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Abstract: This paper presents the spectral gap-based topology control algorithm (SGTC) for wireless
backhaul networks, a novel approach that employs the Laplacian Spectral Gap (LSG) to find expander-
like graphs that optimize the topology of the network in terms of robustness, diameter, energy
cost, and network entropy. The latter measures the network’s ability to promote seamless traffic
offloading from the Macro Base Stations to smaller cells by providing a high diversity of shortest
paths connecting all the stations. Given the practical constraints imposed by cellular technologies,
the proposed algorithm uses simulated annealing to search for feasible network topologies with
a large LSG. Then, it computes the Pareto front of the set of feasible solutions found during the
annealing process when considering robustness, diameter, and entropy as objective functions. The
algorithm’s result is the Pareto efficient solution that minimizes energy cost. A set of experimental
results shows that by optimizing the LSG, the proposed algorithm simultaneously optimizes the
set of desirable topological properties mentioned above. The results also revealed that generating
networks with good spectral expansion is possible even under the restrictions imposed by current
wireless technologies. This is a desirable feature because these networks have strong connectivity
properties even if they do not have a large number of links.

Keywords: topology control; wireless backhaul networks; simulated annealing; Laplacian Spectral
Gap; 5G and beyond; expander graphs

1. Introduction

The demand for wireless bandwidth with Quality of Service (QoS) and ubiquitous
network connectivity is continuously increasing due to the explosive growth in data traffic
caused by a new generation of innovative high data rate services and applications accessed
from a wide variety of wireless devices [1,2].

To address this issue, wireless backhaul networks that connect Macro Base Stations
(MBSs) and Small Cells (SCs) are becoming popular as they use multiple-input multiple-
output (Massive MIMO) and millimeter-wave (mmWave) transmission technologies [3–6]
that use multiple antennas to provide significant improvements in wireless data transmis-
sion rates, link efficiency, network reliability, and energy efficiency [7,8]. They achieve high
spectral efficiency by serving many users simultaneously and enabling the placement of a
dense number of SCs within the MBSs coverage area [9]. These SCs consist of low-power
radio transmitter nodes that can handle the traffic of fixed and low-mobility users, which
results in improved Quality of Service (QoS) in terms of throughput and outage as the
distance between the access points and users is relatively short [10,11].

Although current wireless backhaul networks utilizing Massive MIMO and mmWave
technologies show great potential in meeting the demands of current and future mobile
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Internet users, they require innovative network topology-control mechanisms that surpass
those implemented in conventional cellular networks such as LTE or LTE-Advanced [12].
This is essential for establishing a robust network backbone that fosters scalability and
energy efficiency.

Topology control (TC) mechanisms aim to adapt the topology of a network to opti-
mize performance metrics such as energy consumption while maintaining connectivity
requirements throughout the network [13,14]. TC schemes were initially designed for
Wireless Sensor Networks (WSNs), Mobile Ad Hoc Networks (MANETs), and Wireless
Mesh Networks (WMNs) to improve overall performance [15–17]. In wireless backhaul
networks, the topology is adjustable by modifying parameters such as transmission power
and antenna radiation patterns [18,19].

TC is generally challenging because there are several objective metrics to optimize,
some potentially conflicting (e.g., energy consumption and robustness). To make the
problem more tractable, we propose focusing the search for feasible topologies on expander-
like graphs, which are sparse graphs with “good” connectivity properties [20,21]. More
specifically, we propose to search for topologies with high Laplacian Spectral Gap (LSG),
which measures the strength of network connectivity and entanglement [22].

The proposed algorithm takes advantage of the directional beamforming capability of
Massive MIMO systems to activate a set of feasible non-interfering communication links,
which allows the efficient incorporation of a significant number of SCs within the MBS
coverage, increasing the spatial reuse of bandwidth and increasing spectral efficiency.

To the best of our knowledge, SGTC is the first topology control algorithm that
effectively employs the information provided by the LSG to optimize the network topology
by simultaneously minimizing the number of links and network diameter while maximizing
the network entropy and the number of edge-disjoint paths connecting any two stations in
the backhaul network. All these topological properties are desirable for backhaul networks
because sparse topologies are energy-efficient, the network diameter impacts the upper
bound of the end-to-end delay, the network entropy is related to the network’s ability to
distribute data traffic evenly across the network and promotes seamless traffic offloading
from the MBSs to the SCs, and a higher number of edge-disjoint paths leads to better
throughput and robustness.

The rest of the paper is organized as follows. Section 2 presents and discusses related
work on massive MIMO systems, Small Cells, topology control, and expander graphs in the
context of our work. Section 3.1 presents a set of definitions and assumptions that are used
in the rest of the paper. Section 3.3 presents the problem formulation. Sections 4 and 4.3
present the details of the proposed topological control scheme. Section 5 presents the
results of a series of experiments characterizing the impact of the LSG of the topology on
the overall network performance. Lastly, we present our concluding remarks in Section 6.

2. Related Work

In the past, topology control mechanisms have been studied mainly in Wireless Mesh
Networks, Wireless Mobile Ad Hoc Networks, and Wireless Sensor Networks. The main
objective of this type of mechanism is to modify the network topology to induce connectivity
properties and improve the overall network performance [23,24].

Recently, topology-control mechanisms have also become relevant in wireless backhaul
networks because they can help improve efficiency, promote traffic offloading from the
core network, and avoid bottlenecks in the backhaul network. For instance, in [25], the
authors propose planning schemes for microwave-based wireless backhaul networks based
on tree topologies that jointly optimize multiple performance metrics, such as traffic hops
(delay), long links, link crosses, small angles, and the sum of the link distances. In [26], the
authors propose an iterative heuristic algorithm that constructs topologies that maximize
the total backhaul flow in wireless multi-hop backhaul networks composed of SCs and
networked flying platform (NFP) hubs. In [27], the authors show that if the topologies
for Ultra-High-Dense Networks (UDN) combine MBSs and a dense tier of SCs, they can
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accomplish objectives of 5G networks such as meeting traffic demand while providing
seamless coverage, high data rate for low-mobility users and spatial reuse. In [10], a
comprehensive survey about the architecture, performance metrics, and guidelines of 5G
networks is presented. The authors show that accommodating Massive MIMO with Small
Cells improves performance metrics such as energy efficiency, coverage, capacity, resource
efficiency, and spectral efficiency.

In the context of topology control schemes, some works have proposed inducing
expander-like topologies in networks [28,29]. The rationale behind these works is that
expander graphs are sparse graphs with strong connectivity properties [20], and therefore,
networks with expander-like topologies will tend to be robust even if they do not have a
large number of links. In [30], the authors investigate the relationship between the proper-
ties of expander topologies implemented by wireless networks (called Wireless Expanders )
and the performance of such wireless networks in terms of enabling efficient broadcast so-
lutions. In [31,32], the authors model dynamic peer-to-peer (P2P) networks using expander
graphs in which the spectral gap property is preserved under node insertions and deletions.
In [33], the authors show that communication networks with expander-like topologies tend
to be flexible and easy to reconfigure and optimize.

Simulated annealing (SA) has been successfully used to solve complex problems in
wireless networks. For example, in [34], the authors use SA for wireless backhaul planning
to maximize system performance regarding network throughput and delay while reducing
infrastructure utilization. Similarly, in [35], the authors propose an SA-based algorithm to
solve a power consumption problem. The idea is to use SA to minimize the total power
consumed by MBSs and SCs serving access and wireless backhaul links. Other works on
the use of SA to optimize the performance of wireless networks are [36–38]. All these works
show the effectiveness of simulated annealing as an optimization technique in the context
of wireless networks.

This literature review shows that, unlike our proposal that uses the LSG to find
expander-like topologies that simultaneously optimize the network’s energy cost, robust-
ness, diameter, and entropy, previous topology control algorithms for backhaul networks
either restrict their search to three-based topologies [25], or do not consider multiple ob-
jective functions [26–32]. Although SA has been used in the past for wireless backhaul
planning [35], our algorithm is the first to incorporate the information provided by the LSG
to find network topologies with low energy costs and strong connectivity properties.

3. System Model and Problem Formulation

In this section, we introduce the notation used in the paper and provide a detailed
description of the system model. We also present the problem formulation for finding a
network topology that minimizes the number of links and the network’s diameter while
maximizing the network’s entropy and robustness.

3.1. System Model

We use a graph G = (M ∪ S, E) to model the topology of a wireless backhaul network
composed of sets of Macro Base Stations (MBSs) M, Small Cells (SCs) S, and bidirectional
wireless communication links E ⊆ V ×V between them, where V = M ∪ S is the set of all
the stations. The position of the stations in the plane is determined by a function l : V → R2

that assigns x and y coordinates to them. We use N(u) = {v : (u, v) ∈ E} to denote the
one-hop neighborhood of u.

We assume that the SCs have a coverage range of RS distance units, whereas the MBSs
have a coverage range of RM distance units. From the values of the coverage ranges, we
have the following two definitions.

Definition 1. A communication link (u, v) ∈ E between stations u, v ∈ V is feasible if
dist(l(u), l(v)) ≤ RS when u, v ∈ S or dist(l(u), l(v)) ≤ RM when either u or v is in M; where
dist is the Euclidean distance.
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Definition 2. A network topology G = (M ∪ S, E) is feasible if every link (u, v) ∈ E is feasible.

We further assume that:

• All the stations are static; namely, they have fixed positions.
• All the MBs have the same capabilities and coverage range. They are implemented by

a Massive MIMO system with NM antenna elements.
• All the SCs have the same capabilities and coverage range. They are equipped with

NS antenna elements capable of supporting multiple parallel data streams.
• MBSs and SCs can support all the possible links with the other MBs and SCs placed in

their corresponding coverage area. More specifically, for an MBS u ∈ M, the inequality
NM ≥ |N(u)| holds. Similarly, for a SC v ∈ S, the inequality NS ≥ |N(v)| also holds.

• The energy cost of establishing a link from station u to station v is proportional to
dist(l(u), l(v)).

• All the SCs have relay functionality; namely, they can communicate with any of their
one-hop neighbors.

For a given network topology G = (M∪ S, E), we use the following performance metrics:

• Network Diameter (DG): Defined as the longest shortest path between any two stations
in G. Networks with a small diameter tend to induce lower delays and reduce the
energy used to transport a packet from sources to destinations.

• Network Robustness (RG): Defined as the cardinality of the global minimum cut-set,
which is equivalent to the minimum number of edge-disjoint paths connecting any
two stations in the network. Networks with high robustness are more tolerant to
link breaks due to interference or channel effects. This metric indicates the minimum
number of edges that need to be removed to partition the network.

• Network Cost (CG): Defined as the sum of the length of the edges in the graph (see
Equation (1)). This metric is related to the power used by the network to establish and
maintain all the communication links.

CG = ∑
e=(u,v)∈E

dist(l(u), l(v)) (1)

• Network Entropy (SG): Defined as the entropy (see Equation (2)) over the probability
mass function (see Equation (3)) of using a particular link e ∈ E as part of the shortest
path connecting an arbitrary source-destination pair. Network entropy measures the
amount of information about how data traffic will be distributed across a particular
network by a specific shortest-path routing protocol. High values of network entropy
indicate that a given shortest-path routing protocol will tend to distribute data traffic
evenly across the network. On the other hand, low values of network entropy indicate
that this shortest-path routing protocol will tend to concentrate data traffic on a subset
of the links (those with a high probability of being part of the shortest path). Similar to
the betweenness centrality [39], Pr(e) (see Equation (2)) provides information about
the influence of an edge over the data flows in a network. In this context, network
entropy can also be considered a measure of the ability of the network topology to
distribute the traffic load evenly among all the active links and, hence, among all the
stations (MBSs and SCs) that compose the network.

SG = −∑
e∈E

Pr(e) log2 Pr(e) (2)

Pr(e) =
f (e)

∑e∈E f (e)
(3)

In Equation (3), f : E → N is a function that counts the shortest paths that include
link e and ∑e∈E f (e) is a normalization constant. Algorithm 1 shows the pseudocode to
compute the value of function f for a given e ∈ E. The call to ShortestPath(G, a, b) (see
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line 4) returns a shortest path connecting two stations using a given shortest path algorithm.
We assume that the implementation of the shortest path algorithm breaks ties arbitrarily
but consistently and, hence, that it always computes the same shortest path for a given
source-destination pair.

Algorithm 1 f(e)
Input A network G = (V, E), an edge e ∈ E . Output The value of f (e).

1: f (e)← 0
2: AllSourceDest = {(a, b) | a ̸= b & a, b ∈ V}
3: for all (a, b) ∈ AllSourceDest do
4: P← ShortestPath(G, a, b)
5: if e ∈ P then
6: f (e)← f (e) + 1
7: end if
8: end for
9: return f (e);

3.2. Laplacian Spectral Gap

Let A(G) = [aij] be the adjacency matrix of a network G(V, E) where aij = 1 if there
is an edge from station i to station j and aij = 0 otherwise. Let D(G) be the degree matrix
D(G) = [dij] of G which is a diagonal matrix with dij = |N(i)| if i = j and, dij = 0 otherwise.
From these two matrices, we can compute the Laplacian Matrix of the network L(G) as
D(G)− A(G) [40]. Since a simple graph can represent the networks under consideration
(links are bidirectional), L(G) = D(G)− A(G) is a symmetric, positive semidefinite matrix
that is also known as the combinatorial Laplacian matrix or Kirchoff matrix. For this type
of network, L(G) has a set of n = |V| real eigenvalues λ1, λ2,..,λ|V| where the second
smallest eigenvalue (λ2) is called the Laplacian Spectral Gap, LSG [40] of the network G.
A large value of LSG implies a higher expansion, meaning that the network is generally
well connected [20]. This type of graph is associated with Expander Graphs, a family of
sparse graphs with strong connectivity properties [41].

3.3. Problem Formulation

From the previous concepts and definitions, we formally state the problem of comput-
ing optimized wireless backhaul network topologies composed of MBs and SCs as follows.

Problem Formulation 1. Given a set of wireless backhaul entities V = M ∪ S located
at positions in the plane designated by function l, and radio ranges RS for SCs and RM for
MBSs, find a set E′ ⊆ V × V of feasible communication links, according to Definition 1,
such that the Laplacian Spectral Gap λ2 of G = (V, E′) is maximized.

As we have already mentioned, the objective of maximizing the Laplacian Spectral
Gap is to jointly optimize:

• the Network Diameter DG of G = (V, E′);
• the Network Robustness RG of G = (V, E′);
• the Network Cost CG of G = (V, E′) and;
• the Network Entropy SG of G = (V, E′) as defined in Section 3.1.

In this first formulation, the location of all stations is part of the input and is specified
a priori by the function l.

Another interesting network design problem is to find suitable locations for the Macro
Base Stations, i.e., to find a function lM : M→ R2 that assigns a location in the plane to the
MBSs such that the network performance is optimized. In this case, only the number of
MBSs, not their locations, is part of the input.

Problem Formulation 2. Given a set of SCs S located at positions in the plane desig-
nated by the function lS : S→ R2, a number m of MBSs, and radio range RS for SCs and
RM for MBSs; find a function lM : M→ R2 that assigns a location in the plane to the MBSs
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and a set E′ ⊆ V ×V of feasible communication links such that the Laplacian Spectral Gap
λ2 of G = (M ∪ S, E′) is maximized.

Table 1 summarizes the notation used throughout the paper.

Table 1. Summary of notation.

G = (M ∪ S, E) A network.
V = M ∪ S Set of stations, including the set M of MBSs and the set S of SCs.
E Set of unidirectional links connecting the stations.
E0 Initial set of links in the annealing process.
l : V → R2 Function that determines the position of the stations.
lS : V → R2 Function that determines the position of the SCs.
lM : V → R2 Function that determines the position of the MBSs.
N(u) One-hop neighborhood of station u.
NF(G) Set of one-hop feasible neighbors of network G.
RM Radio range of the Macro Base Stations.
RS Radio range of the Small Cells.
NM Number of antenna elements in an MBS.
NS Number of antenna elements in an SC.
DG Diameter of network G.
RG Robustness of network G.
CG Cost of network G.
SG Network entropy of G.
f : E→ N Function that counts the number of shortest paths that include e ∈ E.
A(G) = [aij] Adjacency matrix of G.
D(G) = [dij] Degree matrix of G.
L(G) Laplacian matrix of G.
λ2 Second smallest eigenvalue of L(G) (Laplacian Spectral Gap).
Max_Itera Maximum number of iterations of the SGTC algorithm.
α0 Initial value of the temperature in the annealing process.
α Value of the temperature during the annealing process.
dist(l(u), l(v)) Euclidean distance between stations u and v.
dist(lS(u), M) Euclidean distance between station u an its closest MBS in M.
r(M) Covering radius of a set M of MBS.

4. SGTC: The Spectral Gap-Based Topology Control Algorithm

This section introduces the proposed spectral gap-based topology control (SGTC)
algorithm for wireless backhaul networks. The SGTC algorithm employs the information
provided by the LSG to optimize the network topology with respect to the four performance
metrics defined in Section 3.3. SGTC takes as input the set of network entities V = M ∪ S
(generically referred to as stations), an initial set E0 of links, functions lM and LS that
map stations to positions in the plane, radio ranges for MBSs and SCs, and the value of
Max_Itera which determines the maximum number of iterations.

The SGTC algorithm employs the simulated annealing (SA) meta-heuristic technique
to explore the feasible solution space, seeking network topologies that yield a high LSG
(λ2). As we describe in more detail in the following paragraphs, the annealing process
implements a random walk over the feasible solution space where a new candidate solution
is accepted with a probability proportional to its LSG value and the current temperature of
the annealing process. Initially, the temperature is set to a high value to promote a broad
search of the solution space, and on each iteration, it is reduced to direct the random walk
towards strictly better solutions.

After the annealing process is completed, SGTC calculates the Pareto front of the best
feasible network topologies that were visited during the process. This calculation is based
on three criteria: minimizing the network diameter and maximizing network robustness
and entropy. SGTC returns the Pareto efficient solution with the lowest energy cost as
its output.
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4.1. The Feasible Solution Space

To implement the local search, we define the 1-feasible neighborhood of a network
topology G = (V, E) as the set NF(G) composed of feasible network topologies G′ = (V, E′)
such that E′ can be obtained from E by adding or removing a single feasible link according
to Definition 1. This way, the solution space can be organized as a graph with a vertex
for each feasible network topology, and two vertices of this graph are adjacent if their
corresponding network topologies differ in a single link.

As shown in the pseudocode of Algorithm 2, SGTC starts the simulated annealing
process from an initial network topology (V, E0) that is provided as an input parameter.
The algorithm uses function isFeasible() (see Line 2 of Algorithms 2 and 3) to check
whether the initial topology is valid. If (V, E0) is not feasible, the annealing process will
start from an empty graph. From this point, SGTC performs a walk over the solution
space graph by randomly selecting as the new candidate solution a network topology
Gi from the 1-feasible neighborhood of the current solution Gcurrent. By using function
getFeasibleRandomNeighbor() (see Line 8 of Algorithms 2 and 4) to select candidate so-
lutions, the search performed by SGTC is restricted to feasible network topologies.

Algorithm 2 SGTC Algorithm
Input: A set of stations V = M ∪ S, an initial set of links E0, a function l that determines
the stations’ position in the plane, radio ranges RM and RS, the initial temperature α0, and
number of iterations Max_Itera
Output: Gbest

1: Gcurrent ← (V, E0); F ← ∅
2: if isFeasible(Gcurrent, l, RM, RS) then
3: F ← F ∪ {Gcurrent}
4: else
5: F ← F ∪ {(V, ∅)}
6: end if
7: for i = 1 to Max_Itera do
8: Gi ← getFeasibleRandomNeighbor(Gcurrent, l, RM, RS)
9: λcandidate

2 ← LSG(Gi)

10: ∆← λcandidate
2 − λcurrent

2
11: paccept = e(−∆/α)

12: if ∆ > 0 then
13: Gcurrent ← Gi, λcurrent

2 ← λcandidate
2 , F ← F ∪ {Gcurrent};

14: else with probability paccept

15: Gcurrent ← Gi, λcurrent
2 ← λcandidate

2
16: end if
17: α = α0/(i + 1)
18: end for
19: P ← ParetoFront(F , min(DG), max(RG), max(SG))
20: return Gbest ← arg minG∈P{CG}

We decided to constrain the search to the feasible solution space because if an unfea-
sible link that increases the LSG is added to the network, the annealing process would
be highly unlikely to remove it in future iterations to obtain a feasible topology. In such
a scenario, from the point an unfeasible link is added to a solution, it will likely remain
unfeasible until the end of the annealing process.
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Algorithm 3 is Feasible
Input: A network topology G = (M ∪ S, E), a function l that determines the stations’
position in the plane, and radio ranges RM and RS
Output: True if the topology is feasible according to Definition 1, false otherwise.

1: for all e = (u, v) ∈ E do
2: if {u, v} ∩M ̸= ∅ then
3: if dist(l(u), l(v)) > RM then
4: return false
5: end if
6: else
7: if dist(l(u), l(v)) > RS then
8: return false
9: end if

10: end if
11: end for
12: return true

Algorithm 4 obtain Feasible Random Neighbor
Input: A network topology G = (M ∪ S, E), a function l that determines the stations’
position in the plane, and radio ranges RM and RS
Output: A network topology G′ ∈ NF(G) or G if NF(G) = ∅

1: V ← M ∪ S
2: for |V|2 iterations do
3: e = (u, v)← get Without Replacement Uni f ormlyat Random From (V ×V)
4: if e ∈ E then
5: return G′ = (V, E \ {e})
6: else
7: if {u, v} ∩M ̸= ∅ then
8: if dist(l(u), l(v)) ≤ RM then
9: return G′ = (V, E ∪ {e})

10: end if
11: else
12: if dist(l(u), l(v)) ≤ RS then
13: return G′ = (V, E ∪ {e})
14: end if
15: end if
16: end if
17: end for
18: return G

4.2. The Annealing Process

Following the simulated annealing strategy, on each iteration of SGTC, a candidate
solution Gi is accepted as the new current solution with probability one if Gi has a larger
value of λ2 than that of the current solution Gcurrent, namely if ∆ = λcandidate

2 − λcurrent
2 > 0

(Line 12). It also accepts a candidate solution following the Metropolis criterion, with prob-
ability paccept, if ∆ ≤ 0 (Line 14). The control parameter α, used in Line 11 of Algorithm 2 to
compute the probability paccept, takes the role of the temperature in the annealing process
and is reduced at each iteration (see Line 17) to gradually force the search towards strictly
better solutions.

SGTC stores in F the feasible network topologies Gcurrent visited during the annealing
process. Then, it uses ParetoFront() (see Line 19 of Algorithm 2) to determine the Pareto
front P composed of the solutions in F that minimize the network diameter and maximize
the network robustness and entropy.

Lastly, SGTC returns the network in P of minimum energy cost (see Line 20 of
Algorithm 2) as the output of the algorithm.
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4.3. SGTC with Optimized MBS Placement

To address Problem Formulation 2, where the network designer can determine the
location of the MBSs, we propose to find a set of locations that minimizes the maxi-
mum distance between any SC and its closest MBS. More formally, let dist(lS(u), M) =
minm∈M{dist(lS(u), lM(m))} be the distance between an SC u ∈ S and the set M of MBSs.
We propose to find a function lM that assigns locations to the MBSs that minimize M’s
covering radius r(M), which equals maxu∈S{dist(l(u), M)}.

This latter formulation corresponds to the vertex k-center problem (for k = |M|), a
well-known NP-hard problem originally proposed by Hakimi in 1964 [42]. Since the vertex
k-center problem cannot be solved in polynomial time within an approximation factor of
ρ < 2 [43], unless P = NP, we propose using the Critical Dominating Set algorithm that has
shown good performance in practice [44,45].

Once we have determined optimized locations for the MBSs, we can use the SGTC
algorithm to look for a topology with a large Laplacian Spectral Gap.

4.4. Computational Complexity

The following theorem establishes the temporal complexity of the SGTC algorithm.

Theorem 1. The temporal complexity of the SGTC algorithm (Algorithm 2) is O(Max_itera×
|V|2).

Proof of Theorem 1. The main loop of Algorithm 2 (lines 7–18) iterates Max_itera times
and contains calls to isFeasible() (Algorithm 3), getFeasibleRandomNeighbor()
(Algorithm 4), and LSG() to compute the LSG of a network G = (V, E).

The complexity of Algorithm 3 is O(|V|2) because it checks whether all the e ∈ E
are feasible, and the maximum number of edges in a graph is in O(|V|2). Similarly,
the complexity of Algorithm 4 is O(|V|2) because, in the worst case, it performs |V|2
iterations to identify a feasible link e ∈ V ×V that will be either added or removed from
E. Computing the LSG of a graph G = (V, E) is dominated by the cost of determining its
eigenvalues, which is O(|V|2) because the Laplacian Matrices are symmetric. Therefore,
the total complexity of the main loop is O(Max_itera× |V|2).

The complexity of computing the Pareto front of N data points and three objective
functions is O(N log N) when we use Kung’s algorithm [46]. So, if we select N ∈ Θ(|V|)
we obtain O(|V| log |V|).

Therefore, the overall complexity of the SGTC algorithm is O(Max_itera × |V|2 +
|V| log |V|) which is the same as O(Max_itera× |V|2).

5. Experimental Results

In this section, we present the results of a series of experiments that characterize the
ability of the SGTC algorithm to find network topologies that optimize the performance
metrics presented in Section 3.3, namely, that minimize the network diameter DG, maximize
the network robustness RG, minimize the network cost CG, and maximize the network
entropy SG.

For a given network topology G = (V, E), and function lM and lS that assign the
positions of the nodes in the plane, we compute its robustness RG as the cardinality of
the global minimum cut-set. To this end, we execute an instance of the Ford–Fulkerson
algorithm [47] over the O(|V|2) pairs of nodes. To compute the network entropy, we run
Dijkstra’s algorithm [48] for every pair of nodes and count the number of times (denoted
by f (e)) that a given e ∈ E belongs to one of these shortest paths. Then, we use Equation (3)
to compute the probability of using a particular edge e in the shortest path and compute
SG according to Equation (2). The network diameter is easily obtained from the lengths of
the shortest paths of all the pairs of nodes, and the network cost is computed according to
Equation (1).
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For the experiments presented in this section, we generate problem instances by
assuming an uncorrelated position of the network entities (stations) within a normalized
squared region of 1 × 1. Specifically, we compute each station’s x and y coordinates
by sampling the continuous uniform distribution with bounds [0, 1], which assumes an
uncorrelated position of the nodes [49,50].

As shown in Table 2, we vary the total number of stations |V| from 100 to 200, the
normalized radio range of the MBSs from 0.3 to 0.5, and the normalized radio range of
the SCs from 0.15 to 0.2. The number of MBSs equals ⌊0.1× |V|⌋ to have scenarios where
approximately 10% of the stations are MBSs. We further assume that all the stations have
enough antennas to establish all the links determined by the SGTC algorithm.

Table 2. Experimental parameters.

Parameter Values

Total number of stations {100, 150, 200}
Number of MBSs 10% of the stations
Normalized radio range of MBSs (RM) {0.3, 0.5}
Normalized radio range of SCs (RS) {0.15, 0.2}
Iterations of SGTC (Max_Itera) 10,000
Initial temperature (α0) 1.0
Initial set of links (E0) {∅, Feasible fully connected, Voronoi}

The results presented in all the figures include the output of the proposed algorithm
when using the following initial network topologies.

1. Disconnected: E0 = ∅. The initial network has no links.
2. Feasible fully connected: E0 = {e = (u, v) ∈ V ×V : e is f easible}. The initial network

contains all the feasible links.
3. Voronoi topology [51]: E0 = {e = (u, v) ∈ M×M : e is f easible}⋃{e = (u, v) ∈ S×M :

v = arg minv∈M{dist(l(u), l(v))} ∧ e is f easible}. The initial network contains all the
feasible links connecting MBSs among themselves, and the SCs are connected to their
closest MBSs if the corresponding link is feasible.

In all the experiments, the maximum number of iterations of the SGTC algorithm
equals 10,000, and the initial temperature α0 of the simulated annealing process equals 1.0.
Each experiment is run for 20 independent seeds.

The experimental workflow composed of the instance generator, the SGTC algorithm,
and a set of algorithms that compute the performance metrics is illustrated in Figure 1. The
instance generator algorithm takes the number of stations |V|, the percentage of MBSs, and
the type of MBS placement (random or k-center) as input parameters. It returns functions
lM and lS that determine the locations of MBSs and SCs, respectively.

Figure 1. Experimental workflow.

Next, the SGTC algorithm uses the functions lM, lS, the initial set of links E0, and
the values of the radio ranges RM and RS as input parameters to compute the resulting
topology G = (V, E) of the backhaul network. The initial temperature α0 and the number
of iterations Max_Itera are the hyper-parameters of SGTC.
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Lastly, a set of algorithms compute the diameter DG, robustness RG, cost CG, and
entropy SG of network G.

5.1. Performance as a Function of the LSG

Figures 2–5 illustrate the behavior of the four performance metrics as a function of
the value of the LSG. In the figures, each data point corresponds to a network topology
found by SGTC during the annealing process, and the solid lines represent curves fitting
the data points computed using logarithmic regression. The data points that belong to
the Pareto front of the solutions that minimize the network diameter and maximize the
network robustness and entropy are highlighted in black. For these results, we set the
value of the normalized radio ranges RM and RS to 0.5 and 0.2, respectively. For the sake of
clearness, the figures only present a representative sample of all the results; however, the
tendencies shown in the figures hold across all our experiments.
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Figure 2. Network entropy SG with increasing Laplacian Spectral Gap (LSG, λ2).

From Figure 2, we can observe that for all the values of the network size and the two
types of MBS placement, the value of the network entropy SG increases as the value of the
LSG increases. This result indicates that networks with larger LSG distribute the shortest
paths connecting the stations evenly among all the data links. This is important because
this type of topology will promote the even distribution of the data traffic among the whole
network, thus offloading traffic from the MBSs to the SCs and reducing the probability of
contention hot spots.
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Figure 3. Network diameter DG with increasing Laplacian Spectral Gap (LSG, λ2).
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Figure 4. Network robustness with increasing Laplacian Spectral Gap (LSG, λ2).

From Figure 3, we can observe that, in general, the value of the network diameter DG
decreases as the value of the LSG increases, which indicates that the network gets better
connected in terms of the length of the network’s largest shortest path. This positively
impacts the upper bounds of the end-to-end delay and the energy needed to support an
end-to-end data flow. Similarly, Figure 4 shows that the network robustness RG, measured
as the cardinality of the network’s global minimum cut-set, increases as the LSG increases.
This result indicates that networks with a larger value of LSG tend to be more robust to
link breaks.

Lastly, Figure 4 shows that the network cost CG also increases as the LSG increases;
however, for the case of networks of size 100 and 150, the rate at which the cost increases
is reduced as the value of the LSG becomes larger. We can observe a similar trend for the
networks of size 200 but with some exceptions for values of LSG larger than four. It is
important to point out that SGTC avoids selecting these high-cost networks by selecting
the Pareto efficient solution of minimum cost.
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Figure 5. Network cost with increasing Laplacian Spectral Gap (LSG, λ2).

5.2. Performance Evaluation

Figures 6–9 show the performance attained by SGTC when increasing the network
size from 100 to 200 stations; MSBs are placed either at random or by solving the related
k-center problem to minimize their covering radius; and for values of the stations’ radio
ranges RM ∈ {0.3, 0.5} and RS ∈ {0.15, 0.2}. In order to have a performance baseline, we
include the results of a traditional Voronoi-based algorithm that adds to the network all
the feasible links connecting two MBSs and the feasible links connecting every SC to its
closest MBS. In the figures, each point corresponds to the average result computed over
20 independent experiments, and the error bars correspond to the standard deviation value.
Missing points in the graphs indicate that the corresponding algorithms could not connect
the network in at least one of the twenty independent experiments.
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Figure 6. Network entropy SG with increasing network size.

From Figure 6, we can observe that SGTC outperforms the traditional Voronoi-based
algorithm by consistently achieving a higher value of network entropy SG. The figure also
shows that the network entropy benefits from having higher values of radio ranges. The
reason is that the number of feasible links increases as the radio range increases, which
also increases the space of feasible topologies that SGTC can investigate. From the figure,
we can also notice that the MBS placement has no noticeable effect on this metric. Lastly,
this figure does not include results for the Voronoi-based algorithm when RM = 0.3 and
RS = 0.15 because the algorithm did not produce connected networks.
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Figure 7. Network diameter DG with increasing network size.

Figure 7 shows the network diameter DG attained by the algorithms under the different
scenarios. Similar to the case of the network entropy, SGTC produces the networks with
the smallest diameters when RM = 0.5 and RS = 0.2, which indicates that the algorithm
can take advantage of a large space of feasible topologies to find well-connected networks.
For RM = 0.3 and RS = 0.15, the Voronoi-based algorithm achieves smaller values of
network diameters by predominantly using the sub-network consisting of links between
MBSs. This, however, has the disadvantage of concentrating the traffic in the MBSs. As for
the previous metric, this figure shows that the MBS placement has no noticeable effect on
the network diameter.
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Figure 9. Network cost CG with increasing network size.

Figure 8 shows that the network robustness RG follows a similar trend to that of the
previous metrics. SGTC produces the most robust networks when the space of feasible
topologies is larger, namely, when RM = 0.5, RS = 0.2, and there are many stations.
However, unlike the case of the previous metrics, SGTC finds more robust networks for
the case of RM = 0.3, RS = 0.15 when the MBSs are placed using the k-center algorithm.
The reason is that by reducing the covering radius of the MBS, the probability that all the
SCs are within the radio range of an MBS is increased, which increases the probability of
having more paths connecting the SCs to the rest of the network.

Lastly, Figure 9 shows that the network cost CG attained by the traditional Voronoi-
based algorithm is smaller than that of SGTC. This result was expected because the Voronoi-
based algorithm’s topologies include fewer links; the SCs are only connected to their closest
MBS. As we saw in the previous metrics, this reduced cost comes at the expense of fragile,
weakly connected networks that tend to concentrate traffic in the MBSs, increasing the
probability of contention hot spots. This behavior becomes apparent when RM = 0.3,
RS = 0.15 because the links selected by the Voronoi-based algorithm are not enough to
connect the network. On the other hand, even though the topologies generated by SGTC
are more costly, we can observe that the rate at which this cost increases is similar to that
of the Voronoi topologies. The reason is twofold. First, given that the cost of a network
topology grows sublinearly with respect to the value of the LSG, the annealing process will
not produce arbitrarily costly networks. Second, SGTC selects the Pareto efficient topology
of minimum cost as its output.

6. Conclusions

We introduced the spectral gap-based topology control (SGTC) algorithm for wireless
backhaul networks that uses simulated annealing guided by the value of the Laplacian



Future Internet 2024, 16, 43 15 of 17

Spectral Gap (LSG) to look for expander-like graphs, which are sparse graphs with strong
connectivity properties such as small diameter, large value of the cardinality of its global
minimum cut-set, and high shortest-path diversity. These are desirable properties for
backhaul networks composed of Macro Base Stations and Small Cells because sparse
topologies require less energy to establish and maintain their links, the diameter of a
network impacts the upper bound of the end-to-end delay, the value of the cardinality
of the global minimum cut-set determines the network robustness against link failures,
and the shortest-path diversity promotes seamless traffic offloading from the MBSs to the
Small Cells.

We presented network entropy as a measure of shortest-path diversity, which deter-
mines the amount of information about how data traffic is distributed across a particular
network, where high values of network entropy indicate that data traffic will be evenly
distributed across the network.

A series of experiments confirmed that the three connectivity metrics—diameter,
robustness, and network entropy—improve as the value of the LSG increases, notably
without requiring a significant increase in the number of links. This trend becomes more
pronounced as the radio range of the stations increases because it increases the size of
the space of feasible solutions. Our experimental results also showed that the topologies
produced by SGTC are superior to those provided by a traditional Voronoi-based algorithm
and that carefully placing the MBSs can improve the network robustness.

Future work includes conducting analytical and simulation-based analyses to deter-
mine the impact of expander-like topologies on the performance of upper-layer network
functions, such as channel access and routing. We also plan to extend our algorithm to dy-
namically adapt the network’s topology to respond to the instantaneous traffic conditions.
This is particularly important in the context of modern and future Internet applications
where data traffic is bursty in nature, with large periods of low or no activity followed by
sudden surges of high-intensity traffic.
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