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Abstract: A pickup and delivery problem by multiple agents has many applications, such as food
delivery service and disaster rescue. In this problem, there are cases where fuels must be considered
(e.g., the case of using drones as agents). In addition, there are cases where demand forecasting
should be considered (e.g., the case where a large number of orders are carried by a small number
of agents). In this paper, we consider an online pickup and delivery problem considering fuel and
demand forecasting. First, the pickup and delivery problem with fuel constraints is formulated. The
information on demand forecasting is included in the cost function. Based on the orders, the agents’
paths (e.g., the paths from stores to customers) are calculated. We suppose that the target area is
given by an undirected graph. Using a given graph, several constraints such as the moves and fuels
of the agents are introduced. This problem is reduced to a mixed integer linear programming (MILP)
problem. Next, in online optimization, the MILP problem is solved depending on the acceptance of
orders. Owing to new orders, the calculated future paths may be changed. Finally, by using a
numerical example, we present the effectiveness of the proposed method.

Keywords: pickup and delivery problem; online optimization; mixed integer linear programming
problem; fuel constraints; demand forecasting

1. Introduction

There has been much attention paid to control technologies for realizing a smart
city [1]. In a smart city, many services using control technologies should be developed,
such as transportation, energy distribution, healthcare, environmental monitoring, busi-
ness, commerce, emergency response, and social activities. Moreover, in control technolo-
gies for a smart city, a cyber–physical system (CPS) plays an important role. A CPS is
a system where physical and information components are deeply connected through a
communication network. In a smart city, multiple physical components such as mobile
robots are controlled by information systems, such as cloud servers. Hence, a plant in a
smart city is modeled as a CPS. Thus, in a smart city and a CPS, it is important to develop
a control method for multiple agents. In this paper, we focus on a control method for
multiple agents.

Control of multiple agents has several applications and has been widely studied. In
the control of multiple agents, there are several problem settings, such as the achievement
of cooperative tasks and surveillance (patrol). A control specification in cooperative tasks
may be given by linear temporal logic formulas [2–16]. Temporal logic is a logical system
of rules and symbolism for representing, and reasoning about, propositions qualified in
terms of time (for example, “I will eventually be hungry”). The surveillance problem is
to find agents’ paths patrolling a given area as evenly as possible [8,17–28]. In problem
settings on the control of multiple agents, model predictive control (MPC) is frequently
used (see, e.g., [9,22,27]). MPC is a control method in which the control input is generated
by solving at each time the finite-time optimal control problem (see, e.g., [29,30]). In other
words, the control input is calculated based on the prediction using a mathematical model.
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MPC was frequently used in the control of chemical plants. In recent years, with the
development of computers, MPC has been used in the control of several systems, such as
automobiles. In the case where a target area is unknown and is changed in time, a model-
free approach such as machine learning is effective (see, e.g., [31,32]). In this paper, we
suppose that a target area is fixed and use a model-based approach.

In this paper, we focus on the pickup and delivery problem as one of the control prob-
lems of multiple agents. In recent years, the food delivery market has been expanding
through the coronavirus epidemic. Efficient delivery from the restaurant to the customer
is becoming more and more important. Such a problem of efficiently delivering goods
received at a certain location to the desired location is called a pickup and delivery prob-
lem (see, e.g., [33–41]). Especially, the problem of updating routes by solving optimization
problems at regular intervals is called an online pickup and delivery problem, which has
been studied extensively in recent years (see, e.g., [42–44]).

In pickup and delivery problems, it is important to use electric vehicles and drones as
agents. Electric vehicles and drones have the disadvantage of severe battery constraints.
Hence, fuel constraints must be considered in pickup and delivery problems. In [45,46], a
modeling method to handle the fueling of vehicles has been proposed. A fuel constraint
in the proposed method is basically the same as in [45,46]. Refueling is different. In this
paper, the fuel of a vehicle immediately becomes full by changing the battery. Further-
more, when electric vehicles and drones are used, demand forecasting is important (see,
e.g., [47,48]). This is because more efficient moves are needed due to battery constraints.
For example, many agents can be placed in advance at points where demand is concen-
trated. To the best of our knowledge, few results have been obtained.

In this paper, we propose an online pickup and delivery problem in which demand
forecasting and fuel constraints are considered. First, we formulate the pickup and deliv-
ery problem. In this paper, the target area is given by an undirected graph. Constraints
including fuel constraints are explained. Next, after the demand forecast is explained, the
cost function is introduced. In a certain term in the cost function, we use the result of de-
mand forecasting. Then, agents’ paths can be calculated according to the result of demand
forecasting. That is, based on the policy of MPC, the real order and demand forecast are
used. Even if the result of demand forecasting is different from real orders, the problem
can be solved. This is because the result of demand forecasting is used in the cost function,
not a constraint. Hence, we can guarantee the feasibility. Third, we explain the procedure
of online optimization. Finally, we present a numerical example. Through a numerical
example, we demonstrate that the feasibility is guaranteed by the proposed method.

The conference paper [49] is a preliminary version of this paper. In [49], the authors
have considered both demand forecasting and fuel constraints. However, depending on
the result of the demand forecasting, the optimization problem becomes infeasible. In this
paper, this technical issue is overcome.

This paper is organized as follows. In Section 2, we formulate the pickup and de-
livery problem studied in this paper. After a mathematical model of the target area and
the definition of the orders are explained, the constraints considered in this paper are ex-
plained. Demand forecasting in this paper is also explained. Finally, the cost function is
explained. In Section 3, we explain the procedure of online optimization of the pickup and
delivery problem. In Section 4, we present a numerical example to show the effectiveness
of the proposed method. In Section 5, we conclude this paper.

The main contributions of this paper are highlighted as follows:

(i) For pickup and delivery problems, fuel constraints are introduced to utilize electric
vehicles and drones as agents.

(ii) A pickup and delivery problem considering demand forecasting is newly formulated.
(iii) The effectiveness of the proposed method is clarified through a numerical example.
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2. Pickup and Delivery Problem

In this section, we formulate the pickup and delivery problem studied in this paper.
First, we describe the preliminaries of the problem, which are the target area and the order
notation. Next, we describe the constraints in the pickup and delivery problem. Finally,
we describe the cost function in the pickup and delivery problem.

2.1. Preliminaries

We introduce some notations.
First, the target area in the pickup and delivery problem is given by the following

undirected graph:
G = (V , E),

where there are the following:

• V = S ∪ C ∪R: the set of vertices (S ∩ C ∩R = ∅);
• S = {s1, s2, . . . , sN}: the set of stores;
• C = {c1, c2, . . . , cM}: the set of customers;
• R = {r1, r2, . . . , rJ}: the set of intermediate points between vertices;
• E ⊆ V × V : the set of edges.

Without the loss of generality, the set V can be represented by

V = {1, 2, . . . , N︸ ︷︷ ︸
S

, N + 1, N + 2, . . . , N + M︸ ︷︷ ︸
C

, N + M + 1, . . . , N + M + J︸ ︷︷ ︸
R

}. (1)

Let A = [aij] ∈ {0, 1}(N+M+J)×(N+M+J) denote the adjacency matrix of G, where if there is
the edge between vi and vj, then aij = 1; otherwise, aij = 0. An example of an undirected
graph G = (V , E) is shown in Figure 1. We suppose that according to a given graph, an
agent moves from some vertex to other one in unit time.

s₁

s₂

c₂

r₂
r₅

c₁

r₄r₃

r₁

r₆

Figure 1. Example of an undirected graph G = (V , E), where |S| = N = 2, |C| = M = 2, and
|R| = J = 6.

Next, notations about orders are introduced. We assume that new orders are received
sequentially. Let τi, i = 0, 1, 2, . . . denote the time that the delivery route may be changed.
The initial update time τ0 is set as τ0 = 0. We assume that at the update time τi, there is at
least one new order. Let Oi denote the set of orders that are newly added at time t = τi.
The element ok of Oi is given by the following form:

ok = (sk, ck, Ts
ok

, Tc
ok
), (2)

where there are the following:

• sk ∈ S : the store that received the order;
• ck ∈ C: the customer who placed the order;
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• Ts
ok

: the time that the goods are available for pickup;
• Tc

ok
: the time limit to complete the delivery.

2.2. Constraints

We formulate the following constraints in the pickup and delivery problem at the
update time τi.

• Constraints on Agent Location: an agent can be located at only one vertex.
• Constraints on Agent Movement: an agent can move according to a given graph.
• Constraints on Orders: an order is assigned to an agent.
• Constraints on the Set of Orders: an agent must receive the goods before delivery and

must deliver those until a certain time.
• Constraints on Agent Fuel: the fuel remaining for an agent must be equal to or greater

than a certain value.
• Constraints on Luggage: the number of goods that an agent can handle once is

constrained.

We explain the details of these constraints.

2.2.1. Constraints on Agent Location

First, let N denote the finite set of agents. We introduce a binary variable vector
pl(t) ∈ {0, 1}|V| for the agent l ∈ N , where t ∈ {0, 1, 2, . . . , } is discrete time. The j-th
element pl,j(t) of pl(t) is 1 if the agent l is located at the vertex vj; otherwise, it is 0. The
constraint on the location of the agent l is given by

|V|

∑
j=1

pl,j(t) = 1, l ∈ N , t ∈ {τi, . . . , τi + Tf }, (3)

which implies that at time t, the agent l is located at only one vertex.

2.2.2. Constraints on Agent Movement

The movement of the agent l is constrained by the following inequality:

pl(t) ≤ Apl(t + 1), t ∈ {τi, . . . , τi + Tf − 1}, (4)

where the inequality sign (≤) holds element-wise. Equation (4) represents that the agent l
moves only between vertices for which edges exist (see, e.g., [50–52]). We remark that (4)
becomes the constraint on the agent movement when (3) is imposed.

For example, consider the undirected graph shown in Figure 1. Suppose that at time
t, the agent l is located at the vertex s1. Then, the location candidates at time t + 1 are
the vertices s1, r1, r2, and r5. Based on the notation of (1), the vertices s1, r1, r2, and r5
correspond to 1, 5, 6, and 9, respectively. Because the first row of the adjacency matrix A
is given by [

1 0 0 0 1 1 0 0 1 0
]
,

the above situation can be represented by the following inequality:

pl,1(t) ≤ pl,1(t + 1) + pl,5(t + 1) + pl,6(t + 1) + pl,9(t + 1).

When at time t the agent l is located at the vertex s1, pl,1(t) = 1 holds. We remark that
from (3), pl,j(t) = 0, j ̸= 1 holds. Hence, under (3), either pl,1(t + 1), pl,5(t + 1), pl,6(t + 1),
or pl,9(t + 1) must be 1. This implies that the location candidates at time t + 1 are the
vertices s1, r1, r2, and r5.

2.2.3. Constraints on Orders

For the agent l and the order ok, we introduce a binary variable yl,k as follows:
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yl,k =

{
1 if the agent l is responsible for the order ok,
0 otherwise.

As variables related to the agent l’s order receipt and delivery at time t, we also introduce
binary variables zpick

l,k (t) and zdeli
l,k (t) ∈ {0, 1} as follows:

zpick
l,k (t) =

{
1 if the agent l receives the goods of the order ok at time t,
0 otherwise,

zdeli
l,k (t) =

{
1 if the agent l delivers the goods of the order ok at time t,
0 otherwise.

Assume that the vertex sk in the order ok corresponds to the vertex vi (i.e., the i-th element
pl,i(t) of pl(t)). Then, receiving the goods of the order ok at time t can be represented by
the following expression:

[zpick
l,k (t) = 1] ⇒ [yl,k = 1] ∧ [pl,i(t) = 1], ∀l, ∀t. (5)

Similarly, if ck corresponds to the i-th element pl,i(t) of pl(t), then delivering the goods of
order ok at time t can be represented by the following expression:

[zdeli
l,k (t) = 1] ⇒ [yl,k = 1] ∧ [pl,i(t) = 1], ∀l, ∀t. (6)

The relationship between yl,k, zpick
l,k (t), and zdeli

l,k (t) is represented by the following
expressions:

[yl,k = 1] ⇔
τi+Tf

∑
t=Ts

ok

zpick
l,k (t), ∀k (7)

[yl,k = 1] ⇔
τi+Tf

∑
t=Ts

ok

zdeli
l,k (t), ∀k (8)

We define two sets of orders P and D to represent the status of each order. The set P is
the set of orders where the agent has not received the goods at the store. The set D is the
set of orders where the agent has received the goods at the store and is in the process of
delivery. Here, because there is only one agent responsible for each order, the following
constraints must be imposed:

∑
l

yl,k = 1, ∀ok ∈ P ∪D. (9)

2.2.4. Constraints on the Set of Orders

The constraint on P is that the agent receives the goods before delivery and that the
delivery time of the goods is equal to or earlier than the time limit τi + Tf . This constraint
is represented by the following expressions:

∑
l

t1

∑
t=τi

zpick
l,k (t)− ∑

l

t1

∑
t=τi

zdeli
l,k (t) ≥ 0, t1 ∈ {τi, . . . , τi + Tf }, ∀ok ∈ P , (10)

∑
l

τi+Tf

∑
t=τi

zdeli
l,k (t) = 1, ∀ok ∈ P . (11)
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On the other hand, the constraint on D is that the time to deliver the goods must be
equal to or earlier than the time limit τi + Tf . Hence, the constraint on D is expressed by
the following expression:

∑
l

τi+Tf

∑
t=τi

zdeli
l,k (t) = 1, ∀ok ∈ D. (12)

2.2.5. Constraints on Agent Fuel

When agents are implemented by using electric vehicles and drones, we need to con-
sider fuel constraints.

We introduce the continuous variable ql(t) ∈ R as a variable representing the fuel of
the agent l at time t. Let q0 denote the agent’s maximum fuel. Suppose that the initial fuel
is given by ql(0) = q0. The fuel ql(t) at time t is defined by

ql(t) =

{
q0 if the agent l is located at the vertex in S ,
ql(t − 1)− 1 otherwise,

(13)

which implies that the fuel is fully charged at the store vertex and decreases by one at the
vertex, except for the store vertex.

The constraint on the fuel of the agent l is given by

ql(t) ≥ c, t ∈ {τi, . . . , τi + Tf − 1} (14)

ql(τi + Tf ) ≥ c f , (15)

where c, c f ≥ 0 are given constants. According to the policy of model predictive control,
the terminal constraint may be different with other constraints. This difference can be
realized via a method for choosing c and c f .

2.2.6. Constraints on Luggage

We introduce a variable Xl(t) that represents the number of pieces of luggage carried
by agent l at time t. Here, we assume that the weights of the packages are the same. Using
zpick

l,k (t) and zdeli
l,k (t), the variable Xl(τi) can then be defined as

Xl(τi) =

∑
k
(zpick

l,k (0)− zdeli
l,k (0)) if i = 0,

(Xl(τi))i−1 otherwise (i ≥ 1),
(16)

where (Xl(τi))i−1 is the value obtained via optimization at t = τi−1. In addition, Xl(t) can
be expressed as

Xl(t) = Xl(t − 1) + ∑
k
(zpick

l,k (t)− zdeli
l,k (t)), (17)

when t = τi + 1, . . . , τi + Tf . Assume that the agent l can carry up to cw pieces of luggage,
where cw is a given constant. The constraint on the number of pieces of luggage that the
agent l carries at time t can be expressed as

Xl(t) ≤ cw, ∀l, ∀t. (18)

The variable Xl(t) implies the number of pieces of luggage. In the case where the weights
of the packages are different, the variable Xl(t) is regarded as a total weight for the agent
l via a simple modification.
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2.3. Demand Forecast

In the conventional pickup and delivery problem, the paths of the agents are calcu-
lated at τi, τi+1, . . . , maxk Tc

ok
(maxk Tc

ok
represents the slowest time limit in the set of orders).

In this paper, we consider using the demand forecast. It is expected that better paths are
obtained by considering not only the time interval where there are orders but also the
future where there are no orders.

In this paper, we assume that the number of agents (denoted by dj(t)) required in the
store sj at time t is given as the result of the demand forecast. In the next subsection, we
explain how to use dj(t).

2.4. Problem Formulation

Under the above preparations, we formulate the pickup and delivery problem at the
update time τi. The cost function to be minimized is defined as follows:

Ji = ci,1 + ci,2 + ci,3. (19)

We describe ci,1, ci,2, and ci,3 in detail. At first, ci,1 is defined as follows:

ci,1 = w1

τi+Tf

∑
t=τi

∑
l∈N

∑
j∈C∪R

pl,j(t). (20)

pl(t) ∈ {0, 1}|V| is a binary variable vector for the agent l ∈ N , where t ∈ {0, 1, 2, . . . , } is
discrete time. The j-th element pl,j(t) of pl(t) is 1 if the agent l is located at the vertex vj;
otherwise, it is 0. The scalar w1 is a constant representing the weights and is determined
through trial and error. In other words, Equation (20) implies the sum of the time spent
at the vertices, except for the store for all agents. By reducing the value of this term, the
running cost of the agents can be reduced.

Next, ci,2 is defined as follows:

ci,2 = w2∑
k

αk(Tk − Tc
ok
), (21)

where Tk is a variable that represents the time when the agent completes the delivery of
order ok to the customer. Time Tk can be expressed as

Tk = ∑
l
[Tc

ok
, ..., τi + Tf ]


zdeli

l,k (Tc
ok
)

...
zdeli

l,k (τi + Tf )

, (22)

where zdeli
l,k (t) is a binary variable that is 1 if agent l delivers order ok at time t and 0 if it

does not. In (22), the column vectors are all zero, except for one element. Therefore, from
this expression, we can find Tk when the value of zdeli

l,k (t) is equal to 1. The scalar αk is a
variable that determines whether the delivery time of the order ok to be delivered meets
the delivery deadline. The αk is defined as follows:

αk =

{
1 if Tk ≥ Tc

ok
,

0 otherwise.
(23)

where αk = 1 implies that the time Tk when the order is delivered to the customer is later
than the time limit Tc

ok
to complete the delivery. The scalar w2 is a constant representing

the weights and is determined through trial and error.
In other words, Equation (21) is a summation of the delays in the delivery time. By re-

ducing the value of this equation, we can obtain agent trajectories that satisfy the delivery
time constraints of the order.
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Finally, ci,3 is defined as follows:

ci,3 = w3

τi+Tf

∑
t=τi

∑
j≤|S|

αj(t)(σj(t)− dj(t)), (24)

where σj(t) is a decision variable that represents the number of agents in store sj at time
t. The constant dj(t) is given in advance (see Section 2.3). We assume that the demand
forecast is a prediction of when, where, and how many orders will be placed. The αj(t)
is a binary variable that determines whether the number of agents in store sj at time t
satisfies the required number of agents in store sj obtained from the demand forecast. The
αj(t) is defined as follows:

αj(t) =

{
1 if dj(t) ≥ σj(t),
0 otherwise,

(25)

where αj(t) = 1 implies that the number of agents in store sj is less than the number of
agents required for store sj obtained from the demand forecast. The scalar w3 is a con-
stant representing the weights and is determined through trial and error. In other words,
Equation (24) is the sum of the number of agents that are less than the number of agents
required for each store. By reducing the value of this equation, the agent trajectory can be
obtained with more consideration given to demand forecasting.

The pickup and delivery problem at the update time τi is given as follows.

Problem 1.

minimize (19)

subject to (3)–(18), (22), (23), (25).

Via a simple calculation (see, e.g., [52]), the constraint conditions (3)–(18), (22), (23),
and (25) can be transformed into linear constraint conditions. In addition, the cost function
is also transformed into a linear cost function. Hence, this problem is reduced to a mixed
integer linear programming (MILP) problem.

3. Online Optimization

For Oi, P , and D, the online optimization of the pickup and delivery problem is
performed as follows.
Procedure for online optimization of the pickup and delivery problem:
Step 1: If i = 0, set P ,D = ∅, and t = 0.

Step 2: For each ok ∈ P ∪D, calculate the values of ∑
l

τi

∑
t=τi−1

zpick
l,k (t) and ∑

l

τi

∑
t=τi−1

zdeli
l,k (t).

Step 3: For ok ∈ P ∪D, perform the following procedure.

P := P ∪ {ok} if ∑
l

τi

∑
t=τi−1

zpick
l,k (t) = 0,

P := P \ {ok},D = D ∪ {ok} if [∑
l

τi

∑
t=τi−1

zpick
l,k (t) = 1] ∧ [∑

l

τi

∑
t=τi−1

zdeli
l,k (t) = 0],

P := P \ {ok},D = D \ {ok} if ∑
l

τi

∑
t=τi−1

zdeli
l,k (t) = 1.

Step 4: Update P := P ∪Oi.



Future Internet 2024, 16, 64 9 of 15

Step 5: For each order, if ok ∈ D, then update yl,k, l ∈ N to (yl,k)i−1 obtained via optimiza-
tion at t = τi−1, that is,

yl,k := (yl,k)i−1. (26)

Step 6: For ok ∈ P , impose Equations (10) and (11) as a constraint. For ok ∈ D, impose (12)
as a constraint.
Step 7: Solve the pickup and delivery problem at time t = τi, adding the constraints in
Equation (26).
Step 8: Based on the calculation results, move the agent. Update t := t + 1.
Step 9: If there are no orders at time t, return to Step 8. If there is an order, return to Step 2.

The outline of this procedure is shown in Figure 2.

Step 1: Ini�alize

Step 2, 3, 4: Check the status of each 
order. 

Step 5: Hold an agent's path that has 
already moved. 

Step 6, 7: Solve the MILP problem.

Step 8: Move agents based on the 
computa�on result. Update

Step 9: 
Are there new

orders?

Yes No

Figure 2. Outline of the procedure of online optimization.

In this procedure, the agents’ predicted paths may be changed by solving the opti-
mization problem that is generated by receiving a new order. Because the agents’ pre-
dicted paths are changed online (real time), we call this procedure an online optimization.

4. Numerical Example

In this section, we present a numerical example where the optimization problem is
solvable even when the demand forecast deviates significantly from the actual order by
considering the delivery constraints in the cost function. Here, we compare the proposed
method with the existing method [49].

4.1. Preliminaries

Suppose that the target area is given by Figure 3. The number of vertices is set to
|S| = 10, |C| = 10, and |R| = 16, and the graph is randomly arranged. The number of
agents is set to 10, and the initial position is assumed to be one agent in each store. The
maximum fuel of an agent is set to q0 = 20. All w1, w2, and w3 in (20), (21), and (24) are
set to 1. In addition, we set Tf = 20. We used a computer with an AMD Ryzen 5 5600X
6-Core Processor 3.70 GHz CPU and 32 GB of memory. The optimization problem at each
update time was written using PuLP, which is a modeler written in Python. The solver
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used to compute the optimization problem was IBM ILOG CPLEX 20.1.0, which can be
called from Python. The simulation result is outputted as the computation result of the
Python program.

s7 r1 c6 r2 r3 r4

r5 s3 r6 r7 r8 s1

r9 r10 r11 s5 s9 c9

c2 c10 r12 s10 r13 c1

r14 s6 s4 c7 r15 c4

c5 s2 s8 r16 c8 c3

Figure 3. Target area, where an agent can move to an up/down/left/right vertex.

The order contents are given in Table 1. In the case of this order, the optimization
problem is solved at times 0, 5, and 8. However, in the existing method, τi + Tf in the
Equations (11) and (12) representing the delivery time constraints is Tc

ok
. In other words,

the existing method constrains the order delivery to be completed by the order delivery
date, not within the time interval. In [49], the cost function Ji is defined as follows, and the
delivery time constraint is not considered in the cost function.

Ji =

τi+Tf

∑
t=τi

∑
l

∑
j>|S|

pl,j(t) (27)

The existing methods for demand forecasting consider the following inequalities.

∑
l

pl,j(t) ≥ dj(t), (j = 1, 2, . . . , N) (28)

The dj(t) used in Equations (24) and (28) are set to d5(8) = 4 and 0 in all other cases. This
means that at time 8, store s5 needs four agents, and there are no constraints for the other
times or stores. However, the actual orders are not for store s5 but for store s4, which
means that the predictions of the stores that will receive the orders in the demand forecast
are all wrong.

Table 1. Order details.

Order sk ck Ts
ok

Tc
ok

o1 s3 c2 0 7

o2 s2 c3 5 12

o3 s1 c4 5 12

o4 s4 c5 8 13

o5 s4 c6 8 13

o6 s4 c8 8 13

o7 s4 c9 8 13
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4.2. Calculation Results

Table 2 shows the results obtained for the case solved by the existing method. Table 3
shows the cost function values at each time for the existing method. Table 4 shows the
results obtained for the case solved by the proposed method. Table 5 shows the value of
the cost function at each time for the proposed method. Figures 4–8 shows the obtained
trajectories of the agents. The trajectories of the agents obtained at times 0 and 5 for the
existing methods are shown in Figures 4 and 6. The trajectories of the agents obtained at
times 0, 5, and 7 for the proposed method are shown in Figures 5, 7, and 8. The solid line
in Figures 4–8 shows that the agent has luggage, while the dotted line shows that the agent
does not have luggage. The thickness of the arrows in the figure indicates the number of
pieces of luggage the agent is carrying.

Table 2. Results with the existing method.

Results at Time 0 Results at Time 5 Results at Time 8

Order Agent Pickup Time Delivery Time Agent Pickup Time Delivery Time Agent Pickup Time Delivery Time

o1 3 0 5 3 0 5 – – –

o2 – – – 2 5 9 – – –

o3 – – – 1 5 10 – – –

o4 – – – – – – – – –

o5 – – – – – – – – –

o6 – – – – – – – – –

o7 – – – – – – – – –

Table 3. Values of the cost function at each time in the existing method.

Time Cost Function Ji

0 5

5 12

8 Infeasible

Table 4. Results with the proposed method.

Results at Time 0 Results at Time 5 Results at Time 8

Order Agent Pickup Time Delivery Time Agent Pickup Time Delivery Time Agent Pickup Time Delivery Time

o1 3 0 3 3 0 3 3 0 3

o2 – – – 2 5 12 2 5 14

o3 – – – 1 5 9 1 5 9

o4 – – – – – – 3 10 13

o5 – – – – – – 8 9 13

o6 – – – – – – 2 10 13

o7 – – – – – – 6 9 14

Table 5. Values of the cost function at each time in the proposed method.

Time ci,1 ci,2 ci,3 Cost Function Ji

0 5 0 0 5

5 10 0 0 10

8 17 3 0 20
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From Tables 2 and 4, only the proposed method can solve the problem at time 8 for the
orders given in Figure 1. This is because in the case of the existing method,
Equations (11) and (12) are not satisfied for orders o2 and o7. On the other hand, in the
case of the proposed method, we add to the cost function the amount of time past the
delivery time constraint Tc

ok
for the orders o2 and o7 from Table 4 and Table 5, respectively.

Thus, the result at time 8 is solvable. Therefore, even when the demand forecast is sig-
nificantly off and the delivery time constraints for all the orders are not met, an optimal
solution that satisfies the conditions as much as possible can be obtained.

Figure 4. Results at time 0 with existing method.

Figure 5. Results at time 0 with proposed method.

Figure 6. Results at time 5 with existing method.
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Figure 7. Results at time 5 with proposed method.

Figure 8. Results at time 8 with proposed method.

5. Conclusions

In this paper, we proposed an online pickup and delivery problem in which demand
forecasting and fuel constraints were considered. First, we formulated the pickup and de-
livery problem with fuel constraints. Next, we introduced the cost function considering de-
mand forecasting. After that, we explained the procedure of online optimization. Finally,
through a numerical example, we presented the effectiveness of the proposed method.

In future work, we will consider practical applications. The problem formulation in
this paper is relatively simpler than real food delivery services. It is important to extend
the proposed method to the practical setting. We will consider many real scenarios and
validate the proposed method. For large-scale scenarios, the computation time to solve an
MILP problem becomes large (in this paper, as the first step, an MILP problem is solved by
a conventional solver). It is also important to develop a distributed solution method, such
that the problem is decomposed into small subproblems, and a parallel algorithm based
on swarm optimization.
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