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Abstract: Audio inpainting plays an important role in addressing incomplete, damaged, or missing
audio signals, contributing to improved quality of service and overall user experience in multimedia
communications over the Internet and mobile networks. This paper presents an innovative solution
for speech inpainting using Long Short-Term Memory (LSTM) networks, i.e., a restoring task where
the missing parts of speech signals are recovered from the previous information in the time domain.
The lost or corrupted speech signals are also referred to as gaps. We regard the speech inpainting task
as a time-series prediction problem in this research work. To address this problem, we designed multi-
layer LSTM networks and trained them on different speech datasets. Our study aims to investigate
the inpainting performance of the proposed models on different datasets and with varying LSTM
layers and explore the effect of multi-layer LSTM networks on the prediction of speech samples
in terms of perceived audio quality. The inpainted speech quality is evaluated through the Mean
Opinion Score (MOS) and a frequency analysis of the spectrogram. Our proposed multi-layer LSTM
models are able to restore up to 1 s of gaps with high perceptual audio quality using the features
captured from the time domain only. Specifically, for gap lengths under 500 ms, the MOS can reach
up to 3~4, and for gap lengths ranging between 500 ms and 1 s, the MOS can reach up to 2~3. In the
time domain, the proposed models can proficiently restore the envelope and trend of lost speech
signals. In the frequency domain, the proposed models can restore spectrogram blocks with higher
similarity to the original signals at frequencies less than 2.0 kHz and comparatively lower similarity
at frequencies in the range of 2.0 kHz~8.0 kHz.

Keywords: speech signal processing; speech inpainting; audio inpainting; long short-term memory;
deep learning

1. Introduction

In various audio processing tasks, audio signals often experience unexpected damage
and information loss, which causes “gaps” within the audio signal. The process of restoring
the gaps in the audio signal is called audio inpainting [1], which is also known as audio
interpolation [2–6], extrapolation [7,8], waveform substitution [9], and imputation [10,11].
The term “inpainting” is adopted from image inpainting in the computer vision and image
processing fields, which is a technique related to restoring the missing or corrupted parts
of an image [12]. Audio inpainting is a general concept that includes restoring any audio
signal, such as speech, music, instrument, environmental sounds, or any other auditory
signals. It can be referred to as speech inpainting when applied to speech signals. As such,
it is a specific form of audio inpainting.

In real-life applications, clean speech signals are often affected by many factors, such
as degradation of audio quality, loss of information, and unpredictable noise [13], which
leads to the incomplete transmission of speech signals, making it difficult for users at both
the sending and receiving ends to communicate with each other. Speech inpainting aims to
restore coherent and meaningful samples to the missing parts of a speech signal, ensuring
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that users at the receiving end do not perceive any information loss. In this paper, we
propose an innovative speech inpainting mechanism to restore speech signal losses of up
to one second using multi-layer Long Short-Term Memory (LSTM) networks [14].

Currently, there are two kinds of methodology used in the context of the audio
inpainting task: mathematical-based approaches and deep learning-based algorithms.
Previous research on audio inpainting mainly focused on using mathematical signal-
processing techniques [1–8,10,11,15–21]. In recent years, with the gradual maturity of deep
learning technology, researchers have begun to use deep learning-based audio inpainting
algorithms to restore lost information in audio signals [22–31].

However, it should be noted that existing speech inpainting techniques primarily rely
on “specific conditions” to restore the missing information. For example, SpeechPainter [27]
is designed exclusively for text-based data, which means that during the inpainting process,
all the speech transcripts are used to achieve outstanding predictions. Other techniques
utilise visual information-based approaches, like facial motions together with the context
information, to address the restoration task, as proposed in [31]. It is worth mentioning
that during the signal transmission process in communication systems, such “specific
conditions” do not exist except for the information before and after the missing area, which
means that the loss of information is permanent and irreversible. Therefore, the methods
mentioned above cannot be universally applied to all types of inpainting tasks due to their
inherent limitations, which means that a new approach is needed.

In this paper, we propose a method for addressing speech inpainting using multi-layer
LSTM networks. A series of LSTM networks containing between two and six layers were
designed and trained on four single-speaker datasets, followed by further training on four
multi-speaker datasets using an exclusive five-layer LSTM network. Our research is based
on two types of datasets—single-speaker and multi-speaker datasets—to investigate the
inpainting performance of the proposed LSTM models in terms of the perceived audio
quality with different LSTM layers, datasets, and gap lengths. The performance is evaluated
through the Mean Opinion Score (MOS) [32] and frequency analysis method [33] to assess
the inpainted speech quality. Our proposed models are capable of learning information
prior to the gap and inpainting coherently predicted speech samples to fill in missing gaps
in the range of 20 ms–1000 ms.

The primary contribution of this paper lies in addressing speech inpainting in real-
world communication scenarios, utilising only the voice information preceding the gap.
In two-way real-time conversational communication, supplementary information, such as
visual data, transcripts, and speech signals immediately following the gap, is not always
available or feasible to use in speech inpainting. Using this supplementary information
requires buffering a large amount of data and significant processing capability, resulting
in lengthy jitter and degraded quality of service and user experience. The proposed
speech-inpainting technique provides effective speech restoration without the need for
supplementary information and achieves remarkable restoration effects and superior speech
quality across gaps of varying lengths, significantly outperforming existing deep learning-
and generative-based methods [22–31] that use supplementary information. This study
not only contributes to the advancement of speech inpainting technology but also carries
practical implications for applications such as speech enhancement and audio restoration.

The remainder of this paper is structured as follows. Section 2 presents the related
works corresponding to our study. Section 3 illustrates the proposed methodology, model ar-
chitecture, evaluation methods, and fine-tuning of the hyperparameters. Section 4 presents
the experimental and training setup. Section 5 illustrates the results and analysis of the
study. Section 6 presents the conclusions and suggests some future research directions.

2. Related Works
2.1. Conventional Audio Inpainting Based on Mathematics

Existing mathematical-based audio inpainting methods can be traced back to the last
century. Early attempts at audio inpainting utilised spectral subtraction techniques for
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speech signal denoising, laying the foundation for subsequent audio restoration
methods [34]. Atal proposed a linear prediction method to model the spectral envelope of
speech signals, which can be used to restore missing gaps through linear prediction param-
eters; however, it cannot handle complex audio structures and non-stationary signals [35].

Considering the combination of statistical models, several studies have proposed
the use of auto-regressive models to capture the correlation and structure within audio
signals. Subsequently, the missing samples were inpainted and filled into corresponding
positions through interpolation [2–4]. Furthermore, Lagrange et al. proposed an algorithm
for sinusoidal component interpolation in the context of sinusoidal modelling, which can
achieve a more realistic insertion of lost audio samples, especially in the case of musical
modulations such as vibrato or tremolo [5,6]. To extend the duration of the restored audio
samples, a longer audio extrapolation method was proposed in [7,8]. Considering the
possibility of restoring lost audio signals in the time-frequency domain, Smaragdis et al.
proposed a method to estimate missing spectrograms in the time-frequency domain of
audio signals, which can process real-world polyphonic signals through imputation [10,11].
A more popular method is the sparsity-based approach [1,17–21], which aims to find the
sparse representation of the missing part of the signal that best fits the surroundings [36].

In addition, there is another concept called Packet Loss Concealment (PLC) [15,16],
which is similar to audio inpainting but specifically focuses on mitigating the impact of lost
or corrupted packets in digital audio coding and communication systems. Both PLC and
audio inpainting restore the loss of information, but they operate in different contexts and
are based on different methodological foundations.

It is worth mentioning that the methods discussed above can only perform well
in restoring millisecond-level gap lengths, roughly in the range of 10 ms–100 ms. For
larger gaps, the restoration task tends to fail at producing plausible reconstructions, as the
stationarity condition does not hold [36].

2.2. Deep Learning-Based Audio Inpainting Methods

In recent years, there has been an increase in the audio inpainting literature based
on deep learning methods. Several key considerations need to be clarified in the context
of the deep learning-based audio inpainting task, which can be summarised by three
characteristics: the type of processed audio signal, the duration of the missing audio gap,
and the deep learning method used.

Several studies have explored the efficacy of DNNs in addressing audio inpainting.
Marafioti et al. utilised a DNN architecture to restore the missing part within an instru-
ment’s audio signal using time-frequency coefficients (TF coefficients) [22], where the length
of the inpainting gap was up to 128 ms. Similarly, Kegler et al. proposed an end-to-end
DNN with a U-Net architecture to restore missing or distorted speech signals of up to
400 ms [23]. These works have shown that the DNN architecture can perform well in
audio inpainting.

Generative Adversarial Networks (GANs) [24] have recently become a focal point in
audio inpainting. Ebner et al. proposed to use the Wasserstein GAN (WGAN) to restore
the lost part within an instrument’s audio signals based on short contexts (1 s from each
side of the gap) and long contexts (2.5 s from each side of the gap), where the length of
the inpainting gap was up to 550 ms [25]. Furthermore, [26] demonstrated that by using a
conditional GAN (cGAN) model, missing audio segments could be restored based on the
context of the surrounding audio and the latent variable of the cGAN. The authors aimed
at restoring an instrument’s audio signals, where the lengths of the inpainting gap were up
to 1500 ms.

It is worth noting that most of the approaches mainly focused on restoring mu-
sic/instrument signals, which generally have long-term dependency and periodicity. In con-
trast, speech signals have more features and higher complexity when faced with several
practical applications. Recent studies have noted the differences between music/instrument
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signal datasets and speech signal datasets [23,27,31]. Increasingly, researchers have started
focusing on speech signals and using speech datasets to address audio inpainting.

As proposed in [27], the architecture of Perceiver IO [28] was used to restore the miss-
ing parts of speech signals according to the text transcript. The authors used a transformer-
based model [29] to restore gaps of up to 1000 ms. Another study [30] proposed the use of a
multi-modal transformer together with high-level visual features to restore an instrument’s
audio signal, with gap lengths of up to 1600 ms. Other works, like [31], used visual infor-
mation (facial motions) together with the audio context to restore gaps of up to 1600 ms
within speech signals.

However, when comes to real-life two-way conversational communication scenarios,
there are notable limitations shared by these approaches—they are all based on specific
conditions. These conditions include the type of processed audio signal [22], relatively
shorter gaps [23,25], the context before and after the gap [24], a text transcript [27,28],
and visual information [30,31]. This limits the usage of the approaches in the literature
to only their specific domains, as these conditions are not always available or feasible to
use. This limitation underscores the necessity for further research in developing speech
inpainting models that better align with practical communication scenarios.

3. Proposed Speech Inpainting Methods and Model Architecture
3.1. Long Short-Term Memory Networks

LSTM is a type of Recurrent Neural Network (RNN) architecture [37], which is designed
to address the limitations of traditional RNNs in capturing long-distance dependencies and
avoiding the vanishing gradient problem [14]. The vanishing gradient problem of the RNN
model often occurs when the gradient of the loss function relative to the network weight
becomes extremely small, which makes it difficult for RNNs to learn long-term correlations.

The structure of an LSTM cell is shown in Figure 1. By incorporating an input gate,
forget gate, and output gate, the LSTM architecture has the ability to retain long-term
memory of past inputs and their contextual information. Mathematically, let us denote the
input time series as Xt, the hidden state of memory cells as Ht, the input gate as It, the forget
gate as Ft, and the output gate as Ot, where t ∈ [1, N] represents the time parameters. Then,
we have the following notations:

It = σ(XtWxi + Ht−1Whi + bi),

Ft = σ
(

XtWx f + Ht−1Wh f + b f

)
,

Ot = σ(XtWxo + Ht−1Who + bo),

C̃t = tanh(XtWxc + Ht−1Whc + bc),

Ct = Ft ⊗ Ct−1 + It ⊗ C̃t,

Ht = Ot ⊗ tanh(Ct),

(1)

where W represents the weight parameters, b represents the bias parameters, and σ repre-
sents the sigmoid activation function.

The input gate controls how much new information is added to the memory cell. The
forget gate determines which information to discard from the memory cell. The output
gate controls how much of the current memory cell state to feed to the next hidden state. In
summary, the parameters inside the memory cell and the three gates are learned through
backpropagation, allowing the network to selectively store and retrieve information over
time and learn long-term dependencies in sequential data.
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Figure 1. LSTM cell structure.

3.2. Series Prediction LSTM Model in Speech Inpainting

An LSTM model was constructed, as shown in Figure 2. The left side of the figure
shows the proposed speech inpainting process applied in this work, and the right side
shows the structure of the LSTM model. Note that only a five-layer LSTM model is
depicted here.

The utilisation of LSTM in speech inpainting was motivated by its exceptional abil-
ity to capture complex temporal dependencies in spoken language. For processing and
predicting time-series data such as speech signals, the capability of LSTM in modelling
long-term temporal relationships, adapting to variable-length contexts, preserving con-
textual information, and learning hierarchical representations renders it well suited for
this work.

Figure 2. The inpainting process and neural network structure of the proposed speech inpaint-
ing model.

During the speech inpainting process, the original speech signals are first split into
multiple windows, labelled as window_i, ∀i ∈ [1, N], where N is the total number of
windows split from the original speech signal, corresponding to the blue blocks in Figure 2.
The length of each window is a fixed value of 640 speech samples, corresponding to a 40 ms
speech signal when the signal is sampled at 16 kHz.
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Subsequently, the split windows are fed into the LSTM model to obtain a series of
prediction blocks, labelled as pre_λ, where ∀λ ∈ [1, N], and λ is the number of predicted
blocks in the inpainted speech signal, corresponding to the orange blocks in Figure 2. The
length of each predicted block is 80 speech samples, corresponding to a 5 ms speech signal
at a 16 kHz sampling rate. During each prediction process, the LSTM model predicts and
outputs the results according to each input window in turn. After predicting a block, the
window will shift 80 speech samples to form a new window of 640 speech samples and then
repeat the prediction process. At the end of the inpainting process, all the predicted blocks
(the orange-coloured ones in the figure) are concatenated to obtain the resulting inpainted
speech signal, as shown at the bottom of the left-hand side of the figure.

3.3. Datasets

The datasets used in this research work were constructed from four widely used
publicly accessible speech datasets: the LJ Speech dataset [38], the Hi-Fi multi-speaker
dataset [39], the RyanSpeech dataset [40], and the LibriSpeech dataset [41]. Two categories
of eight speech datasets were built for training and testing the proposed models. The first
category contains four single-speaker datasets: one from the LJSpeech dataset, one from the
RyanSpeech dataset, and two from the LibriSpeech dataset. The second category contains
four multi-speaker datasets: one from the Hi-Fi multi-speaker dataset and three from the
LibriSpeech dataset. The details of the datasets constructed in this research are shown in
Table 1:

Table 1. Datasets built in this research work.

Category Dataset Component (M: Male; F:
Female) Length (s)

Single-speaker

LJSpeech [38] 1 speaker (F) 400
RyanSpeech [40] 1 speaker (M) 400
LibriSpeech [41] 1 speaker (M) 400
LibriSpeech [41] 1 speaker (F) 400

Multi-speaker

Hi-Fi [39] 10 speakers (4 F, 6 M) 400 for each speaker
LibriSpeech [41] 10 speakers (5 F, 5 M) 400 for each speaker
LibriSpeech [41] 10 speakers (5 F, 5 M) 400 for each speaker
LibriSpeech [41] 10 speakers (5 F, 5 M) 400 for each speaker

• Single-speaker dataset:
The first two datasets were built directly from the original LJSpeech and RyanSpeech
datasets. The last two datasets were built from the LibriSpeech dataset, specifically
from the “train-clean-100” folder, which contains speech data from multiple male and
female speakers. The third dataset uses “folder 26” and the fourth uses “folder 32”.
In this paper, these four datasets are referred to as LJSpeech, RyanSpeech, Libri_26,
and Libri_32. Each dataset collates 400-second-long female or male speech samples at
a 16 kHz sampling rate and contains one speaker.

• Multi-speaker dataset:
The first dataset was built from the original Hi-Fi dataset, and the others were built
from the LibriSpeech dataset. Each dataset contains 10 distinct speakers from both
genders, collating 400-second-long speech samples at a 16 kHz sampling rate. These
four datasets are referred to as HIFI, LibriM1, LibriM2, and LibriM3 in this paper.

3.4. Performance Evaluation

We chose the MOS and frequency analysis method [33] to evaluate the inpainted
speech quality. The MOS is commonly used in the telecommunications industry to measure
the perceived quality of audio and video signals, as defined by the ITU-T Recommendation
P.800 [32]. The MOS returns a subjective rating scale that ranges from 1 to 5 to represent
the quality, with an MOS of 5 being perceived as excellent, 4 as good, 3 as fair, 2 as poor,
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and 1 as bad. Two types of MOSs were employed in this work, corresponding to both
narrow bandwidth (NB) and wide bandwidth (WB) speech signals. NB varies from 300 Hz
to 3400 Hz, whereas WB varies from 50 Hz to 7000 Hz.

The evaluation process utilised a total of 24 models, with 20 models trained on the
single-speaker dataset and 4 models trained on the multi-speaker dataset. For each single-
speaker dataset, five models were utilised, with LSTM layers ranging from two to six,
whereas an exclusive five-layer LSTM model was utilised for each multi-speaker dataset.

When evaluating each model, 10 speech signals not included in the training and testing
datasets were selected, referred to as the original signal. The inpainting performance was
assessed across seven different gap ranges for each test speech signal. The selected gap
lengths were as follows: 20 ms, 40 ms, 50 ms, 100 ms, 200 ms, 500 ms, and 1000 ms.
Each test speech signal was used to generate seven independent signals with different
lengths of speech samples set to zero, referred to as zeroed signals. It should be noted that
every zeroed signal generated from the same test speech signal had the same gap starting
point, and the sample values of the entire gap were set to zero, meaning the signal was
continuously missing. Nevertheless, the starting positions of gaps differed among the
different test speech signals, which guaranteed that all gaps remained within the voiced
part of the speech signal. Subsequently, the inpainted signals were generated. The proposed
models were used to restore different lengths of speech samples, and then the inpainted
samples were inserted into the corresponding gap locations of the zeroed signals, resulting
in seven inpainted signals from each test speech signal.

The final evaluation results were determined by computing the average MOS between
the ten original and ten inpainted signals in seven different gap ranges. It should be noted
that the method used to calculate the average MOS was aimed at mitigating the impact of
random errors that may arise during a single MOS calculation process, ensuring a more
robust and reliable assessment of the inpainting performance.

3.5. Hyperparameter Optimisation

We systematically tested various hyperparameter configurations, and the three hyper-
parameters that had the most significant impact on the proposed models were considered
for fine-tuning: the batch size, dropout rate, and location of the dropout layers. A more
compact dataset containing 64,000 speech samples was built from the RyanSpeech dataset,
and an exclusive five-layer LSTM model was used for training and testing. We used the
same evaluation method described in Section 3.4.

3.5.1. Batch Size

As recommended in [42], four batch sizes were considered based on our proposed
models: 256, 512, 640, and 1024. The average MOSs of the inpainting performance under
different batch sizes and gap lengths are shown in Table 2.

Table 2. Average MOSs of the inpainted speech with different gap lengths under different batch sizes.

Batch Size Bandwidth
Gap Length (ms)

20 40 50 100 200 500 1000

256 NB 3.95 3.80 3.78 3.67 3.37 2.93 2.34
WB 3.84 3.70 3.62 3.51 3.06 2.22 1.69

512 NB 4.03 3.92 3.91 3.79 3.59 3.25 2.74
WB 4.03 3.93 3.87 3.72 3.44 2.88 2.27

640 NB 4.08 3.95 3.92 3.82 3.62 3.23 2.72
WB 4.01 3.87 3.80 3.68 3.37 2.72 2.06

1024 NB 4.08 3.90 3.89 3.77 3.52 3.15 2.62
WB 4.07 3.93 3.90 3.80 3.45 2.83 2.19
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In Table 2, it can be seen that when the gap length was less than or equal to 200 ms,
the batch sizes that achieved the highest average MOSs were 640 (NB) and 1024 (WB),
respectively. For gap lengths in the range of 500 ms~1000 ms, the highest average MOS
was obtained when the batch size = 512.

As specified in the 3GPP standards for voice encoder/decoder (CODEC) for 4G/5G
mobile communication systems [43–45], the maximum sampling rate of input voice signals
is 48 kHz. This corresponds to 960 sample points for a frame of 20 ms. To ensure the
model’s capability in learning the features and correction among speech frames during
training, optimising speech communication quality across different bit rates, and ensuring
the model’s adaptability to a variety of speech CODECs, the batch size should be close to
the number of samples in one frame. Consequently, a batch size of 1024 was selected for
final-tuning the model.

3.5.2. Dropout Rate

In our study, five dropout rates were chosen for fine-tuning: 0.1, 0.2, 0.3, 0.4, and 0.5.
The average MOSs of the inpainting performance under different dropout rates and gap
lengths are shown in Table 3. It can be observed that across all NB and WB scenarios,
the optimal dropout rate was 0.4.

Table 3. Average MOSs of the inpainted speech with different gap lengths under different
dropout rates.

Dropout
Bandwidth

Gap Length (ms)

Rate 20 40 50 100 200 500 1000

0.1 NB 4.10 3.94 3.91 3.82 3.58 3.18 2.63
WB 4.11 3.96 3.90 3.78 3.48 2.92 2.25

0.2 NB 4.08 3.90 3.89 3.77 3.52 3.15 2.62
WB 4.07 3.93 3.90 3.80 3.45 2.83 2.19

0.3 NB 4.07 3.93 3.88 3.77 3.57 3.15 2.61
WB 4.04 3.92 3.86 3.75 3.47 2.90 2.23

0.4 NB 4.13 3.99 3.94 3.82 3.61 3.25 2.77
WB 4.12 3.97 3.92 3.79 3.50 2.97 2.33

0.5 NB 4.12 3.96 3.90 3.80 3.55 3.16 2.61
WB 4.14 3.97 3.91 3.81 3.51 2.93 2.25

3.5.3. Location of the Dropout Layers

According to the models proposed in this research, five strategies for the placement of
the dropout layers were considered, as follows:

• Location 1: dropout layers are placed after the first and last LSTM layers.
• Location 2: dropout layers are placed after the second and last LSTM layers.
• Location 3: dropout layers are placed after the third and last LSTM layers.
• Location 4: dropout layers are placed after the fourth and last LSTM layers.
• Location 5: dropout layers are placed after every LSTM layer.

As shown in Table 4, overall, the best-performing dropout layer position was Loca-
tion 1, which corresponds to placing the dropout layers after the first and last LSTM layers.

To summarise, the final selection of the proposed hyperparameters was as follows:
batch size = 1024, dropout rate = 0.4, and the dropout layers were placed after the first and
last LSTM layers.
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Table 4. Average MOSs of the inpainted speech with different gap lengths under different locations
of the dropout layer.

Location Bandwidth
Gap Length (ms)

20 40 50 100 200 500 1000

1 NB 4.13 3.99 3.94 3.82 3.61 3.25 2.77
WB 4.12 3.97 3.92 3.79 3.50 2.97 2.33

2 NB 4.04 3.92 3.87 3.76 3.58 3.20 2.67
WB 4.05 3.93 3.88 3.78 3.51 2.97 2.33

3 NB 4.11 3.97 3.92 3.80 3.60 3.23 2.71
WB 4.12 3.96 3.91 3.79 3.51 2.97 2.33

4 NB 4.02 3.89 3.84 3.72 3.54 3.19 2.69
WB 4.03 3.90 3.84 3.71 3.43 2.82 2.19

5 NB 4.10 3.93 3.89 3.77 3.57 3.20 2.65
WB 4.05 3.92 3.85 3.72 3.41 2.79 2.12

4. Experiments
4.1. Experiment Setup

The deep learning models were developed using TensorFlow v2.6, CUDA v11.1, and
Cudnn v8.2, and trained on a Linux workstation with Ubuntu 20.04.5 LTS OS, an NVIDIA
GeForce RTX3090 GPU with 24GB of VRAM, and an Intel Core i7-12700K CPU. The MOS
was calculated using Matlab-R2022a based on [46].

4.2. Model and Training Setup

In this research, we built eight datasets and introduced 24 LSTM models, comprising
20 single-speaker and 4 multi-speaker models. Specifically, we trained five models for each
of the four single-speaker datasets, with the models corresponding to two to six LSTM
layers, respectively. We also trained a model with five LSTM layers for each of the four
multi-speaker datasets.

Following dataset construction, we obtained each of the single-speaker datasets with
one dimension and 6,400,000 speech samples, and the multi-speaker dataset with ten
dimensions and 6,400,000 speech samples for each speaker. For the single-speaker datasets,
the models were designed to learn the speech features of different single speakers in the
time domain and restore the lost speech samples of the gaps. For the multi-speaker datasets,
ten dimensions of training speech samples were input into the model in parallel, and the
models were designed to learn the speech features of ten different speakers and restore the
lost speech samples of the gaps. All the datasets were divided into training and testing sets,
with a split ratio of 85% for training and 15% for testing.

Speech signals are inherently non-stationary, deviating from the normal distribution
due to the dynamic nature of the physical motion process within the vocal organs. To
mitigate the impact of dimensionality on the inpainting results and ensure comparability
across different speech features, the speech samples were pre-processed using min-max
normalisation [47] to scale the values between 0 and 1 for subsequent training.

The values of the hyperparameters are shown in Table 5. We defined the length of each
window as 640 speech samples (sequence length), and the length of each predicted block
was set to 80 speech samples (predicted sequence length), which means that the speech
inpainting process utilised the preceding 640 speech samples to predict the subsequent
80 speech samples. In the training process, the training epochs of the single-speaker and
multi-speaker models were set to 50 and 100, respectively, to achieve better convergence.
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Table 5. Summary of hyperparameters.

Hyperparameter Value

Batch size 1024
Dropout rate 0.4
Input sequence length 640
Output sequence length 80
Adam optimiser β1 = 0.9, β2 = 0.999
Epochs (single-speaker datasets) 50
Epochs (multi-speaker datasets) 100
Input dimension (single-speaker datasets) 1
Input dimension (multi-speaker datasets) 10
Nodes in each LSTM input layer 100
Nodes in each LSTM output layer 100
Nodes in the dense layer 1

4.3. Loss Function

The model training employed the Mean Square Error (MSE) as the loss function to
quantify the disparity between the inpainted and original speech signal values [48],

L(Ori, Inp) =
1
N

N

∑
i=1

(orii − inpi)
2 (2)

where Ori represents the original speech signals, Ori = {orii | i = 1, 2, · · · , N}, Inp rep-
resents the inpainted speech signals, and Inp = {inpi | i = 1, 2, · · · , N}, N represents the
predicted sequence length. The Adam optimiser [49] was used to optimise the training
process, and the learning rate was set to 0.001.

4.4. Model Complexity

To assess model complexity, we calculated the total number of parameters, average
training time, and average prediction speed for models with different categories and LSTM
layers, as presented in Table 6. Specifically, the average training time and prediction
speed were obtained over the four respective datasets for the two categories, with 50 and
100 training epochs for the single- and multi-speaker categories, respectively.

Table 6. Summary of model complexity and computation time.

Category LSTM Total Avg. Training Time Avg. Prediction Speed
Layers Parameters (Hours) (Samples/s)

Single-speaker

2 121,301 7.50 33.70
3 201,701 11.11 28.73
4 282,101 14.58 24.98
5 362,501 18.13 22.52
6 442,901 21.67 20.19

Multi-speaker 5 366,101 37.50 22.80

5. Results and Discussion

This section presents the evaluation results of the proposed LSTM models. First,
the training performance, specifically the training losses of all proposed models, is pre-
sented. Subsequently, we assess the inpainting performance on four single-speaker datasets
under various LSTM layers across NB and WB scenarios. Then, the frequency analysis
of one test speech signal selected from the RyanSpeech dataset is presented to provide
an in-depth analysis of the frequency domain. Lastly, the same analysis procedures are
applied to the multi-speaker datasets to evaluate the inpainting performance.
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5.1. Training Performance

The training loss intuitively reflects the proposed models’ learning ability and conver-
gence degree throughout each epoch. The training losses of models with different LSTM
layers trained on four different datasets are shown in Figure 3.

Figure 3. Training losses of the proposed speech inpainting models on single-speaker datasets with
different numbers of LSTM layers: (a–e) speech inpainting models with two to six LSTM layers,
respectively; (f) the 5–layer LSTM model trained on four multi–speaker datasets.

To prevent overfitting during the training of the models, the early stopping regulari-
sation method was used, with the patience value set to five. Two more experiments were
conducted to validate the model’s generalisation capability:

1. Each trained model was subjected to a series of speech inpainting tests on ten speech
signals that were entirely independent of its own dataset. The restored speech signals
consistently exhibited good MOSs and listening quality across various gap lengths.

2. In order to further validate the generalisation capability, we conducted additional
tests to examine the models by training them on a specific dataset and applying them
to completely different datasets. In this experiment, a model was first trained on a
dataset consisting of only female/male voices, and the model was then applied to
restore male/female speech signals from completely different datasets. The inpainting
results also demonstrated high MOSs and listening quality across various gap lengths.

As a result, we can reasonably state that no overfitting occurred during the models’
training process and the models generalised well on all the different datasets used in
the experiment.

5.2. Inpainting Performance with Different Numbers of LSTM Layers

To examine the inpainting performance of different numbers of LSTM layers on the
different single-speaker datasets, we calculated two types of average MOSs for different
gap lengths, as shown in Tables 7 and 8.
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Table 7. Average MOSs for different gap lengths and LSTM layers across four single-speaker
datasets (NB).

Dataset Bandwidth
LSTM Gap Length (ms)

Layers 20 40 50 100 200 500 1000

LJSpeech NB

2 4.17 3.96 3.92 3.84 3.71 3.27 2.69
3 4.15 3.91 3.88 3.80 3.66 3.17 2.56
4 4.14 3.95 3.92 3.79 3.67 3.21 2.59
5 4.16 3.96 3.92 3.83 3.67 3.19 2.57
6 4.10 3.91 3.86 3.77 3.62 3.13 2.49

RyanSpeech NB

2 4.08 3.94 3.89 3.74 3.48 3.02 2.52
3 4.15 4.00 3.94 3.74 3.53 3.07 2.56
4 4.11 3.96 3.91 3.73 3.52 3.03 2.54
5 4.07 3.91 3.85 3.68 3.43 2.92 2.44
6 4.13 3.97 3.90 3.73 3.48 3.01 2.48

Libri_26 NB

2 4.29 4.15 4.10 3.90 3.72 3.25 2.68
3 4.25 4.13 4.10 3.93 3.75 3.29 2.76
4 4.25 4.14 4.11 3.92 3.77 3.30 2.78
5 4.29 4.17 4.14 3.98 3.80 3.37 2.86
6 4.24 4.12 4.09 3.89 3.71 3.22 2.67

Libri_32 NB

2 4.26 4.09 4.03 3.92 3.66 3.21 2.75
3 4.29 4.07 4.02 3.88 3.64 3.17 2.69
4 4.24 4.06 4.01 3.84 3.63 3.19 2.70
5 4.24 4.06 4.00 3.85 3.61 3.14 2.66
6 4.25 4.10 4.04 3.91 3.68 3.21 2.74

Table 8. Average MOSs for different gap lengths and LSTM layers across four single-speaker
datasets (WB).

Dataset Bandwidth
LSTM Gap Length (ms)
Layers 20 40 50 100 200 500 1000

LJSpeech WB

2 4.08 3.89 3.88 3.77 3.55 3.00 2.29
3 4.02 3.86 3.82 3.70 3.47 2.89 2.21
4 4.03 3.85 3.81 3.69 3.44 2.89 2.21
5 4.13 3.94 3.89 3.74 3.52 2.94 2.27
6 4.03 3.88 3.83 3.71 3.46 2.85 2.13

RyanSpeech WB

2 4.10 3.99 3.93 3.78 3.49 2.90 2.29
3 4.17 4.01 3.94 3.81 3.50 2.92 2.32
4 4.12 3.97 3.92 3.78 3.50 2.89 2.27
5 4.09 3.96 3.90 3.78 3.47 2.87 2.26
6 4.15 4.01 3.94 3.81 3.50 2.89 2.25

Libri_26 WB

2 4.26 4.08 4.03 3.82 3.60 3.04 2.36
3 4.18 4.04 4.00 3.80 3.60 3.06 2.42
4 4.22 4.08 4.03 3.83 3.62 3.07 2.43
5 4.25 4.09 4.02 3.87 3.62 3.09 2.44
6 4.20 4.07 4.01 3.82 3.60 3.04 2.39

Libri_32 WB

2 4.33 4.11 4.05 3.94 3.72 3.17 2.53
3 4.33 4.12 4.07 3.94 3.72 3.17 2.57
4 4.28 4.11 4.06 3.92 3.70 3.13 2.49
5 4.28 4.10 4.05 3.92 3.72 3.15 2.55
6 4.30 4.11 4.07 3.95 3.73 3.15 2.54



Future Internet 2024, 16, 63 13 of 20

It can be observed in Table 7 that the two-layer LSTM model performed well across all
gap lengths on the LJSpeech dataset. Meanwhile, on the RyanSpeech dataset, the perfor-
mance of the three-layer LSTM model was better compared to the other models. Notably, on
the Libri_26 dataset, the five-layer LSTM model achieved the highest MOSs across all gap
lengths and datasets. In the case of the Libri_32 dataset, the six-layer LSTM model exhibited
marginally superior performance compared to the two-layer LSTM model, although the
difference was not statistically significant.

In Table 8, the results show that on the LJSpeech dataset, the two-layer LSTM model
achieved higher average MOSs for gap lengths greater than or equal to 100 ms, whereas the
five-layer LSTM model performed better when the gap length was less than 100 ms. Similar
results can be observed for the RyanSpeech and Libri_26 datasets in Table 7. However,
on the Libri_32 dataset, the three-layer LSTM model achieved the highest MOSs across
all datasets.

In summary, it was observed that, for each model with different LSTM layers, the
average MOS decreased as the gap length increased. Across the different datasets, the model
that obtained the highest average MOS varied. However, the differences among the five
LSTM models were not significant, with only minor fluctuations. These slight differences
in performance emphasise the impact of model architecture and training datasets on the
performance of speech inpainting, which means that it is important to customise the model
architecture according to different datasets and inpainting requirements.

5.3. Inpainting Performance Based on Frequency Analysis

In order to provide an in-depth analysis of the inpainting performance, the frequency
analysis method [33] was employed to analyse the spectrogram of the speech signals. The
test speech signal was selected from the RyanSpeech dataset, with a duration of 4.7 s,
and the gaps started from 1.62 s and lasted for 20 ms, 40 ms, 50 ms, 100 ms, 200 ms, 500 ms,
and 1000 ms. A five-layer LSTM model was used to restore the missing speech samples.

As can be seen in Figures 4 and 5, each figure consists of two zones: one on the left
and the other on the right. The left side of each figure shows the time-domain waveform,
spectrogram, and zoomed-in spectrogram (1.0–3.0 s on the x-axis) from top to bottom.
The right side shows the time-domain waveforms and corresponding spectrograms of the
zeroed and inpainted speech signals from top to bottom.

It should be noted that except for the original signal and the original spectrogram in
the left zone, all the subfigures show the same zoomed-in range of the x-axis (1.0–3.0 s)
in order to facilitate a more intuitive comparison between the original and inpainted signals
in the frequency domain.

As shown in Figures 4 and 5, all the inpainted waveforms in the time domain follow
the trend of the original signal throughout the entire gap length with sufficient accuracy.
The predicted waveform envelope of the inpainted signal has extremely high accuracy
compared to that of the original signal. In terms of the amplitude, there was only minimal
loss, which can be considered negligible. In order to decrease the potential discrepancies
caused by objective indicators in perceiving the quality of inpainted speech signals, we
conducted subjective listening tests on the inpainted speech signals. During the tests,
the inpainted signals revealed clear and highly recognisable characteristics, which led to
a high value of the average MOS. The inpainted speech clips and the average MOSs are
available at https://haohan-shi.github.io/ (accessed on 9 February 2024).

https://haohan-shi.github.io/
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Figure 4. Frequency analysis for gap lengths less than 100 ms. The gaps start at 1.62 s and last for
20 ms, 40 ms, 50 ms, and 100 ms, respectively, corresponding to the first to fourth columns on the
right side of the figure. The zoomed–in and gap areas are marked with red dashed lines.

Figure 5. Frequency analysis for gap lengths greater than 100 ms. The gaps start at 1.62 s and last for
200 ms, 500 ms, and 1000 ms, respectively, corresponding to the first to third columns on the right
side of the figure. The zoomed–in and gap areas are marked with red dashed lines.
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5.4. Inpainting Performance on Multi-Speaker Datasets

Similar analytic procedures were applied to the multi-speaker datasets, where we
exclusively trained a five-layer LSTM model to examine the inpainting performance.

Table 9 shows the average MOSs of the five-layer LSTM models across the four multi-
speaker datasets for different gap lengths, comparing the original and inpainted speech
signals in both NB and WB scenarios. Similar results can be observed across the four
multi-speaker datasets, where the average MOS decreased as the gap length increased in
both NB and WB scenarios. For the LibriM1 and LibriM2 datasets, when the gap length
was less than or equal to 200 ms, the fluctuation in the average MOS caused by different
bandwidths for the same dataset was relatively minor. However, the fluctuation began to
increase when the gap length was greater than 200 ms. For the HIFI and LibriM3 datasets,
the fluctuation in the average MOS caused by different bandwidths across all gap lengths
in the same dataset was subtle.

Table 9. Average MOSs of the five-layer LSTM models across four multi-speaker datasets for different
gap lengths (NB and WB).

Dataset Bandwidth
LSTM Gap Length (ms)

Layers 20 40 50 100 200 500 1000

HIFI NB 5 4.13 4.04 4.00 3.86 3.58 3.09 2.39
WB 4.04 3.94 3.84 3.74 3.42 2.77 2.07

LibriM1 NB 5 4.19 4.03 3.98 3.86 3.76 3.34 2.87
WB 4.18 4.07 4.02 3.85 3.71 3.19 2.57

LibriM2 NB 5 4.12 4.00 3.96 3.80 3.59 3.13 2.60
WB 4.09 4.00 3.99 3.82 3.52 2.94 2.28

LibriM3 NB 5 4.09 3.86 3.81 3.72 3.44 3.03 2.46
WB 3.70 3.60 3.57 3.45 3.21 2.74 2.13

The same frequency analysis procedure was also employed for the multi-speaker
datasets. In this case, we selected a test speech signal from the HIFI dataset. The duration
of the original signal was 6.38 s, and the gaps started from 2.88 s and lasted for 20 ms, 40 ms,
50 ms, 100 ms, 200 ms, 500 ms, and 1000 ms, respectively. A five-layer LSTM model was
used to restore the missing speech samples. In Figures 6 and 7, the layout of each figure
is the same as that used previously, with the only difference being that the corresponding
zoomed-in range of the x-axis is now 2.0–4.6 s.

In Figures 6 and 7, it can be observed that all the inpainted waveforms in the time
domain follow the trend of the original signal throughout the entire gap length with ac-
ceptable accuracy. Compared with the original signal, the envelope of the inpainted speech
signal follows the shape of the original signal, but with significant losses in amplitude.

We also subjectively tested the listening quality of the inpainted speech signals, as they
can offer a basic understanding of the expressed meaning. In contrast to the single-speaker
dataset, the restored speech signals in the multi-speaker dataset exhibited reduced clarity
and recognisability features. This variation was reflected in the slightly lower average
MOSs in both NB and WB scenarios. The inpainted speech clips and the average MOSs are
available at https://haohan-shi.github.io/ (accessed on 9 February 2024).

In comparison to the single-speaker model, the multi-speaker model exhibited accept-
able inpainting results in the frequency band below 2.0 kHz but with losses in amplitude.
In the higher frequency range above 2.0 kHz, the accuracy of the model was low, and the
predicted spectrogram blocks were repetitive and oscillatory in the frequency domain,
leading to noisy inpainted speech signals with lower perceived quality compared to the
single-speaker LSTM models.

https://haohan-shi.github.io/
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Figure 6. Frequency analysis for gap lengths less than 100 ms. The gaps start at 2.88 s and last for
20 ms, 40 ms, 50 ms, and 100 ms, respectively, corresponding to the first to fourth columns on the
right side of the figure. The zoomed–in and gap areas are marked with red dashed lines.

Figure 7. Frequency analysis for gap lengths greater than 100 ms. The gaps start at 2.88 s and last for
200 ms, 500 ms, and 1000 ms, respectively, corresponding to the first to third columns on the right
side of the figure. The zoomed–in and gap areas are marked with red dashed lines.
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5.5. Comparison with Other Algorithms

The performance of the proposed inpainting method was compared with four state-
of-the-art algorithms in the literature, including Context-Encoder [22], SpeechPainter [27],
Audio-Visual [31], and TF-Masks [23]. The comparison results are listed in Table 10.

The Context-Encoder, originally designed for inpainting music signals, was adapted to
our established speech datasets. We conducted MOS tests for two gap lengths, specifically
64 ms and 128 ms, considering both NB and WB scenarios. Human raters were used in [27]
for accessing the MOS, we categorised it under MOS(WB). The studies by [23,31] only
exhibited the Perceptual Evaluation of Speech Quality (PESQ) scores to indicate the quality
of the inpainted signals. To facilitate comparison, we employed a mapping method to
convert the raw PESQ scores into MOS(WB) [50].

The results indicate that our methods outperformed the TF-Mask method across all
gap lengths. In the case of the Context-Encoder method, our approaches demonstrated
superior performance when the gap length was 128 ms. When the gap length was 64 ms,
there were no significant differences in the MOSs for the NB scenario, and they main-
tained comparable performance for the WB scenario. The SpeechPainter and Audio-Visual
methods exhibited slightly higher MOSs compared to our methods. This is because our
proposed approaches only used the speech features preceding the gap for inpainting, with-
out utilising any additional information. In contrast, SpeechPainter utilised the entire
speech transcripts, whereas the Audio-Visual method combined both speech and visual
features, leading to higher MOSs. Nevertheless, it is worth noting that in real-world com-
munication scenarios, there will not always be support and time for additional information
(i.e., the transcript) to be considered, particularly when a two-way live conversation is
ongoing between communicators. As such, our proposal fills in this gap to greatly enhance
the user experience.

Table 10. Comparison of MOSs between the proposed method and other algorithms.

Method Gap Length (ms) MOS (NB) MOS (WB)

Context-Encoder [22] 64/128 4.02/3.57 3.95/3.48

SpeechPainter [27] 750–1000 \ 3.48 ± 0.06

Audio-Visual (A+V+MTL) [31] 100/200/400/800/1600 \ 4.10/3.82/3.43/2.49/1.56

TF-Masks-informed (Avg. of
3 intrusions) [23] 100/200/300/400 \ 3.20/2.57/2.09/1.78

TF-Masks-blind (Avg. of
3 intrusions) [23] 100/200/300/400 \ 3.17/2.75/2.46/2.21

Proposed method 20/40/50/100 4.19/4.03/3.98/3.84 4.18/4.02/3.97/3.82
(single-speaker) /200/500/1000 /3.64/3.17/2.64 /3.58/3.01/2.36

Proposed method 20/40/50/100 4.14/3.98/3.94/3.81 4.01/3.91/3.86/3.72
(multi-speaker) /200/500/1000 /3.60/3.15/2.58 /3.47/2.91/2.27

5.6. Limitations

When evaluating the performance of the inpainting results across diverse datasets, it
was observed that the model achieving the optimal MOS contained a different number of
LSTM layers. In the time domain, the proposed models proficiently restored the waveform
envelope trends of the lost speech signals; however, a discernible loss in amplitude was
observed. As for the frequency domains, it was observed that the proposed models
effectively restored the speech signal’s lower frequency range below 2.0 kHz for both single-
speaker and multi-speaker datasets with sufficient accuracy. However, the efficacy of the
model was limited at higher frequency ranges exceeding 2.0 kHz, especially for the multi-
speaker datasets, exhibiting a significant loss in amplitude and introducing more pitch
frequencies to the spectrograms. However, the listening quality was still understandable
and acceptable.
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It is worth mentioning that we only used a compact training dataset built from the
RyanSpeech dataset for training and testing during the fine-tuning of the hyperparameters.
Subsequently, the optimised hyperparameters were applied to all the other datasets. This
means that the optimal hyperparameters based on the RyanSpeech dataset may not be the
best-fitting choice for all datasets. To achieve better inpainting performance, fine-tuning for
different datasets should be considered. We systematically tested various hyperparameter
configurations, including a trial employing the five-layer LSTM model with specific settings:
batch size = 512, dropout rate = 0.2, and dropout layers placed after the first and last LSTM
layers. Notably, this configuration also achieved ideal inpainting results.

We conducted additional tests to assess the inpainting capability of models trained on
specific datasets when applied to different datasets. The inpainting performance exhibited
a diverse range of outcomes.

6. Conclusions and Future Work

This study proposed multi-layer LSTM networks for speech inpainting in the time
domain. We compared the inpainting performance of the proposed models on different
datasets and with different numbers of LSTM layers. We then evaluated the performance
under different gap lengths using the MOS and frequency analysis method. Our tests
demonstrated that the proposed multi-layer LSTM model can restore up to 1 s of gaps
with fair and good perceived quality using features captured only from the time domain.
Specifically, for gaps below 500 ms, the recorded MOS can reach 3 to 4 or above, and for
gaps between 500 ms and 1s, the MOS can reach 2 to 3 or above. This study confirmed that
the multi-layer LSTM model can be effectively used in speech inpainting to restore up to
1 s of gaps while providing sufficiently accurate results.

Our future work will focus on performing speech inpainting for high-quality speech
coding in information communication settings.
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