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Abstract: The rapid development of the Internet of Things (IoT) has opened the way for transfor-
mative advances in numerous fields, including healthcare. IoT-based healthcare systems provide
unprecedented opportunities to gather patients’ real-time data and make appropriate decisions at
the right time. Yet, the deployed sensors generate normal readings most of the time, which are
transmitted to Cluster Heads (CHs). Handling these voluminous duplicated data is quite challenging.
The existing techniques have high energy consumption, storage costs, and communication costs.
To overcome these problems, in this paper, an innovative Energy-Efficient Fuzzy Data Aggregation
System (EE-FDAS) has been presented. In it, at the first level, it is checked that sensors either generate
normal or critical readings. In the first case, readings are converted to Boolean digit 0. This reduced
data size takes only 1 digit which considerably reduces energy consumption. In the second scenario,
sensors generating irregular readings are transmitted in their original 16 or 32-bit form. Then, data
are aggregated and transmitted to respective CHs. Afterwards, these data are further transmitted to
Fog servers, from where doctors have access. Lastly, for later usage, data are stored in the cloud server.
For checking the proficiency of the proposed EE-FDAS scheme, extensive simulations are performed
using NS-2.35. The results showed that EE-FDAS has performed well in terms of aggregation factor,
energy consumption, packet drop rate, communication, and storage cost.

Keywords: healthcare; duplicated data; aggregation; cluster head; Internet of Things

1. Introduction

The Internet of Things (IoT) is undeniably an innovative technology [1] that brings ease
to our lives [2] and reshapes the industrial sector [3]. It comprises innumerable sensors that
can perceive data from various domains including temperature, humidity, fire detection,
and many more. The real-time transmission of this aggregated data into the central server
assists in examining and taking immediate action as per current circumstances. A variety of
IoT-enabled wearable devices can be fixed in attires, entrenched on the body, or stuck to a
patient’s skin. These implanted devices are used to remotely examine the health conditions
of patients [4]. It frequently takes patients’ vital health-related data and performs trivial
computations before transmitting it further to a central entity [5]. The doctors, nursing
staff, or other medical professionals who have access can check the data anytime to analyze
and make suitable decisions at the right time [6].

Data aggregation is a mechanism in which data are collected, combined, and summa-
rized at the aggregator node and then forwarded further [7]. In IoT-enabled WSNs, the
environment can be homogeneous or heterogeneous. In a homogenous network, all nodes
are of the same type and generate the same type of data which makes it comparatively easy
to handle. The heterogeneous environment is quite complex as nodes are different and
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produce data in different formats [8]. Based on network size, different data aggregation
approaches are considered. Centralized data aggregation (CDA) and in-network data
aggregation (IDA) are the most commonly used techniques. The CDA is most commonly
used for small networks, in which there is only one aggregator that gathers data from all
nodes of the network. The IDA approach eliminates the drawbacks of the former technique
by providing multiple AN nodes distributed in the network to collect data from nodes and
send it to the Base Station (BS) [9].

De-duplication is a mechanism to identify and remove similar copies of data and
serves as a central approach to cope with the growing volumes of data efficiently [10]. The
de-duplication process is employed by using two main strategies. The inline de-duplication
approach occurs in real-time when data are checked for duplicates before storing it in
the storage system. Background de-duplication works as a post-process once data has
been primarily written to the storage system. It includes periodically scanning the present
data to detect and remove duplicates [11]. In the healthcare sector, the vast collection of
medical records, diagnostic reports, and patient histories can lead to data redundancy,
which ultimately utilizes high storage space and increases energy consumption. Energy
consumption is directly proportional to the network lifetime and unnecessary repeated
data wastes the sensor device resources [12].

The necessity of developing a new technique in healthcare is because of the critical
need for continuous improvement and innovation in medical monitoring systems. Existing
healthcare schemes suffer from the challenges of ineffective data aggregation, inappropriate
redundant data handling, energy consumption, and storage costs in heterogeneous envi-
ronments [13]. In the healthcare sector, sensor devices collect data in detail and frequently
transmit it to BS. This unnecessary replication of data drains the limited resources of sensor
nodes [14]. These resources need to be used wisely, especially in the context of health-
care where precise information is required for better treatment. The development of the
proposed technique becomes imperative to minimize these challenges comprehensively.

The research question for this work is as follows: How can we improve the de-
duplication process of healthcare data to achieve better aggregation and packet delivery
ratio while reducing the energy consumption and communication cost?

This paper presents a de-duplication mechanism for the Energy Efficient Fuzzy Data
Aggregation System (EE-FDAS) to enhance network lifetime in heterogeneous environ-
ments by mitigating data duplication issues. The novelty of the proposed EE-FDAS lies in
its mechanism of handling healthcare data. The EE-FDAS focuses on handling the data in
different formats generated by various sensors in healthcare environments. It is based on
the three-tiered approach, In the first case, when data lies in a normal range and has no
variation, instead of transmitting full 16 or 32-bit data, only Boolean digit 0 is sent. In the
second case, when there is a partial irregularity in data readings, only those values are sent
in full form, while normal data is transmitted in Boolean digits. In the third scenario, when
all data readings lie in the critical range then all values are sent in their original format, it
occurs rarely. This approach demonstrates the adaptability of EE-FDAS to diverse health-
care data scenarios. Moreover, the proposed scheme contributes to the sustainability of
healthcare monitoring systems by reducing redundancy issues, ensuring a more robust and
resource-efficient solution in the domain of IoT-enabled Wireless Sensor Networks (WSNs).
This improvement assists in enhancing the usefulness of remote patient monitoring, mainly
in resource-constrained and rural healthcare settings, eventually improving the quality
and accessibility of healthcare services. The contributions of this research are presented
as follows:

(1) We thoroughly studied the most relevant and latest literature on data aggregation
approaches in the domain of IoT. This comprehensive study forms the foundation for
understanding the existing landscape and identifying gaps for improvement in the
field of the healthcare sector.

(2) This work presents the EE-FDAS scheme, employing a three-tiered approach to data
transmission based on the nature of the healthcare data.
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(3) Next, the proposed mechanism is applied at the sensor level to transmit Boolean digits
for in-range values, whereas the complete data readings are shared in case of variation.
The EE-FDAS, by enhancing the efficiency of data aggregation in healthcare WSNs,
contributes to the progression and sustainability of modern healthcare technologies.

(4) An extensive number of simulations are performed by using NS 2.35. Results are
extracted from trace files to compare with counterparts.

The rest of paper is organized as follows. Section 2 presents the latest existing schemes
on data aggregation. In Section 3, the problem statement and system of the proposed
solution are described. In Section 4, the solution of the proposed scheme is described in
detail. Section 5 illuminates results and analysis while Section 6 presents the conclusion
and future work.

2. Literature Review

In WSNs, numerous sensors generate different types of data. These data are aggregated
before transmitting to the base station. The purpose of data aggregation is to enhance
network lifetime, lessen high energy consumption, and load-balancing, increase scalability,
and lessen latency. Much research has been performed on data aggregation, which is
categorized into two sections. Each category is elaborated with its relevant techniques.
Protocols should be described in detail, while well-established methods can be briefly
described and appropriately cited.

2.1. Clustering-Based Data Aggregation Schemes

In clustering-based data aggregation techniques, sensor nodes are grouped into clus-
ters. Each cluster comprises a Cluster Head (CH) which is selected according to some
conditions. The CH collects data from Cluster Members (CMs) and transmits it to the base
station. For clustering, the K-means algorithm is employed and the numbers of clusters are
determined by using the elbow method as mentioned in Equation (1) as it informs about
total clusters. To enhance security and resolve the cost issue of healthcare aggregated data,
clusters are further divided into sub-clusters.

SSE = ∑k
k=1 ∑xiEUR sk||xi − ck||x2 (1)

SSE represents the sum of squared errors, x denotes the total sensors in the cluster,
and ck is the kth cluster. Data are aggregated at the sensor level by considering extreme
points only where the duplicated data is not transmitted to CH. The Extrema Point (EP)
mechanism is not very flexible to use as it may not apply to all kinds of data [13,14].
The CH uses a Bayesian-fusion algorithm to calculate trust scores for CMs and transmits
aggregated data to BS. In the same context, to enhance the security of healthcare data, an
anonymity-based clustering method has been used. By employing the client-server model,
anonymization is ensured before transmitting it to the aggregator node [15].

Ahmed et al. [16] proposed that IoT devices gather data from devices and transmit it
to BS using a fuzzy matrix. The collected data are then sent to the edge server. The cloud
server validates the edge server and blockchain technology is utilized to avoid malicious
attacks. For security, sensor nodes transmit encrypted data to Aggregator Nodes (Ans).
To reduce energy consumption, communication, and storage costs, Ans further transmit
compressed data to fog servers [17]. While Ananth et al. [18] performed clustering by the
glow swarm optimization method. The proposed scheme has lower latency and is suitable
for medical applications but multi-layer clustering may increase complexity [19]. Basha
et al. proposed a technique to enhance efficiency and security in WSNs while resolving
energy consumption issues. The Conditional Tug of War Optimization is used to calculate
node trust. Energy optimization was achieved by cluster-based data aggregation, yet the
method only focused on node energy levels. Major factors, including node distance and
degree, were neglected [20]. Abid et al. have employed multi-clustering in which the
aggregator node’s energy level is checked from time to time. In case it is greater than the
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threshold factor, the Candidate Flag bit will be set as 1. In case energy is low, the Aggregator
node is replaced with the nearest node. It has a better load-balancing strategy but if the
nearest chosen aggregator has low energy, the whole network will be affected [21].

To overcome energy utilization in the healthcare sector, a fuzzy-based data aggregation
scheme is introduced. By considering the heterogeneous environment, an appropriate
parent node is selected for each node, afterwards when data is aggregated it is checked
for duplicate values. If they exist, they are replaced with the Boolean digit 0 at Level 2.
This significantly reduces data size, overcomes storage space, as well as increases the
aggregation factor [22]. Randhawa et al. [23] employed K-means clustering and fuzzy logic
for aggregation. The aggregation rate, energy utilization, and data persistence are taken
as fuzzy input, and network lifetime is obtained as output. The scheme has reduced the
duplicate ratio. To monitor patient data in the healthcare system. Yang et al. [24] have
presented a centralized approach to reduce energy consumption and enhance efficiency.
The selection of the CH is performed by BS and energy is preserved by switching idle
sensors to a sleep state. The scheme has a better network lifetime but a high storage cost and
some other parameters should also be considered for CH selection [24]. Dwivedi et al. [25]
have introduced an energy improvement scheme for homogenous WSNs. To select an
appropriate CH from nodes, the rank is calculated. The higher rank increases the likelihood
of a node being selected as CH. The CMs select clusters by using a fuzzy system. When
clustering is finalized, CMs transmit data to CH, which CH aggregates and forwards to BS.
The proposed scheme gains better energy utilization and reduces the chances of hotspot
issues. Some other parameters should be considered for the intelligent selection of CH to
overcome latency [25].

To improve energy utilization and lessen the issue of congestion, Mohseni et al. have
presented a cluster-based strategy that includes two crucial stages. The first stage involves
establishing sensors in clusters. For transmitting data from sensors to CH, and CH to
BS, the shortest path is selected by using the Capuchin Searching algorithm that helps in
overcoming energy consumption. The scheme is simulated over MATLAB and it has a
better network lifetime, lower delay, and higher rate of packet delivery. The scheme uses a
Capuchin searching algorithm that is not very efficient in the case of large networks [26].
To enhance the network lifetime of sensors in the medical field, multi-hop routing is
checked. The scheme has a better lifetime, but not enough parameters are considered for
hop selection and the security aspect for maintenance is neglected [27,28]. To securely
transmit healthcare data, active sensors are selected by the Archimedes algorithm and the
shortest path is selected by an attribute-centered binary scheme [29]. Similarly, clustering
and data aggregation is performed for underwater WSNs [30,31]. The first layer contains
medical sensors to capture the patient’s condition and data is transferred to a fog server.
The fog server prioritizes the data based on the health state and intensity of diseases. This
task is performed by fog clusters. If the computing cost is greater than available resources
then by offloading mechanism, data is transferred to the cloud. In the end, reports are
created for medical staff to take better steps in treatment [32].

2.2. Tree-Based Data Aggregation Schemes

In this category, child sensor nodes transmit data to parent nodes and these parent
nodes send aggregated data to the base station at the next level, creating a hierarchy.
To efficiently aggregate data, a tree-based structure is employed. For fuzzification, min-
max normalization is performed. A node with a lesser sum of weight and having a
direct connection is elected as a parent. The scheme has considered the heterogeneous
environment’s complexity, but as attributes increase, no procedure is used to control
energy utilization [33].

Wang et al. [34] introduced a scheme in which sensor nodes are arranged in a grid-
based structure and BS is the root node where aggregated data is transmitted. The child’s
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heads are gathered until all cell heads are added to the tree while using minimum energy.
For energy utilization by cell head, Equations (2) and (3) are used.

Cij(k) = 2 ∗ Eelec ∗ k + Eamp ∗ k ∗ dij
2 (2)

CiB(k) = Eelec ∗ k + Eamp ∗ k ∗ diB
2 (3)

C_ij is consumed energy for sending data packets from i-th cell to the j-th cell of the
tree. d_ij represents the distance between two cells, C_iB shows the energy utilized for
transmitting data packets from i-th cell to the base station. The simulation proved that nodes
have a higher lifetime. The shortcoming of the scheme is that when the child nodes are high
it creates a longer depth, which increases the energy consumption of the parent node. To
overcome the drawbacks of the previous scheme, the present scheme passes through phases
of grid construction, construction of trees, and data transmission. The whole network is
divided into a grid of MxN area. Every sensor possesses a Global Positioning System (GPS)
to learn about its environmental location and calculate coordinates about the grid, in which
the sensor lies. Limited child nodes are allowed to avoid uneven energy consumption
and hotspot problems. The scheme has better data aggregation and efficiently manages
network load but no fault tolerance policy is introduced in case node failure occurs [35].

The whole network area is distributed into grids, and an aggregating node is elected
by using fuzzy logic. For it, CH distance, and link quality metrics like neighboring Overlap
and Algebraic Connectivity are used, which in output informs the status of selecting an
aggregating node. For relocation purposes, the Fruit Fly Optimization Algorithm (FOA) is
used, which involves relocation conditions and the path to which the sink is switched. The
scheme has a lower packet loss ratio but FOA is not very efficient for large networks [36].
This three-layered scheme comprises of Smart meters (SMs), Fog nodes, and cloud servers.
During data transmission, SMs reduce data size and send it to local fog nodes. Then, fog
nodes gather this data after checking it for integrity. Then, it is transmitted to the last layer
of the cloud. The cloud extracts this data and computes its hash to check whether it is
original. If data is not altered it is saved or otherwise removed [37].

After a detailed analysis of the existing schemes, the major identified gaps are outlined
as follows. Various schemes primarily focus on energy optimization as it is a crucial
parameter for prolonging the network lifetime and reducing overall energy consumption.
As a result, the energy consumption did not decrease as much as it should have. Many
techniques employ various strategies to efficiently aggregate data, but limited work has
been undertaken to address redundant data specifically in the healthcare sector. There is
a persistent need for more research to improve the effectiveness of handling redundancy,
particularly in the healthcare domain.

In comparison to existing data aggregation techniques, the proposed Energy-Efficient
Fuzzy Data Aggregation System (EE-FDAS) showcases distinct strengths, particularly in
addressing redundancy and energy consumption challenges within a healthcare environ-
ment. By reducing the data packet size through the use of Boolean digits for normal range
data, the overall data size is minimized, facilitating efficient transmission with lower energy
utilization compared to [35], which exhibits higher energy consumption. Simultaneously,
the smaller packet size of data readings contributes to lower latency, contrasting with
the higher latency observed in [25]. Additionally, EE-FDAS reduces system complexity
relative to Ref. [33], enhancing scalability in large systems. Furthermore, the proposed
scheme incurs lower communication and storage costs compared to [17]. In summary,
EE-FDAS stands out as a comprehensive solution, effectively addressing key issues in
healthcare data aggregation and offering notable advantages over existing techniques On
the whole, it represents a promising advancement in data aggregation techniques, offering
a comprehensive and efficient solution for healthcare applications.
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3. System Model and Problem Statement

This section discusses the system model of the proposed scheme along with the
problem statement. In a heterogeneous environment, sensor nodes are attached to patients’
bodies, generating data readings in various formats. The proposed scheme passes through
three main phases, as illustrated in Figure 1, and implements a cluster-based approach for
data aggregation. At Level 1, the deployed sensors take relevant readings from the patient’s
body and transmit them to the CH. Data will be concatenated at the aggregation node
(AN) before being transmitted towards the Fog. Moreover, the data of one AN can also be
transmitted through other AN, ensuring an optimum approach for handling healthcare
data. In case there is no fluctuation in values, they are transmitted as Boolean digit 0 for
overcoming data redundancy. At Level 2, all CHs forward aggregated data to the Fog
servers, from which medical professionals can access patient’s medical information and
can make suitable decisions according to the condition of patients. The Electronic Health
Record (EHR)/ Electronic Medical Record (EMR) are maintained at Medical servers in the
hospitals, whereas the Fog Servers receive data from multiple medical servers. There may
be one Fog Server in one big city or even in one province as well. This information is also
shared with the central cloud server via fog servers at Level 3 and subsequently stored in
the repository, so that data can be used soon after if needed.
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In the literature, it has been observed that the sensor devices at Level 1 collect readings
from a patient’s body, and they simply transmit it to the CH without checking for duplicate
values. There is a high possibility that the majority of deployed sensors transmit normal
range readings. When values fall in the normal range, it means that the patient is not



Future Internet 2024, 16, 66 7 of 21

experiencing any threatening condition. So, there is no need to transmit full 16 or 32-bit
duplicate readings frequently. By transmitting this redundant data in full form, energy
consumption, and communication cost arises. Therefore, for handling this voluminous
data, a high storage capacity is also needed. To resolve these issues, an efficient scheme is
required that handles duplicate data at the device level.

4. Proposed Solution

In this section, a new scheme has been presented, entitled Energy Efferent Fuzzy Data
Aggregation System (EE-FDAS), to resolve the identified problem. In the healthcare sector,
various types of sensors are deployed in the patient’s body that collect readings in different
formats. These readings vary from each other as sensors that collect single-part values,
such as BPM, produce 16-bit readings. Similarly, some sensors generate readings into two
values. For instance, sensor monitoring BP generates data in two parts, including systolic
and diastolic readings. Both generate 16-bit data which collectively becomes 32-bit long. It
makes the environment extremely heterogeneous which ultimately raises energy utilization.
In the proposed scheme, at level 1, when sensors generate data it is checked whether it
lies in the normal range or not. If it falls in the normal range, instead of transmitting the
whole 16 or 32 bits, only Boolean digit 0 is transmitted which takes only 1 bit. The phases
of EE-FDAS are shown in Figure 2.

Future Internet 2024, 16, x FOR PEER REVIEW 7 of 23 
 

 

In the literature, it has been observed that the sensor devices at Level 1 collect read-
ings from a patient’s body, and they simply transmit it to the CH without checking for 
duplicate values. There is a high possibility that the majority of deployed sensors transmit 
normal range readings. When values fall in the normal range, it means that the patient is 
not experiencing any threatening condition. So, there is no need to transmit full 16 or 32-
bit duplicate readings frequently. By transmitting this redundant data in full form, energy 
consumption, and communication cost arises. Therefore, for handling this voluminous 
data, a high storage capacity is also needed. To resolve these issues, an efficient scheme is 
required that handles duplicate data at the device level. 

4. Proposed Solution 
In this section, a new scheme has been presented, entitled Energy Efferent Fuzzy Data 

Aggregation System (EE-FDAS), to resolve the identified problem. In the healthcare sec-
tor, various types of sensors are deployed in the patient’s body that collect readings in 
different formats. These readings vary from each other as sensors that collect single-part 
values, such as BPM, produce 16-bit readings. Similarly, some sensors generate readings 
into two values. For instance, sensor monitoring BP generates data in two parts, including 
systolic and diastolic readings. Both generate 16-bit data which collectively becomes 32-
bit long. It makes the environment extremely heterogeneous which ultimately raises en-
ergy utilization. In the proposed scheme, at level 1, when sensors generate data it is 
checked whether it lies in the normal range or not. If it falls in the normal range, instead 
of transmitting the whole 16 or 32 bits, only Boolean digit 0 is transmitted which takes 
only 1 bit. The phases of EE-FDAS are shown in Figure 2. 

 
Figure 2. Phases of EE-FDAS. 

The patients are mainly equipped with wearable sensors checking different parame-
ters including blood sugar level, heartbeat rate, blood pressure [38] body temperature, 
respiration rate or pulse oximetry [39], gastrointestinal tract, oxygen saturation, and he-
moglobin [40]. The thresholds represent standardized value ranges globally recognized 
for numerous healthcare parameters.  

  

Data Generation and Checking for Duplicates at 
Sensor Level.

Stored in Central Repository

CHs Transmitting Data to Fog Servers from 
where medical professionals can access it.

Transmission of Duplicate-free Readings to 
CH.

Normal Readings is sent as Boolean 
digit 0

Abnormal Readings is transmitted in 
full 16/32 bits.

Figure 2. Phases of EE-FDAS.

The patients are mainly equipped with wearable sensors checking different param-
eters including blood sugar level, heartbeat rate, blood pressure [38] body temperature,
respiration rate or pulse oximetry [39], gastrointestinal tract, oxygen saturation, and
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hemoglobin [40]. The thresholds represent standardized value ranges globally recognized
for numerous healthcare parameters.

Moreover, our proposed solution is adaptable to changes in thresholds because the
collector node consolidates and processes values based on the specified threshold ranges.
These ranges can be easily updated in the collector nodes at any stage if needed. The
sensors take readings from patients’ bodies in the form of concatenated strings. For
instance, patient A data values for body temperature, heart rate, oxygen level, cholesterol,
and sugar level in the format of 98.9:75:98:130:180. The data readings gathered from the
body are categorized as normal or critical. For instance, the Beats per Minute (BPM) of a
healthy person lies between 60 to 100 beats per minute, and is considered as the normal
range, but if the readings are greater or lower than these threshold values, it is considered
as critical. Similarly for BP, the normal range is 120/80 mmHg. When the Systolic Pressure
or Diastolic Pressure varies from these defined thresholds, it is considered a critical reading.

In a healthy human being, these parameter readings remain stable and fall within the
normal range. In such occasions, the senor nodes simply transmit a single Boolean digit 0
to the CH. Conversely, if a person is unwell, irregularities might be visible in one or two
sensor readings, while the other data readings usually remain consistent. In such cases,
the critical data is transmitted in its original format, while the other sensors deliver only
the Boolean digit. In very rare circumstances, all the deployed sensors generate unusual
readings. For such cases, all the values are sent in their original format. The detailed
algorithm is explored in the base paper [22]. Practically, the likelihood of this case is much
lower than the first two cases. To describe it well, a case study of Patient B is presented.
Patient B is equipped with a set of wearable sensors to monitor crucial health parameters,
including blood pressure (BP), temperature, cholesterol level, oxygen saturation level, heart
rate, and sugar level. These sensors provide real-time data, allowing for continuous health
monitoring. The fluctuation occurs in heart rate and cholesterol level. The generated
concatenated string is generated as 0:0:210:0:45:0.

The EE-FDAS scheme presents a mechanism that justifies its suitability for most of
the practical applications in healthcare settings. For example, patients with chronic con-
ditions, such as hypertension or hypotension, are equipped with wearable sensors. It
transmits relevant health data based on the patients’ real-time health conditions. It opti-
mizes data transmission by sending concise information during normal health conditions,
ensuring remote healthcare providers receive critical data promptly for timely intervention.
Similarly, patients with diabetes, particularly people who are at risk of hyperglycemia
or hypoglycemia, are equipped with wearable sensors that continuously monitor their
blood glucose levels. These patients may experience sudden fluctuation in blood sugar.
These crucial data readings are promptly transmitted, acting as a timely intervention to
prevent the patient from reaching a critical and potentially life-threatening state. The list of
notations for the proposed scheme EE-FDAS is shown in Table 1.

Table 1. List of Notations.

Sr. Notation Description

1. SL Cluster Heads
2. THL Lower Threshold
3. THU Upper Threshold
4. THL1 Lower Threshold for 1st parameter
5. THU1 Upper Threshold for 1st parameter
6. THL2 Lower Threshold for 2nd parameter
7. THU2 Upper Threshold for 2nd parameter
8. N[i].Reading[] Sensor readings for the Node N[i]
9. dataString Concatenated string having all values
10. Rdata Recived Data at the Fog Server
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Transmitting only critical data significantly reduces data volume and increases the
efficiency of the proposed solution. The Time Division Multiple Access (TDMA) method
is used to ensure collision-free data transmission. This approach also assists doctors and
medical professionals in accessing only clear-cut and suspicious information for better
diagnoses and treatment more efficiently. Additionally, this approach will significantly
reduce the load on CH as well as reduce energy consumption. Furthermore, it increases the
lifetime of nodes and provides only critical data to doctors.

The primary emphasis of the algorithm lies in processing data generated by sensors.
Initially, the data is examined to identify and eliminate duplicate values. Subsequently, the
processed readings are transmitted to CHs for additional analysis. In the case of normal
health readings, a Boolean representation is employed. Upon receiving this data at CHs,
alerts are generated for emergencies, reporting to the relevant staff. The data is forwarded
to a Fog server for detailed analysis by medical professionals. Further, this data is stored
at the central repository, facilitating potential future needs. The algorithm is running
on healthcare sensor nodes. When wearable sensor devices take data readings from the
patient’s body, the proposed algorithm checks it for duplicated values before transmitting it
further. Sensor nodes in the proposed scheme perform the task of collecting health-related
data. These sensors are deployed to monitor various health parameters such as blood sugar
levels, heartbeat rate, blood pressure, body temperature, respiration rate, pulse oximetry,
gastrointestinal tract conditions, oxygen saturation, and hemoglobin levels. The collected
data are in different formats and checked for duplicated data readings.

In steps 4–23, Algorithm 1 selects the healthcare sensor node as the input and delivers
a de-duplicated data list as the output. If the number of readings for the current sensor
node is 1, it calls the first function, AggregateMessage, with the one reading set as the input.
The purpose of the function is to process the reading and concatenate it to the dataString.
For all sensor nodes, produced data are saved after time t. In case the number of readings
for the current sensor node is 2, it calls the second AggregateMessage function, which
proceeds two readings as the input. The function opts for both readings and concatenates
them to the dataString. In step 6, the case of emergency conditions is checked, and the
system may adopt the lossless behavior without skipping the readings and concatenate in
an original string as given in steps 17–19. The same steps are executed when the threshold
is approached to share the full readings. The threshold can be set as 10 or above as per
the criteria approved for the scenario. It is applied when sensors take readings frequently
and transmit them at regular intervals having to detect even minor changes in readings
for the patient. In case of exceeding the threshold, the count is reinitialized to zero and the
control will be moved to steps 17–19 in the next execution to concatenate the full readings
in original format.

In steps 24–30, the function AggregateMessage (IN_ARGS) is described which is used
for processing a single sensor reading. If the sensor reading lies in the normal range
then only a Boolean digit “0” is transmitted and concatenated to the data string. In steps
31–46, both flags are initialized as True, and the function AggregateMessage (IN_ARGS1,
IN_ARGS2) is presented that takes two parameters. This function checks every reading
against separate thresholds THL1, THU1, THL2, and THU2. If (IN_ARGS1 and IN_ARGS2)
reading lies outside the threshold, then original values are concatenated to the dataString
and set flag1 and flag2 as False. Then, flag1 and flag2 are checked, if it is true then it
indicates normal data, and Boolean digit 0 is transmitted. After processing all sensor nodes,
the algorithm sends the de-duplicated data to Fog Servers.
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Algorithm 1: Transmission of Non-duplicated data to CH

1. Input: Set of healthcare Sensor nodes [n1, n2,. . .., nk]
2. Output: De-duplicated Data list
3. Set dataString as List
4. N[i].Reading[] = sensors generated readings saved after timer t
5. If emergency_flag is OFF OR count equals 0 then //Flag status is set in received message
6. For I = 1 to k do //for all k sensors
7. If (N[i].Reading[].count equals 1) then
8. AggregateMessage (N[i].Readings[])
9. Else If (N[i].Reading[].count equals 2)
10. AggregateMessage (N[i].Readings[0], N[i].Readings[1])
11. End If
12. End For
13. If count > threshold then //Threshold set to a number, e.g., 10 or above to add full readings
14. Set count to 0
15. End If
16. Else If
17. For i = 1 to k do //for all k sensors add full readings
18. Concatenate N[i].Readings[] in dataString in originalform
19. End For
20. End If
21. Increment count by 1
22. Caluclate Hashorg of data before transmission
23. Send dataString from CHs to Fog Servers
24. Function AggregateMessage (IN_ARGS) // List of input arguments
25. If IN_ARGS.value < THL OR IN_ARGS.value > THU then
26. Concatenate IN_ARGS.value in dataString //for upper or lower values
27. Else
28. Concatenate Boolean digit 0 in dataString //for normal data
29. End if
30. End Function
31. Function AggregateMessage (IN_ARGS1, IN_ARGS2) // List of input arguments
32. Initialize flag1 = flag2 = True
33. If IN_ARGS1.value < THL1 OR IN_ARGS1.value > THU1 then
34. Concatenate IN_ARGS1.value in dataString //for upper or lower values
35. Set flag1 as False
36. End If
37. If IN_ARGS2.value < THL2 OR IN_ARGS2.value > THU2 then
38. Concatenate IN_ARGS2.value in dataString //for upper or lower values
39. Set flag2 as False
40. End If
41. If flag1 equals True then
42. Concatenate IN_ARGS1 as Boolean digit 0 in dataString //for normal data
43. Else If flag2 equals True
44. Concatenate IN_ARGS2 as Boolean digit 0 in dataString //for normal data
45. End if
46. End Function

The CH receives aggregated data from sensor nodes which is described by using
Algorithm 2. The CH, after receiving concatenated data strings, processes it. When data
are received at CH, the status of emergency flag is also checked, and if it is true, it indicates
that the patient has a critical condition. Afterwards, it generates an alarm and notifies to
response team and this data is transmitted in its original form to the fog server so that
medical staff can use this emergency data for future analysis. If the data are normal, it is
simply transmitted further for record-keeping.
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Algorithm 2: Receiving and Processing Data at Cluster Heads

1. Input: Aggregated Concatenated String obtained from Sensor Nodes
2. Output: Processed Data
3. Set Aggregated data as receivedData (N[].Readings[])
4. For each entry in the receivedData at CHs
5. Process(AggregateMessage (N[].Readings[]) // Function to process concatenated string
6. End For
7. Function Process(AggregateMessage (N[i].Readings[])
8. If emergency_flag is ON then //data readings are critical
9. Notify to relevant authorities and transmit critical data to Fog server for further analysis
10. else
11. Data processed and transmitted to Fog server
12. End If
13. End Function

When aggregated data is reached at Fog Server, it is checked for integrity by calculating
its hash. In case the data is not corrupted, it is saved and further transmitted to the cloud
server. Otherwise, it is rejected. The mechanism is also explained in Algorithm 3.

Algorithm 3: Data Received at Fog Server

1. Input: Receive Rdata
2. Output: Data Storage at fog server
3. Rdata = AggregateMessage (N[i].Readings[])
4. For i = 1 to k
5. Extract Rdata
6. Calculate Hashcal
7. If Hashcal equals Hashorg
8. Store readings into Fog server and send to cloud
9. else
10. Data is corrupted and not saved to Fog server
11. End If
12. End For

5. Result and Analysis

For checking the effectiveness of the proposed scheme EE-FDAS, extensive simu-
lation is performed under NS 2.35. The sensor nodes are placed in the network area of
3000 × 3000 m. The transmission range of these nodes is considered 30 m and it remains the
same for all types of attributes. The sensor nodes produce data packets after every 30 s. The
total time allotted for simulation is 2500 s. The tool command language (TCL) file contains
comprehensive information about configuring and deploying nodes in the network. For
implementing the functionality of sending and receiving data packets, separate classes are
built by using C language. Afterward, to extract processed data result files, AWK files are
considered. In each simulation scenario, the nodes are deployed in a Gaussian distribution
model to deploy the patients where the different types of sensor nodes are attached to each
patient as per the monitoring of required healthcare parameters. The result of the proposed
scheme is compared with some existing robust schemes including FDAS, EHDA, DICA,
and DICA_EXTENSION. The list of parameters is presented in Table 2.
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Table 2. Simulation Parameters with respective values.

Parameters Values

Simulation Duration 2500 s
No. of arranged nodes 300
Organization of nodes Random
Transmission range 30 m
Broadcasting power consumption 0.5819 µJ
Receiving energy utilization 0.049 µJ
Size of network 3000 m × 3000 m

The attribute represents the sensor nodes, when there is only one attribute, it shows a
homogeneous network where all sensors have the same type. For instance, all sensors take
temperature or heart rate readings. When the number of attributes increases, the network
starts becoming heterogeneous, demonstrating the existence of more sophisticated sensors.
When there are two types of attributes, it indicates that both are taking different readings.
For example, the first type of sensor could be monitoring sugar levels, and the other could
be a blood pressure monitor. When the number of attributes is four, it shows the existence
of four different sensors that are taking values of blood glucose, heart rate monitors,
blood pressure, and oxygen saturation. As the number of attributes remains increasing
it ultimately boost the complexity, and makes the environment highly heterogeneous. It
enhances the ability to monitor and gather patient data thoroughly via numerous sensors.
We have considered the emergency scenario to share full readings and the threshold based
scenario to send message with complete readings after the adjusted threshold as 10 or above.
In this scenario, a little communication cost and energy consumption will be increased to
send a full message of larger bit size containing all the original values of all attributes after
a certain threshold.

The evaluation parameters that are considered more crucial and suitable for de-
duplication and data aggregation are chosen. The key metrics, including energy con-
sumption, average aggregation, needed transmission slots, packet loss ratio, and storage
cost, are analyzed to assess the performance of the EE-FDAS scheme. The proposed scheme
is simulated under a different number of attributes in a heterogeneous environment to
check its efficiency from a simple to a complex environment.

5.1. Impact of Number of Attributes on Average Aggregation

The aggregation denotes the total data packets that are gathered at CHs before transmit-
ting it to the Fog server. For this metric, the simulation is performed 5 times and the average
is calculated. In case number of attribute is 1, the performance of most of the techniques is
well. But when the attributes start increasing, the complexity increases, and the aggregation
factor starts dropping. When attributes increase, the DICA and DICA_EXTENSION efficacy
starts decreasing. The reason behind is that it starts generating different data packets that
might be 16 or 32 bits and continuously transmitting these data packets to CH, which
increases the load on CH and the aggregation factor starts decreasing. While EHDA and
FDAS have achieved high aggregation levels because EHDA compresses its data size before
transmission FDAS has selected a suitable parent node for each generated data. When the
parent node is selected intelligently, it needs to process lower data packets further and it
improves the aggregation. The proposed scheme has higher aggregation as it checks for
duplicated normal values at the sensor level and replaces it with Boolean digit 0 which
reduces load on CH and aggregation reaches up to its higher level.

The scheme maintains the effectiveness of compression by focusing on preserving
crucial information while reducing data size. EE-FDAS minimizes the probability of losing
important information by reducing redundant data by changing it with Boolean digits.
The rationale behind this approach is that when data is compacted into smaller sizes, the
likelihood of data loss during transmission decreases, especially in environments with low
bandwidth. By replacing redundant information with Boolean digits, EE-FDAS ensures that
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the compressed data remains informative while reducing the risk of loss, contributing to the
scheme’s overall efficacy in optimizing data size without neglecting critical details. The X-
axis represents the number of attributes and the Y-axis shows the average aggregation factor.
In Figure 3a, when the number of attributes is 4, the aggregation factor remains 0.3, 0.39,
0.81, 0.85 and 0.87 in DICA, DICA_EXTENSION, FDAS, EHDA and EE-FDAS, respectively.
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5.2. Energy Consumption at Data Phase

Energy utilization is a critical metric, as sensors have limited energy. Effectively
handling this energy is vital for elongating the overall network lifetime. During the process
of data transmission, sensor nodes utilize high energy. The energy consumption per bit is
5 nJ. For instance, if 6 nodes are generating single-part data, resulting in 16 × 6 = 96 bits. The
energy consumption is calculated as 96 bit × 5 nJ/bit = 480 nJ. Similarly, when sensor nodes
generate data with two parts, producing data of 32 bits, consuming 32 × 6 = 192 bits. So,
the energy utilization in this situation is 192 bit × 5 nJ/bit = 1152. In resource-constrained
environments, the dissipation of this much energy leads to the earlier death of nodes. As
the number of attributes increases, energy consumption further escalates.

To address this issue, the proposed EE-FDAS scheme adopts a strategy during the
data phase. It involves transmitting a Boolean digit “0” whenever sensors produce regular
data readings. This Boolean digit only takes 1 bit. Normally, patients exhibit fluctuations
in 1 or 2 sensors. By sending complete values for these sensors while sending “0” digits
for normal data, the resultant data size is considerably reduced. So, the scheme’s design
ensures that the non-critical information including routine data, is efficiently compressed
without substantial loss while optimizing energy consumption. This decrease in data
size finally leads to noticeably lower energy depletion, as compared to the DICA and
DICA_EXTENSION techniques. The simulation results specify that FDAS and EHDA
attain lower energy consumption. FDAS accomplishes this by reducing data size through
the transmission of “0” at level 2 for Boolean data, while EHDA sends compressed data to
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the Fog server. In contrast, DICA and DICA_EXTENSION do not include any procedure to
cope with high energy consumption.

Figure 3b illustrates the association between the number of attributes and energy
consumption. The proposed scheme EE-FDAS validates the lowest energy consumption at
24, followed by FDAS at 38, EHDA at 36, DICA at 42, and DICA_EXTENSION at 47.

5.3. Impact of the Number of Attributes on Schedule Length

The schedule length (SL) refers to the time needed for sending data from sensor nodes
to CHs. When the aggregation factor is high, the SL starts decreasing. This is because
proficient data collection results in the minimum time required for sending it to the head
node. EE-FDAS achieves a lower SL primarily because of the smaller data size, which
effectively increases the level of aggregation and consequently reduces the probability
of significant data loss. Both DICA and DICA_EXTENSION demand a longer SL as of
lower aggregation, and this requirement remains to increase with the rising complexity
of the environment. On the other hand, FDAS and EHDA achieve better SLs because of
sustainable aggregation. In Figure 4a, the X-axis shows the number of attributes, whereas
the Y-axis signifies the average SL. Due to higher aggregation in EE-FDAS, the SL diminishes
to 95 bytes when there are 10 attributes. This SL requirement is 130, 155, 157, and 115 in
FDAS, DICA, DICA_EXTENSION, and EHDA, respectively.
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5.4. Needed Transmission Slots

In cases of effective aggregation, fewer data packets are generated. The higher aggrega-
tion factor requires lower transmission slots to convey the data. EE-FDAS has achieved the
lowest transmission slot usage from simple to highly complex environments. The lessened
transmission slots reduce the chances of collisions, retransmissions, and interference during
data transmission. Therefore, lower data loss takes place as a result of the efficient data
transmission procedure by the higher aggregation factor. As demonstrated in Figure 4b,
the X-axis represents the number of attributes, while the Y-axis depicts the needed trans-
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mission slots for data transmission. In the context of EE-FDAS, only 230 transmission slots
are used. The FDAS, DICA, DICA_EXTENSION, and EHDA require 450, 630, 600, and
250 transmission slots, respectively, when the attribute count is 6.

5.5. Impact of the Number of Attributes on Control Overhead

The control overhead involves the exchange of additional messages that are essential
for maintaining network performance. These messages are transmitted to facilitate the
selection of transmission slots, ensuring a smooth data transmission process. The process
of choosing transmission slots involves a sequence of requests, replies, and transmissions.
When selecting additional slots, multiple series of these messages are exchanged.

The control overhead is directly related to energy consumption. Higher control
overhead leads to high energy utilization. In the proposed scheme, only critical data
is transmitted, decreasing the data size and subsequently demanding fewer slots. This
reduction helps alleviate the control overhead. The exchange of minimal control messages
for slot selection lessens network congestion, thereby reducing the likelihood of data loss.
In the FDAS, slot and parent selection happens simultaneously, efficiently reducing control
overhead. Furthermore, the EHDA approach compresses data before transmission, further
reducing the required number of slots. Yet, schemes like DICA and DICA_EXTENSION do
not employ any strategy to mitigate this problem. Simulation results, depicted in Figure 5a,
show that EE-FDAS performs well, with an overhead of 600. The EHDA, FDAS, DICA,
and DICA_EXTENSION have overhead values of 950, 1500, 4050, and 4030, respectively, in
cases where the number of attributes is 2.
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5.6. Communication Cost

The data packet size directly affects communication costs. The proposed scheme
transfers normal data as Boolean digit 0, considerably decreasing the packet size. The small
packet lowers the communication cost and overall reduces the chances of packet loss. In
FDAS and EHDA, data packets are also small in size, resulting in lower costs as compared
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to larger data packets. The results of all schemes are depicted in Figure 5b. When a packet
size of 1000 bytes is transmitted, FDAS, EHDA, DICA, and DICA_EXTENSION have costs
of 6250 bytes, 5000 bytes, 7500 bytes, and 6100 bytes, respectively. However, among all the
schemes, EE-FDAS has the lowest cost of 1990 bytes.

5.7. Packet Delivery Ratio

The packet delivery ratio is a metric that measures the successful data packets trans-
mitted. In a normal scenario, with a rate of 60 packets, if the unit of time is one hour, it
translates to one packet per minute. However, in an emergency scenario, this rate is likely
to increase, such as 3 packets per minute. If the packet-sending rate is high, the Packet
Delivery Ratio (PDR) tends to increase. In emergency scenarios, this rate is likely to be
even higher, and with larger attribute sizes, the PDR is also expected to be higher. In case
of the threshold sending full readings, a threshold also only raises the packet size when full
readings are shared. The average packet size and its delivery will be in between the normal
and emergency scenario. The high PDR in EHDA is because of effective data compression
and encryption that allows the efficient and reliable transmission of sensitive healthcare
data. The use of fuzzy logic for parent selection, considering factors like residual energy,
load on the node, and relative node connectivity, allows a more effective mechanism for
data transmission. This approach improves energy efficiency by selecting a suitable parent
node that also increases PDR. The proposed scheme EE-FDAS has attained better PDR
because of the utilization of Boolean digits for normal data that is small in size. It ultimately
increases PDR. The DICA has a bit-lower PDR because of inappropriate parent selection for
data transmission without knowing the type of data packet. Figure 6a illustrates that the
FDAS has attained a delivery ratio of 50 for normal and 130 for emergency cases. Similarly,
DICA has achieved 33 for normal and 100 for emergency cases. The DICA_EXT, EE-FDAS,
and EHDA achieved ratios of 42, 60, and 55 for normal cases while for emergencies they
attained ratios of 126, 180, and 163, respectively. The resulting values for the threshold
based scenario.
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5.8. Packet Loss ratio

The packet drop ratio discusses the proportion of data packets lost or dropped during
transmission. It is an inverse proportion to PDR. Different factors can trigger the dropping
of a packet, together with the large size of the data packet. If the packet is small, the chance
of dropping is reduced. Furthermore, data packets with large sizes are more prone to
being dropped. As in case some data bits are corrupted, leading to the entire message
being dropped. If the bandwidth is low, the network can become congested due to large-
sized data packets, which in turn starts a higher packet loss. The EE-FDAS has more
compressed data, when the size is reduced it lowers the chances of being dropped. As
shown in Figure 6b, the proposed scheme retains a lower drop ratio because of smaller
data packets. It eases successful data transmission, letting packets be transmitted even
when the bandwidth is low. Additionally, only critical data is transmitted in its full form
while normal data is sent in Boolean digits. This plays an important role in reducing the
drop ratio. In case of the threshold based scenario, the packet size grows only for the a
few packets sent after a certain count. In a similar context, EHDA and FDAS also hold
low drop rates, while DICA and DICA_EXTENSION experience a higher dropping ratio
due to the large-sized packets required to pass through several hops before reaching the
parent node. The packet drop ratio remains 73%, 87%, 80%, 53% and 43% in FDAS, DICA,
DICA_EXTENSION, EHDA, and EE-FDAS when the attribute count is 12.

5.9. Storage Cost

As the generated packets are low in size, they take less storage and ultimately reduce
storage costs. The lower storage cost in the scheme is because EE-FDAS has generated
more compacted data packets. For instance, if 15 packets are transmitted in 60 min, its rate
will be 1 packet per 4 min. If the data is transmitted as 1 packet per 3 min, 20 packets are
transmitted in 60 min. Similarly, if the rate is 1 packet per 2 min, then 30 packets are sent in
60 min. Similarly, for 1 packet per minute, the transmission rate is 60 packets per 60 min. In
case of emergency when the packet is transmitted after every 30 s, it shows 120 packets per
hour. For calculating the data size as per the number of parameters sent, it is checked that
how many values are 16-bit and how many are 32-bit, Packet Size = sum + header size then
their sum and data packets header size provides packet size. The X-axis shows the number
of packets per unit of time while the y-axis represents the storage cost in bytes. In Figure 7,
the storage cost is presented when number of packets per unit time is 20, the FDAS, DICA,
DICA_EXTENSION, and EHDA takes 27 bytes, 167 bytes, 145 bytes, and 22 bytes. Apart
from this, the proposed scheme EE-FDAS has the lowest communicating cost of 15 bytes
because 50% to 60% of values are in the normal range so they are replaced with the Boolean
digit zero which significantly shrinks the data packet size.
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6. Discussion

As a comprehensive analysis, the proposed scheme EE-FDAS is compared with the
existing robust schemes FDAS, EHDA, DICA, and DICA_EXTENSION. The proposed



Future Internet 2024, 16, 66 18 of 21

scheme significantly reduces duplicated data transmission, data volume, and minimizes
the load on CH, resulting in high data aggregation in EE-FDAS, FDAS, and EHDA. This
efficiency of transmitting only critical data significantly reduces data volume thereby
enhancing the overall system’s performance. In contrast, the data packet size increases
for only the certain packets sent with full readings after a threshold. It has little affect in
increasing the transmission cost per bit and hence, the energy consumption as well. In
EHDA, ANs compresses data that reduces packet size and increases aggregation level, and
FDAS selects suitable parents of the same attributes which enhances the aggregation and
lessens energy consumption.

On the contrary, DICA and DICA_EXTENSION have not implemented any such
mechanism so data aggregation in both of them is quite low. Higher aggregation leads
to lower SL and fewer transmission slots therefore EE-FDAS, FDAS, and EHDA have
maintained lower values for these metrics as compared to DICA and DICA_EXTENSION.
The SL analysis highlights EE-FDAS’s ability to achieve a lower SL due to its importance
on higher data aggregation.

The data transmission time reduction improves overall effectiveness of the system.
Considering the required transmission slots, EE-FDAS needed lower slots as a result of
its efficient data aggregation strategy. This reduction not only minimizes the chances of
collisions and retransmissions but also contributes to a more reliable and effective scheme
in healthcare paradigm. Fewer transmission slots lead to lower control overhead because
fewer messages are exchanged for slot selection as compared to base schemes. The lower
control overhead contributes to decreased network congestion and, consequently, reduced
likelihood of data loss. When data packet size is low, it retains a minimum packet loss ratio
because in lower bandwidth data packets pass easily due to reduced size.

The impact of the number of attributes on energy consumption further highlights the
effectiveness of EE-FDAS. As the system complexity grows, EE-FDAS constantly exhibits
lower energy consumption compared to its counterparts. By transmitting Boolean digit 0 for
normal data readings, the scheme diminishes energy depletion, contributing to prolonged
node lifetimes and persistent network efficiency. Communication costs and storage costs in
EE-FDAS have economic advantages. The scheme’s approach of showing normal data with
Boolean digit 0 leads to smaller packet sizes, lessening both communication and storage
costs. This economic efficiency is vital for the practical implementation of healthcare
sensor networks, especially in scenarios where resources are limited. To further handle the
scenarios where the full readings are required to analyze the differences of the out range
values, the proposed scenario manages a threshold to send a packet with all readings. It
helps to practically analyze and predict the health status based on the sensing values. In
context of sampling theorem, certain values of the input variables cause impact on the
resulting metrics. The number of attributes are varied from 2 to 16 as input and the results
are shown for metrics including aggregation factor, energy consumption, schedule length,
transmission slots, control overhead and PDR. It has been observed that the reducing the
size of attributes achieves better results. The size of attributes is reduced by replacing in-
range values with Boolean values for a certain threshold. By increasing the threshold value,
the resultant average size of packet reduces which results in better performance. Overall,
EE-FDAS has performed well for all metrics, and EHDA and FDAS have maintained good
performance in most of the parameters. The performance of DICA and DICA_EXTENSION
starts dropping as the complexity of the environment increases, so it is not suitable to
implement in a heterogeneous environment.

7. Conclusions

In this article, the proposed scheme provides a robust solution for improving data
transmission within the heterogeneous healthcare environment. The sensors generate
patient data readings in different formats. When data readings lie in the normal range,
the proposed scheme transmits the Boolean digit 0 for them at the very initial level. Only
irregular data readings are transmitted in full form. The key findings are that the proposed
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solution reduces data size and improves the performance by eliminating duplicate data and
reducing the load on CHs. It further increases the aggregation factor and reduces energy
consumption during data transmission. Apart from this, communication and storage costs
are also reduced. The stored data on Fog servers and the cloud is demanded to be very
precise to help medical professionals focus on only critical readings. EE-FDAS streamlines
data transmission processes to improve patient care, particularly for individuals in rural or
underserved areas. The proposed scheme is simulated by using NS 2.35 and EE-FDAS has
outperformed as compared to existing schemes. Results show that aggregation factor is
0.81, 0.85 and 0.87 in FDAS, EHDA and EE-FDAS. The packet drop ratio remains in FDAS,
DICA, DICA_EXTENSION, EHDA and EE-FDAS is 73%, 87%, 80%, 53% and 43%. In the
context of transmission slots, FDAS, DICA, DICA_EXTENSION, and EHDA require 450,
630, 600, and 250, whereas EE-FDAS dominates by taking only 230 transmission slots. In
future, energy-efficient compression techniques will be implemented for critical readings
without compromising on data quality.
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Abbreviation

A list of acronyms and abbreviations are presented below:
IoT Internet of Things
CDA Centralized data aggregation
IDA In-network data aggregation
CH Cluster Head
EP Extrema Point
BS Base Station
GPS Global Positioning System
PDR Packet Delivery Ratio
BP Blood Pressure
BPM Beats per Minute
FOA Fruit Fly Optimization Algorithm
EHR Electronic Health Record
EMR Electronic Medical Record
SMs Smart meters
NS Network Simulator
WSNs Wireless Sensor Networks
ANs Aggregator nodes
TDMA Time Division Multiple Access
SL Schedule Length
CMs Cluster Members



Future Internet 2024, 16, 66 20 of 21

References
1. Tu, Y.; Chen, H.; Yan, L.; Zhou, X. Task Offloading Based on LSTM Prediction and Deep Reinforcement Learning for Efficient

Edge Computing in IoT. Future Internet 2022, 14, 30. [CrossRef]
2. Stoyanova, M.; Nikoloudakis, Y.; Panagiotakis, S.; Pallis, E.; Markakis, E.K. A Survey on the Internet of Things (IoT) Forensics:

Challenges, Approaches, and Open Issues. IEEE Commun. Surv. Tutor. 2020, 22, 1191–1221. [CrossRef]
3. Bin Zikria, Y.; Afzal, M.K.; Kim, S.W.; Marin, A.; Guizani, M. Deep learning for intelligent IoT: Opportunities, challenges and

solutions. Comput. Commun. 2020, 164, 50–53. [CrossRef]
4. Aouedi, O.; Sacco, A.; Piamrat, K.; Marchetto, G. Handling Privacy-Sensitive Medical Data with Federated Learning: Challenges

and Future Directions. IEEE J. Biomed. Health Inform. 2023, 27, 790–803. [CrossRef] [PubMed]
5. Arora, S. IoMT (Internet of Medical Things): Reducing Cost While Improving Patient Care. IEEE Pulse 2020, 11, 24–27. [CrossRef]
6. Saeedi, I.D.I.; Al-Qurabat, A.K.M. A Systematic Review of Data Aggregation Techniques in Wireless Sensor Networks. J. Phys.

Conf. Ser. 2021, 1818, 012194. [CrossRef]
7. Zeb, A.; Islam, A.K.M.M.; Zareei, M.; Al Mamoon, I.; Mansoor, N.; Baharun, S.; Katayama, Y.; Komaki, S. Clustering Analysis

in Wireless Sensor Networks: The Ambit of Performance Metrics and Schemes Taxonomy. Int. J. Distrib. Sens. Netw. 2016,
12, 4979142. [CrossRef]

8. Rani, A.; Kumar, S. A survey of security in wireless sensor networks. In Proceedings of the 2017 3rd International Conference on
Computational Intelligence & Communication Technology (CICT), Ghaziabad, India, 9–10 February 2017; pp. 1–5. [CrossRef]

9. Zhang, J.; Yin, H.; Wang, J.; Luan, S.; Liu, C. Severe Major Depression Disorders Detection Using AdaBoost-Collaborative
Representation Classification Method. In Proceedings of the 2018 International Conference on Sensing, Diagnostics, Prognostics,
and Control (SDPC), Xi’an, China, 15–17 August 2018; pp. 584–588.

10. Baligodugula, V.V.; Amsaad, F.; Tadepalli, V.V.; Radhika, V.; Sanjana, Y.; Shiva, S.; Meduri, S.; Maabreh, M.; Alsaadi, N.; Tashtoush,
Y.; et al. A Comparative Study of Secure and Efficient Data Duplication Mechanisms for Cloud-Based IoT Applications. In
Proceedings of the 2023 International Conference on Advances in Computing Research (ACR’23), Orlando, FL, USA, 8–10 May
2023; pp. 569–586.

11. Pragash, K.; Jayabharathy, J. A survey on DE–Duplication schemes in cloud servers for secured data analysis in various
applications. Measurement. Sensors 2022, 24, 100463. [CrossRef]

12. Aher, C.N. Trust Calculation for Improving Reliability of Routing and Data Aggregation in WSN. Int. J. Electron. Eng. 2019,
11, 386–392.

13. Yousefpoor, M.S.; Yousefpoor, E.; Barati, H.; Barati, A.; Movaghar, A.; Hosseinzadeh, M. Secure data aggregation methods and
countermeasures against various attacks in wireless sensor networks: A comprehensive review. J. Netw. Comput. Appl. 2021,
190, 103118. [CrossRef]

14. Kadiravan, G.; Sujatha, P.; Asvany, T.; Punithavathi, R.; Elhoseny, M.; Pustokhina, I.V.; Pustokhin, D.A.; Shankar, K. Metaheuristic
Clustering Protocol for Healthcare Data Collection in Mobile Wireless Multimedia Sensor Networks. Comput. Mater. Contin. 2021,
66, 3215–3231. [CrossRef]

15. Onesimu, J.A.; Karthikeyan, J.; Sei, Y. An efficient clustering-based anonymization scheme for privacy-preserving data collection
in IoT based healthcare services. Peer-to-Peer Netw. Appl. 2021, 14, 1629–1649. [CrossRef]

16. Ahmed, A.; Abdullah, S.; Bukhsh, M.; Ahmad, I.; Mushtaq, Z. An Energy-Efficient Data Aggregation Mechanism for IoT Secured
by Blockchain. IEEE Access 2022, 10, 11404–11419. [CrossRef]

17. Ullah, A.; Said, G.; Sher, M.; Ning, H. Fog-assisted secure healthcare data aggregation scheme in IoT-enabled WSN. Peer-to-Peer
Netw. Appl. 2020, 13, 163–174. [CrossRef]

18. Ny, S.R.; Ananth, A.G.; Reddy, L.S. Optimal Cluster-Based Data Aggregation in WSN for Healthcare Application. Adv. Dyn. Syst.
Appl. 2021, 16, 683–701.

19. Ranjani, N.Y.S.; Ananth, A.; Reddy, L.S. A Firebug Optimal Cluster based Data Aggregation for Healthcare Application. IOP Conf.
Ser. Earth Environ. Sci. 2022, 1057, 012006. [CrossRef]

20. Basha, A.R. Energy efficient aggregation technique-based realisable secure aware routing protocol for wireless sensor network.
IET Wirel. Sens. Syst. 2020, 10, 166–174. [CrossRef]

21. Abid, B.; Nguyen, T.T.; Seba, H. New data aggregation approach for time-constrained wireless sensor networks. J. Supercomput.
2015, 71, 1678–1693. [CrossRef]

22. Khan, M.N.U.; Tang, Z.; Cao, W.; Abid, Y.A.; Pan, W.; Ullah, A. Fuzzy based Efficient Healthcare Data Collection and Analysis
Mechanism using Edge Nodes in IoMT. Sensors 2023, 23, 7799. [CrossRef]

23. Randhawa, S. Sukhchandan Jain, Data Aggregation in Wireless Sensor Networks; Springer: Singapore, 2020. [CrossRef]
24. Yang, G.; Jan, M.A.; Menon, V.G.; Shynu, P.G.; Aimal, M.M.; Alshehri, M.D. A Centralized Cluster-Based Hierarchical Approach

for Green Communication in a Smart Healthcare System. IEEE Access 2020, 8, 101464–101475. [CrossRef]
25. Dwivedi, A.K.; Sharma, A.K. EE-LEACH: Energy Enhancement in LEACH using Fuzzy Logic for Homogeneous WSN. Wirel.

Pers. Commun. 2021, 120, 3035–3055. [CrossRef]
26. Mohseni, M.; Amirghafouri, F.; Pourghebleh, B. CEDAR: A cluster-based energy-aware data aggregation routing protocol in the

internet of things using capuchin search algorithm and fuzzy logic. Peer-to-Peer Netw. Appl. 2023, 16, 189–209. [CrossRef]
27. Sert, S.A.; Alchihabi, A.; Yazici, A. A Two-Tier Distributed Fuzzy Logic Based Protocol for Efficient Data Aggregation in Multihop

Wireless Sensor Networks. IEEE Trans. Fuzzy Syst. 2018, 26, 3615–3629. [CrossRef]

https://doi.org/10.3390/fi14020030
https://doi.org/10.1109/COMST.2019.2962586
https://doi.org/10.1016/j.comcom.2020.08.017
https://doi.org/10.1109/JBHI.2022.3185673
https://www.ncbi.nlm.nih.gov/pubmed/35737624
https://doi.org/10.1109/MPULS.2020.3022143
https://doi.org/10.1088/1742-6596/1818/1/012194
https://doi.org/10.1177/155014774979142
https://doi.org/10.1109/CIACT.2017.7977334
https://doi.org/10.1109/NaNA51271.2020.00085
https://doi.org/10.1016/j.jnca.2021.103118
https://doi.org/10.32604/cmc.2021.013034
https://doi.org/10.1007/s12083-021-01077-7
https://doi.org/10.1109/ACCESS.2022.3146295
https://doi.org/10.1007/s12083-019-00745-z
https://doi.org/10.1088/1755-1315/1057/1/012006
https://doi.org/10.1049/iet-wss.2019.0178
https://doi.org/10.1007/s11227-014-1241-7
https://doi.org/10.3390/s23187799
https://doi.org/10.1201/9781315155470-7
https://doi.org/10.1109/ACCESS.2020.2998452
https://doi.org/10.1007/s11277-021-08598-7
https://doi.org/10.1007/s12083-022-01388-3
https://doi.org/10.1109/TFUZZ.2018.2841369


Future Internet 2024, 16, 66 21 of 21

28. Chavva, S.R.; Sangam, R.S. An energy-efficient multi-hop routing protocol for health monitoring in wireless body area networks.
Netw. Model. Anal. Health Inform. Bioinform. 2019, 8, 21. [CrossRef]

29. Singh, S.; Kumar, D. Energy-efficient secure data fusion scheme for IoT based healthcare system. Futur. Gener. Comput. Syst. 2023,
143, 15–29. [CrossRef]

30. Joshi, S.; Anithaashri, T.; Rastogi, R.; Choudhary, G.; Dragoni, N. IEDA-HGEO: Improved Energy Efficient with Clustering-Based
Data Aggregation and Transmission Protocol for Underwater Wireless Sensor Networks. Energies 2022, 16, 353. [CrossRef]

31. Omeke, K.G.; Mollel, M.; Shah, S.T.; Arshad, K.; Zhang, L.; Abbasi, Q.H.; Imran, M.A. Dynamic Clustering and Data Aggregation
for the Internet-of-Underwater-Things Networks. In Proceedings of the 2022 14th International Conference on Computational
Intelligence and Communication Networks (CICN), Al-Khobar, Saudi Arabia, 4–6 December 2022; pp. 322–328.

32. Benila, S.; Usha Bhanu, N. Fog Managed Data Model for IoT based Healthcare Systems. J. Internet Technol. 2022, 23, 217–226.
[CrossRef]

33. Bhushan, S.; Kumar, M.; Kumar, P.; Stephan, T.; Shankar, A.; Liu, P. FAJIT: A fuzzy-based data aggregation technique for energy
efficiency in wireless sensor network. Complex Intell. Syst. 2021, 7, 997–1007. [CrossRef]

34. Wang, N.-C.; Chen, Y.-L.; Huang, Y.-F.; Chen, C.-M.; Lin, W.-C.; Lee, C.-Y. An Energy Aware Grid-Based Clustering Power
Efficient Data Aggregation Protocol for Wireless Sensor Networks. Appl. Sci. 2022, 12, 9877. [CrossRef]

35. Wang, N.-C.; Lee, C.-Y.; Chen, Y.-L.; Chen, C.-M.; Chen, Z.-Z. An Energy Efficient Load Balancing Tree-Based Data Aggregation
Scheme for Grid-Based Wireless Sensor Networks. Sensors 2022, 22, 9303. [CrossRef]

36. Gandhi, G.S.; Vikas, K.; Ratnam, V.; Babu, K.S. Grid clustering and fuzzy reinforcement-learning based energy-efficient data
aggregation scheme for distributed WSN. IET Commun. 2020, 14, 2840–2848. [CrossRef]

37. Shruti; Rani, S.; Singh, A.; Alkanhel, R.; Hassan, D.S.M. SDAFA: Secure Data Aggregation in Fog-Assisted Smart Grid Environment.
Sustainability 2023, 15, 5071. [CrossRef]

38. Khan, M.Z.; Alhazmi, O.H.; Javed, M.A.; Ghandorh, H.; Aloufi, K.S. Reliable Internet of Things: Challenges and Future Trends.
Electronics 2021, 10, 2377. [CrossRef]

39. Soufiene, B.O.; Bahattab, A.A.; Trad, A.; Youssef, H. LSDA: Lightweight Secure Data Aggregation Scheme in Healthcare using
IoT. In Proceedings of the ICIST ‘20: 10th International Conference on Information Systems and Technologies, Rome, Italy,
4–5 June 2020.

40. Bhansali, P.K.; Hiran, D.; Gulati, K. Secure data collection and transmission for IoMT architecture integrated with federated
learning. Int. J. Pervasive Comput. Commun. 2022, ahead-of-print. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1007/s13721-019-0201-9
https://doi.org/10.1016/j.future.2022.12.040
https://doi.org/10.3390/en16010353
https://doi.org/10.53106/160792642022032302003
https://doi.org/10.1007/s40747-020-00258-w
https://doi.org/10.3390/app12199877
https://doi.org/10.3390/s22239303
https://doi.org/10.1049/iet-com.2019.1005
https://doi.org/10.3390/su15065071
https://doi.org/10.3390/electronics10192377
https://doi.org/10.1108/IJPCC-02-2022-0042

	Introduction 
	Literature Review 
	Clustering-Based Data Aggregation Schemes 
	Tree-Based Data Aggregation Schemes 

	System Model and Problem Statement 
	Proposed Solution 
	Result and Analysis 
	Impact of Number of Attributes on Average Aggregation 
	Energy Consumption at Data Phase 
	Impact of the Number of Attributes on Schedule Length 
	Needed Transmission Slots 
	Impact of the Number of Attributes on Control Overhead 
	Communication Cost 
	Packet Delivery Ratio 
	Packet Loss ratio 
	Storage Cost 

	Discussion 
	Conclusions 
	References

