 34 (52%) 32 (51%) 12 (6%) 5 (8%)
I 606 556 310 (51%) 308 (55%) 70 (11%) 65 (12%)

11. Conclusions

In this paper, we proposed a multi-head LSTM neural network to assess corporate
bankruptcy. According to the experimental analysis on the test set, this model outperformed
single-input LSTM with the same hyper-parameters and architecture, as well as the other
traditional ML models. The better forecasting performance of multi-head LSTM also
proved that modeling each accounting time series independently with an Attention head
contributes to better-identifying companies that are likely to face default events (highest
recall and lowest type II error). This was also evident in the analysis of false positives
presented in the experimental section. Moreover, we can finally argue that using accounting
data for the four most recent fiscal years leads to better performance when predicting the
likelihood of corporate distress. Experiments were conducted on a dataset composed of
accounting variables from 8262 different American companies over the period 1999–2018 for
a total of 78,682 firm-year observations. This dataset has been made public so that it can be
used as a benchmark for future studies. Future developments will involve exploiting textual
disclosures from financial reports in conjunction with this model. Moreover, it should be
possible to predict defaults only in specific sectors by adding macroeconomic variables
such as sustainability, interest rates, sovereign risk, and credit spread. Furthermore, our
models provide predictions over a single period, not the survival probabilities over time.
In future work, multi-period models can be incorporated to also reach this goal.
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