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Abstract: Violent attacks have been one of the hot issues in recent years. In the presence of closed-
circuit televisions (CCTVs) in smart cities, there is an emerging challenge in apprehending criminals,
leading to a need for innovative solutions. In this paper, the propose a model aimed at enhancing real-
time emergency response capabilities and swiftly identifying criminals. This initiative aims to foster a
safer environment and better manage criminal activity within smart cities. The proposed architecture
combines an image-to-image stable diffusion model with violence detection and pose estimation
approaches. The diffusion model generates synthetic data while the object detection approach
uses YOLO v7 to identify violent objects like baseball bats, knives, and pistols, complemented by
MediaPipe for action detection. Further, a long short-term memory (LSTM) network classifies the
action attacks involving violent objects. Subsequently, an ensemble consisting of an edge device and
the entire proposed model is deployed onto the edge device for real-time data testing using a dash
camera. Thus, this study can handle violent attacks and send alerts in emergencies. As a result, our
proposed YOLO model achieves a mean average precision (MAP) of 89.5% for violent attack detection,
and the LSTM classifier model achieves an accuracy of 88.33% for violent action classification. The
results highlight the model’s enhanced capability to accurately detect violent objects, particularly in
effectively identifying violence through the implemented artificial intelligence system.

Keywords: expert system; smart city; artificial intelligence; real-time application; violence detection;
image-to-image stable diffusion; edge computing; MediaPipe; YOLO v7; LSTM

1. Introduction

In recent years, challenges have emerged in the security aspect; public and personal
protection have been always considerable priorities and crucial problems for people and
the citizenry in smart cities have emerged [1,2]. Many violent attacks are occurring in
these cities and citizens are being injured, assaulted, subjected to unknown murder activity,
and robbed where CCTVs are not available, due to which police or cops cannot reach on
time. However, due to the limitations of certain area ranges of closed-circuit television
cameras, violent attacks cannot be detected outside these ranges. Several techniques [1–6]
are being implemented to detect day-by-day violent attacks based on the data from CCTVs.
Recently, many researchers have proposed attack- or violence-detecting systems using
object detection, pose estimation and image generation methods. These implement systems
are artificial-intelligence-based systems. However, these AI-based systems face limitations
due to the availability of violence data, resulting in lower performance when detecting
accurate targets. In circumstances that have needed combined violent objects, the pose
estimation model and image generation method have been considered as solutions. The
main advantages of such a system are that it is a system that is both fixed and portable at
minimal cost and with high accuracy [2,4–6].
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Using previous detection methods, datasets are collected through different sources.
However, these datasets are not sufficient to train a real-time expert system [6]. These
insufficient datasets constitute a challenge for violence detection and are not of high enough
quantity to develop a robust detection system [7]. To address this challenge of creating a
large number of data, recently, the image generation method has been the most popular
database resource for creating synthetic data to resolve this issue. Image generation is a
widely used approach to create synthetic data, using models such as the diffuser model
and generative adversarial network (GAN) model [8,9]. Diffusers constitute a distinctive
initiated and discussed approach for data generation; numerous models are proposed for
different types of utilization and requisition, such as the synthesis of images using old
images and prompt text, and some of the implementations have also introduced text-to-
image generation [10,11]. Moreover, this image generation technique is also quite novel
and is the latest implementation for this system [12,13].

A traditional detection system is mainly based on deep learning and machine learning
when it comes to the classification and detection techniques used [6,14,15]. In previous
studies, especially those involving complex violence detection scenes, small images, con-
stant continuous monitoring, and the lack of real-time processing were challenges and
limitations. This lack within models created a struggle in training, leading to false results.
So, this was the main disadvantage of these previous systems. Then, in further studies on
object detection ideas, different algorithms are being implemented like YOLO v3, YOLO v4,
and YOLO v5 [16–18]. YOLO v3 is the improved version of the previous model YOLO; it is
a powerful algorithm for real-time object detection. It uses Darknet-53 as the backbone and
has 53 convolution layers in its architecture. One benefit is that it uses multiple scales for
detecting objects of different sizes. The limitation in YOLO v3 is that it struggles with small
object detection and has a slower processing speed. To overcome the limitations of this
algorithm, YOLO v4 was proposed in 2020 to improve the performance of YOLO v3 [18–20].
YOLO v4 improves the feature representation and detection of the objects using advanced
techniques like a pseudo-attention network (PAN), path aggregation network (PANet), and
spatial attention module (SAM), which improve both accuracy and the speed of detection
ability [18,21]. However, the limitation when working with small objects has not been
overcome. In the same year, 2020, a new object detection algorithm was again introduced
with the name of YOLO v5 and provided a lightweight architecture in comparison to the
previously discussed version. It utilizes a single-stage detector based on a modified version
of the EfficientNet network, attaining a balance between accuracy and speed and providing
compatibility with numerous real-time applications. But this model faces the limitation of
low accuracy in small object detection because of a lack of information. The performance
has not proven sufficient due to semantic information [22,23]. Further, another model,
which is YOLO v7, which overcomes all previous model limitations such as those related to
small object detection and slow processing speed and provides a lighter model architecture,
is being studied. These features enhance the performance of YOLO v7. YOLO v7 has
the benefit of taking input in red–green–blue (RGB) image format with an augmentation
technique for better training. The backbone layer architecture of YOLO v7 has a robust
feature extraction layer network that is the same as the previous versions such as the
residual network (ResNet) and EfficientNet, with an additional robust-feature hierarchical
structure. The neck is the intermediate layer network that enhances the feature extraction
of the backbone network by using the attention mechanism or context aggregation module
and feature fusion module. The final network of prediction has multiple detection heads
to generate the bounding boxes for small violent object detection with highly accurate
performance. The detailed architecture is discussed in a further subsection on the objection
detection method to understand the mechanism.

Another is the pose estimation model. In the traditional method, 3-dimensional
convolutional neural networks (3D CNNs) are commonly used for action recognition
and are bound to 3-dimensional (3D) inputs. This model is employed for video analysis.
When using a 3D CNN, spatial and temporal dimensionality can be removed from the
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model [24,25]. The computational complexity, memory resources, huge number of data
requirements, and preprocessing are limitations or challenges associated with 3D CNNs.
However, the development of technologies also provides many estimation models such as
alphapose, the high-resolution network (HRNet), and MediaPipe. In alphapose, complex
problems can be solved, and one can compute 2D and 3D poses together. This model can
achieve both multimodal fusion as well as enhancement in 3D pose estimation with the
advanced techniques of attention mechanisms [26]. In the HRNnet, complex problems
and multi-person poses can be estimated with the advancement method of attention
mechanisms. This model also has the feature of adaptive resolution [27]. These model
advancements and methods are quite impressive, but here, the MediaPipe model has more
features and is easy to use due to the familiar interface and real-time performance.

In this paper, we propose a novel architecture for violence detection and classification
to better manage criminal activity within smart cities and enhance smart city safety. The
proposed architecture combines an image-to-image stable diffusion model with violence
detection, pose estimation, and a long short-term memory (LSTM) network as shown in
Figure 1. The diffusion model generates synthetic data while the object detection approach
uses YOLO v7 to identify violent objects like baseball bats, knives, and pistols. YOLO
v7, which is the latest version of the YOLO family, provides high-speed and accurate
prediction results in comparison to the previously developed model. The YOLO v7 model
structure is quite similar to that of YOLO v5, including features such as an FPN, backbone,
PAN, and head scales of different kinds [22,23]. The structure has ELAN, convolutional
layers, two-stride downsampling, and max-pooling. Moreover, MediaPipe is utilized for
violent action pose detection. The pose estimated using MediaPipe has every possible key
point to detect the pose. Further, a long short-term memory (LSTM) network classifies
the action attacks involving violent objects by using the recorded key points as the input.
Subsequently, the LSTM network undertakes classification using these obtained body key
points or features. Finally, the trained model is deployed into the edge device for testing
the performance of the proposed model using unseen test data.
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Figure 1. The proposed model of attack alerting system—setup involving an image-to-image gen-
eration model, object detection model (YOLO v7), pose estimation model (MediaPipe), and action
classification using the LSTM model.

In general, the main contributions of this proposed work are mentioned here as follows:

1. Our proposed model can handle the small dataset problem using the stable diffusion
image generative method, in which new image samples can be generated using
previous images to increase the number of images for the object detection model to
enhance the performance.
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2. Our model architecture combines violent object detection (YOLO v7) and pose estima-
tion models (MediaPipe) and an LSTM classifier to improve the performance of the
violent attack detection system.

3. An edge computing device is implemented and the whole model is deployed in the
computing device to test the model using violent-attack testing data in the city.

4. A commercial social media API is implemented here for sending the violent object
and criminal clip as an alert to the registered number.

Further, the rest of this paper is explained in the following sections: Section 2 describes
the methodology part that has a brief explanation of the proposed model architecture,
involving steps such as data collection, data labeling, the image-to-image data synthesis
method, the object detection model, the pose estimation model, the LSTM classification
method, the edge computing device, and the attack alerting method. Section 3 presents the
results of the paper and Section 4 presents the conclusion part of the research work.

2. Methodology
2.1. Dataset

In this study, data collection was the first part, in which the data were collected from
numerous resources, with around 735 images collected from the internet source [28] and
around 1365 images collected from Kaggle [29,30]. However, the data we gathered from
the above sources were not efficient for training our model, so we proposed a novel stable
diffusion approach for generating more image data as shown in the top-left part of Figure 1.
The next subsection explains image-to-image diffusion model to generate synthetic images.

Image-to-Image Stable Diffusion Pipeline Method

The image-to-image stable diffusion model [31] was first developed by StabilityAI,
CompVis, runway, and LAION. This model generates synthetic or new images using text
prompts and clips. Model idea addition associates the noise with the images and follows
the Markov chain, continuing to do this step-by-step. After the lapse of time steps, images
are converted totally into noise and the noise approaching [31,32] method is halted. This
is known as noising or forward diffusion. Now, another diffusion concept is introduced
here, and in this process, a complete noise image is used to generate a new image using the
reverse method. Here, time steps are subtracted gradually from the image. This process is
known as denoising or reverse diffusion [33].

1. Forward diffusion (noising)

x0 → x1 → x2 → · · · xT

Take a data distribution x0~p(x) and turn it into noise using the diffusion xT~N (0, σ2I).

2. Reverse diffusion (denoising)

xT → xT−1 → x2 → · · · x0

Take a data distribution xT~N (0, σ2I) and turn it into noise using the diffusion x0~p(x).
Figure 2 shows the sample images generated using stable diffusion to resolve the

dataset limitation issue in the object detection system. The total dataset for training our
proposed model that was generated using stable diffusion and includes real data collected
through a self-generated source, from the internet, and from Kaggle is shown in Table 1.
Further, the dataset was annotated using labelImg. labelImg is an annotation tool that is
used to annotate or label the data to train the YOLO model. For each class, 700 images were
real and 300 images were generated images. Then, the final dataset was divided into ratios
for training at about 70% and validation sets at about 30%.
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Table 1. Dataset.

Class Label Number of Images (Real + Generated)

Baseball bat 700 + 300
Gun 700 + 300
Knife 700 + 300
Total 3000

Training size 2100 (70%)
Validation size 900 (30%)

2.2. Violence Object Detection Model (YOLO v7)

In the above section, we showed how synthetic images and previous images are
associated and how we created new datasets that were used in the violence detection model
(YOLO v7) as shown in Figure 1. This is a one-stage detector abbreviated as “You Only
Look Once”. YOLO v7 [34,35] is an object detection method in computer vision designed
to address various challenges in real-time image processing. This algorithm maintains high
accuracy during the real-time processing speed of 5 to 160 frames per second (FPS) and is
the latest detection technique of this era that is highly in demand for using various kinds
of solutions [36,37]. Here, we are solving the problem of citizen safety in cities. In this
research work, YOLO v7 is used to detect three kinds of objects: baseball bats, pistols, and
knives, which are used here as violent object detection model training. The architecture of
YOLO v7 is mainly divided into four subsections as follows:

• Input: This is the initial stage of this model in which input comprising violent images
is provided to an algorithm with the images’ corresponding annotations; the size
of each input image is 416 × 416 and the images are RGB images that provide their
output to the next backbone layer architecture.

• Backbone: The backbone layer networks are processed after input images and mainly
comprise three subsections of these modules: MPI module, E-ELAN, and CBS. The
MPI model is a combination of CBS processes and MaxPool, with bottom and top
branches. The MaxPool model is at the top branches and is utilized to decrease the
image’s size in bisection, in both length and width. A CBS process with 128 channel
outputs is also utilized to minimize the channel of image sum by fifty per cent and
conversely CBS process with a stride and 1 × 1 kernel divides the channels in half
numbers. Afterwards, another 2 × 2 stride and 3 × 3 kernel CBS process divide the
image dimension in half. Concatenation (Cat) is employed to incorporate the extracted
features from that pair of branches. CBS handles the collection of the data from small-
scale areas and MaxPool collects from localized locations. The integration techniques
of the network raise the capacity to extract useful features from input images.
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• Neck: This section of YOLO layer architecture consists of FPN structure (stands for
feature pyramid network structure) that employs PAN design structure. The network
is composed of many convolutional networks, SiLU activation (CBS Block), and Batch
normalization along with spatial pyramid pooling (SPP) and the convolutional spatial
pyramid (CSP) that improves outcomes of layers, and this network structure extends
Maxpool2 (MP2) and efficient layer aggregation network (ELAN). The number of
output channels is always the same in both the MP blocks—the output of this neck
layer network transfers to the next prediction module.

• Prediction: The prediction stage is the final stage of this detection algorithm and
has a couple of rep structures. The confidence, anchor, and category are evaluated
or predicted using a 1 × 1 convolutional layer. The inspiration for this kind of rep
structure is VGG or Darknet, which decreases the model complexity without reducing
its prediction performance.

For training this model, the main specifications are mentioned as follows: CPU was
Intel(R) Core (TM) i7-9700k speed @ 3.60 Hz, installed RAM was 16 GB, and graphics card
was NVIDIA GeForce RTX 2080Ti.

2.3. Hyperparameter of Model

Table 2 plays a curious role in obtaining the best performance of YOLO v7. It supports
the search for optimal outcomes for the model network.

Table 2. Experimental model specification.

Parameters Value

Learning rate 1 × 10−5

Momentum 0.98
Weight decay 0.001

Batch size 16
Optimizer Adam

Dimensions 416 × 416
Epochs 200

After the setup, the procedure was initialized by conscientiously arranging the pattern of
the model and then proceeding to train the model from these pre-decided hyperparameters.

2.4. Violent Pose Estimation Model

The pose estimation model detects the action or movement of the body. MediaPipe
is implemented here to achieve violent action as shown in Figure 1. The MediaPipe open-
source framework, developed by Google, is used in this context. This provides a platform
for creating real-time pipelines of multimedia processes [38]. A total of 33 key points are
being covered by the MediaPipe of human bodies in a video or image [39]. These key points
are the different locations on the body that analyze the position and help in movement
categorization. The three types of action are trained here using this model and each action
is trained in hundreds of parameters to achieve the accurate target pose. These actions are
trained for violent objects. The input of images accepts the data types in the following form:
images, video frame (which should be decoded) form, and real-time video feed. The output
of the task provides image coordinates and 3-dimensional coordinates of the world [40].

2.5. Violent Pose Classification Model

In the previous section (i.e., Section 2.4), we explained how violent poses or actions
are detected; the next step is the classification of these actions, which is achieved using the
LSTM classifier. LSTM network is a kind of recurrence neural network (RNN) architecture
also known as RNN [41–43]. This is the architecture used to solve sequential data tasks
and mainly focuses on the problem of vanishing gradient. Here, architecture has three
dense layers and three LSTM layers or hidden layers; each layer is shown below in Figure 3.
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The input shape is taken (30,132), in which 30 is the sequence length or time steps and
132 denotes the number of dimensions or features. Subsequently, the first hidden layer is
the lstm_input layer, which has an input of 1024 and 512 units as output, and the second
hidden layer is lstm_1, which has an input of 512 and 256 units as output; the return
sequence is true and the activation function is relu. The third layer is lstm_2, which has an
input of 256 and 128 units as output; the return sequence is false and the activation function
is relu. Now, the dense layers are fully connected, and the first layer and second dense layer
have 64 and 32 units with relu activation function, respectively. The final dense layer has
an equal number of units and actions provided in the dataset. This dense layer activation
function is softmax, which can also be used for multiclass classification problems. The
learning rate is 0.000005 and the optimizer is Adam. The loss function was categorical cross
entropy at the time of the training process of the model. These are the suitable parameters
that provide the best performance to classify the violent action pose.
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2.6. Edge Computing Device and Attack Alerting Method

In this paper, we consider a commercial edge computing device, and we deployed
the whole model involving YOLO, MediPipe, and LSTM models in this device for testing
the proposed model using real unseen violent attack testing data in the city as shown in
Figure 1. Edge devices [2] are computing devices that constitute specific hardware platforms
designed for implementing and accomplishing computing tasks. These devices can be
either fixed or portable, serving computing purposes. They enable local processing, thereby
improving efficiency and reducing latency, storage, and data analysis [44,45]. This series
of devices enhances performance by leveraging powerful GPU computing capabilities.
Furthermore, after detecting violent attacks and attack activity using the proposed model in
the edge device, we used commercial social media and integrated it into the edge device for
sending an alert message to the mobile of the victim. The attack alert service provided by
commercial social media apps allows for the delivery of notifications like image messages
and sends notifications to social media app users [46] without using or creating full-fledged
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bots. In this study, we used and obtained the first commercial social media app notification
access token and replaced the variable value of the ‘token’ along with the commercial social
media app notification access token about which we provided information in the previous
process step. The message can also be modified by replacing the value of the variable
‘message’ that the text author or victim wants to deliver to the registered commercial social
media app account along with images of criminals with crime spots and violent objects.

3. Results

In this section of the paper, we study the detection of the proposed YOLO v7 model
and pose estimation model with defined tuning parameters that provide the outcomes
on the validation dataset; the further subsection outlines the performance matrices of the
model as follows.

3.1. Detection of YOLO v7 Model and Pose Estimation Model

This subsection shows the detection result of the YOLO v7 model and the pose
estimation model’s action for violent objects. Violent objects include baseball bats, knives,
and pistols. A violent target object is detected using the different-color bounding box
and the pose is estimated through MediaPipe key points. Each key point is estimated
according to the body posture. The below figures show the prediction result using an object
detection algorithm.

Figure 4 shows the real-time prediction or test results of the object detection with
bounding boxes on the objects in different colors using the unseen dataset from a dash
camera. In the prediction result, different kinds of the condition are targeted. In Figure 4a,d,
the green-color bounding boxing shows the target images that show the violent object, a
baseball bat; Figure 4b shows the violent object, a gun, in the red bounding box; and the
other figures, Figure 4c,e, also indicate that a knife was detected in yellow-color bounding
boxes in the image frames with a different standing view. These results cover possible
different conditions to check the performance of the proposed model. The further figures
below display the pose estimation prediction results.
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Figure 4. The proposed YOLO v7 model—real-time predicted results in different attack-type condi-
tions: (a,d) show a detected violent object, a baseball bat; (b) shows a detected violent object, a gun;
(c,e) show a detected violent object, a knife.

In Figure 5, the pose estimation of the main three types of action is covered at the
time of the development of MediaPipe. These actions are related to the object detected
in the YOLO model. These are the types of actions: in Figure 5a, the first action shows
that criminals are trying to attack with a baseball bat from the right side of the victim;
in Figure 5b, the second action shows that a criminal is willing to attack with a knife in
his left hand; Figure 5c shows the third action, which provides the action with a gun;
Figure 5d shows that the criminal can be detected even from a flipped-back position; and
Figure 5e shows the side portion of the criminal who is attacking. These are different
scenarios in which a criminal is using violence to attack a victim. These test predictions
were predicted in real time using real test data from a dash camera. All actions were trained
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in the various possible kinds of positions and postures for highly accurate detection. Here,
we snapped 100 videos of each action. Every position has been stored in the dataset of
MediaPipe. Further, the LSTM classification method is used to classify the actions. In the
next subsequent section of the model, evaluation metrics show the performance of YOLO
v7 and the pose estimation model along with the LSTM performance.
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Figure 5. Violent attack pose estimation using MediaPipe: (a,d) show an attacking action with a
baseball bat; (b,e) show an attacking action with a knife; (c) show an attacking action with a gun.

3.2. Performance Metrics of Model

The performance evaluation of the proposed algorithm for this system involves the
use of various metrics to assess its accuracy and effectiveness in detecting violent objects.
The metrics employed include precision, recall, intersection over union (IoU) at a threshold
value of 0.5, mean average precision (mAP), average precision (AP), and mean [20]. The
IoU metric measures the degree of overlap between the predicted bounding boxes and the
ground-truth bounding boxes in the actual data. This threshold is a critical parameter in
evaluating the model’s ability to accurately delineate object boundaries, contributing to the
robustness of its predictions. It assesses the performance of the output of the algorithm
aligned with the actual data. Precision is the identification proportion of correct positive
predictions while recall is the correct identification of actual positive predictions. These
metrics ensure that the model’s predictions are both valid and accurate in classifying violent
objects. The crucial metric is mean average precision (mAP), which is extensively employed
in target detection. This involves the maximum computation of average precision across
multiple classes, denoted as ‘k’ [22]. The process begins by calculating the average precision
for each class, and subsequently, the mean of all these average precisions is computed,
providing a comprehensive measure of the mean average precision [35,37].

This section discusses the proposed model evaluation performance for violent objects.
In Figure 6a, the three classes are accurately classified using YOLO v7, and each class’s
separate accuracy is in the confusion matrix. Each class outcome is presented as follows:
baseball bat, knife, and pistol, along with false positive and false negative background
detection results. In addition to that, in Figure 6b, a precision recall curve evaluates the
detection algorithm performance correctly to identify the positive detection with fewer
false positives. In the evaluation result, each class performance is shown with separate
results and along with final average precision. The curve also raises the focus on the ratio
of true and actual positives and the area under the curve (AUC) shows the performance
of the evaluated model. The precision recall curve for the YOLO v7 model demonstrates
exceptional performance in distinguishing between three classes: baseball bats, knives,
and pistols, achieving individual accuracies of 84.5%, 94.7%, and 89.2%, respectively. This
curve also shows the relation between and performance in terms of recall and precision for
each class separately. The mean average precision (mAP), calculated as the mean average
precision across all classes, is reported at 89.5% as shown in Figure 6b. The evaluation
of the model’s performance shows an outstanding level of accuracy, boosting the overall
model performance to enhance the violence detection system.
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In Figure 7, the overall performance of the object detection model during model train-
ing and validation loss flow in a single graph plot reflects the outcomes of the training loss
of the box with the validation loss of the box concerning the increasing number of epochs,
objectness training with the validation loss of objectness, and classification loss curve with
the validation classification loss curve. This plotted graph also shows the separate precision
with the mean average precision curve with the threshold along with different per cent
ratios and recall for understanding the model performance. The loss is a consistent decrease
in loss throughout training and validation with defined tuning parameters. The training
loss for bounding boxes stabilized around 0.02, while the validation loss for bounding
boxes settled at 0.04. For objectness, the training loss was 0.04, with a validation loss of
0.055. Classification loss remained at 0.001 during training and dropped to 0.0028 during
validation. On the other hand, the individual precision, recall, and mean average precision
(mAP) at thresholds of 0.5 and 0.95 were evaluated with respect to the increasing num-
ber of epochs. These graphs depict the performance at each epoch. The graph depicting
precision and recall illustrates an increasing accuracy concerning the number of epochs.
The average precision graph at a threshold of 0.5 initially showed instability, but after
50 epochs, precision accuracy steadily increased, maintaining stable performance. Similarly,
at the threshold of 0.5:95, a similar pattern emerged but stabilized around 30 epochs. These
graphs collectively depict the model’s accurate performance at individual points.

Figure 8 displays the performance metrics of the action classification using the LSTM
model based on pose estimation. This performance evaluation reflects the model’s ability to
classify actions trained using MediaPipe pose estimation outputs. The three actions of the
validation results are shown in the graph as follows: baseball bat action, knife action, gun
action, and no action. Each separate class and average of action performance is evaluated.
The accuracy values of these three action classes are 96%, 82%, and 87% for the baseball bat,
knife, and gun violent actions. These performances are quite impressive for this type of
complex model as depicted in the figure below.
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Moreover, we compare the detection performance of the proposed YOLO v7 model
with other violent attack detection approaches using different data and within different
environments as presented in Table 3. In this comparison, we consider previous studies
that focused on object detection. As shown in the table, our proposed model’s accuracy is
higher than those of others. Therefore, the results prove that the proposed model has the
capacity to accurately detect violent attacks and violent actions.
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Table 3. Comparison table with different models. Our proposed model has higher accuracy.

Model (Backbone) Accuracy (mAP@0.5)

YOLO v7 + Pose estimation [47] 79.66%
Faster R-CNN (RegNet+) [48] 79.78%

YOLO v5 (CSPDarkNet 53) [48] 77.26%
YOLO v3 (DarkNet53) [49] 84%

YOLO v4 [49] 85%
Our proposed model 89.5%

4. Conclusions

This study presented a novel approach to improve violent attack detection systems
by integrating advanced artificial intelligence techniques to enhance the safety of smart
cities. The proposed model integrates image-to-image stable diffusion, YOLO v7, Medi-
aPipe, and an LSTM classifier with an edge computing device, demonstrating significant
advancements in real-time violence detection. The innovative use of image-to-image stable
diffusion addresses the challenge of handling small datasets by generating synthetic data,
contributing to enhancing the model performance. Meanwhile, the YOLO v7 object detec-
tion approach helps to identify violent attack objects like baseball bats, knives, and pistols.
Moreover, MediaPipe is utilized for violent action pose detection and a long short-term
memory (LSTM) network classifies the action of attacks involving violent objects by using
the recorded key points using MediaPipe as the input. Finally, the trained model has been
deployed into the edge device for testing the proposed model using unseen test data in the
smart city. The object detection accuracy values of the YOLO v7 model for three classes,
baseball bat, knife, and pistol, are 84.5%, 94.7%, and 89.2%, respectively. The mean average
precision (mAP) of YOLO v7 for all classes is 89.5% at a threshold of 0.5. Moreover, the
accuracy of the LSTM model for classifying the baseball bat action is 96%; for the knife
action, it is 82%, and for the gun action, it is 87%. Therefore, our proposed integration of
YOLO v7, MediaPipe, and the LSTM model improves the violence detection performance
and enhances the safety of smart cities.
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