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Abstract: We introduce a novel multipath data transport approach at the transport layer referred to as
‘Deep Deterministic Policy Gradient for Multipath Performance-oriented Congestion Control’ (DDPG-MPCC),
which leverages deep reinforcement learning to enhance congestion management in multipath
networks. Our method combines DDPG with online convex optimization to optimize fairness and
performance in simultaneously challenging multipath internet congestion control scenarios. Through
experiments by developing kernel implementation, we show how DDPG-MPCC performs compared
to the state-of-the-art solutions.

Keywords: multipath TCP; congestion control; experience-driven approach; performance-oriented
congestion control; deep learning

1. Introduction

New Transmission Control Protocol (TCP) designs for efficient end-to-end transport of
Internet traffic, such as BBR (Bottleneck Bandwidth and Round-trip propagation time) [1],
PCC (performance oriented congestion control) [2], PCC Vivace [3], and TCP Copa [4]
do not make use of numerous available network paths and multiple interfaces. By using
several paths, Multipath TCP (MPTCP) [5–7] can potentially increase the data transport
rate, reduce loss and delay by redirecting traffic to less crowded paths, and improve fault
tolerance by diverting traffic away from broken paths [8].

Distributing a single Internet connection traffic across multiple network interfaces,
MPTCP [5–7,9] can increase device access throughput and dependability (such as smart-
phones and tablets) that use WiFi and 5G/6G cellular interfaces simultaneously. However,
even though this scenario and many others serve as the main impetus for the development
of MPTCP, recent experiences with MPTCP in simulated and real networks have shown
that it often performs poorly in these scenarios. This comes as no surprise since the most
popular MPTCP variants are all extensions of the seminal singlepath loss-based congestion
control scheme, which has been around for several decades [10]. Almost all MPTCPs inherit
TCP’s well-known performance problems, particularly its inability to gracefully adjust to
varying network dynamics, and poor response to link impairments like noncongestion loss,
unfairness, bufferbloat, etc.

Managing congestion effectively in a multipath environment, with MPTCP, presents
significant design challenges [7,11]. Like traditional TCP, MPTCP needs to adjust its
transmission rates to cope with changing network conditions. However, MPTCP introduces
the complexity of distributing data traffic across multiple paths to alleviate congestion,
adding an extra layer of consideration for its congestion control mechanisms. Another
complicating factor in the multipath congestion design is the potential for multiple subflows
from the same MPTCP connection to compete with each other in network bottlenecks.

In the literature on MPTCP design, it is known that every multipath congestion control
design must meet three primary goals: (i) the total perceived throughput of MPTCP should
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be at least as good as the best TCP on any of its paths; (ii) MPTCP should make efficient
use of the network by rerouting traffic away from congested paths, and (iii) MPTCP
should not be more aggressive than a TCP flow when multiple subflows of an MPTCP
share the same bottleneck link. Therefore, for efficient congestion control, any efficient
multipath data networking protocol requires utilizing past experience along with performance
orientation for optimal data transport. To this end, we need a new hybrid framework that can
combine deterministic policy gradients (e.g., Deep Deterministic Policy Gradient (DDPG)
for jointly exploring and exploiting past experiences [12]) with performance-oriented
online optimization.

Fairness between competing TCP and MPTCP connections has been reported to be
impossible by simply executing state-of-the-art TCPs (such as PCC, BBR, or Copa) over
each path. When many subflows of an MPTCP connection must pass through the same
bottleneck path, such an approach (executing the best TCP in each path) leads to excessive
aggression, which undermines the design goals (goal iii, as mentioned earlier). Therefore, by
using the online optimization approach that has been tested for singlepath TCP (PCC), we
redesign MPTCP from a joint perspective of being driven by past experience and controlled
by online optimization. This is because PCC design [2,3] is attractive as it requires only a
few prior assumptions about the network and is known to deliver excellent performance in
harsh network conditions consistently. Furthermore, Multipath PCC (MPCC) [5] without
accounting for past experience has already been tested and has been shown to deliver
promising results.

In this paper, we take an original step in developing a preliminary design of DDPG-
MPCC, which aims to enhance the network utility maximization capabilities of MPCC
in time-varying network settings. Our design assumptions are evaluated with realistic
network experimental results. In other words, we present distinctive research contributions
in the following ways:

1. We pioneered the development of an initial design for DDPG-MPCC, representing a
novel approach to enhancing the network utility maximization capabilities of MPCC
(Sections 2 and 4).

2. Our focus is specifically on addressing the challenges posed by time-varying net-
work settings, demonstrating the relevance and adaptability of our proposed design
(Sections 2.1 and 2.2).

3. The validity of our design assumptions is rigorously assessed through experimental
evaluations conducted in realistic network environments, providing empirical support
for the effectiveness of our approach (Sections 3 and 4).

1.1. Literature

The literature on TCP congestion control design with AI and ML is very rich [13]. Of
particular importance to this work is PCC [2,3], where the sender observes the connection
between its actions and its experienced performance, which allows it to consistently take
actions and improve performance. The case of BBR [1] is slightly different. BBR updates its
rate according to the measurement of the data delivered and the Round Trip Time (RTT),
while Copa [4] implements the delay-based congestion avoidance mechanism.

The design of MPTCP has included several advances in ML [5,7]. Some of them
used deterministic policy gradients to discover the most effective congestion management
solutions, while others suggested DRL-based designs to reduce the size of out-of-order
delivery from diverse pathways. Multipath congestion management strategies [5,7,9,14]
using DRL are pertinent to our study.

In MPCC [5], an online learning approach is developed for multipath data networking
but inherits limitations along with the PCC control mechanisms. MPCC [5] presents an
innovative extension to harness surrounding bandwidths attentively, which is discussed in
detail later (Section 1.2). In addition, there are several other articles that conduct DRL-based
MPTCP designs with different objectives [7,15,16]. Li et al. [15] proposed SmartCC, which
observes the environment and takes certain actions to adjust the congestion window to
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adapt to the varying network situations. Xu et al. [16] developed a DRL agent that leverages
the emerging deterministic policy gradient to train its networks and adjust the congestion
window in every action. Tianle et al. [17] implemented a deep deterministic policy gradient
in satellite communications to adjust congestion rates. Jonghwan et al. [18] proposed using
a machine learning model for path management in mobile devices over mptcp where signal
strength and other quality metrics associated with Wi-Fi are also taken into consideration.

In this paper, we develop a novel hybrid DDPG inside MPCC to intelligently drive packet
flows across multiple paths where the DDPG module (i) maximizes the utility of the underlying
network (ii) rewards an increase in throughput and (iii) ameliorates the adverse impact of latency
and loss.

1.2. How MPCC Works?

MPCC aims to independently and asynchronously optimize a local utility function
defined for each MPTCP subflow. For example, consider an MPTCP connection i with d
subflows. When looking from the perspective of a subflow j′, the sending rate of all the
other subflows except a tagged subflow j can be assumed to be fixed and represented by ck

i .

Then, the utility function of the tagged subflow j denoted by U j
i can be computed based on

its own sending rate of xj
i and the experienced round trip time RTTj as [3]

U j
i =

( d

∑
k ̸=j

ck
i + xj

i

)α
− βLj

( d

∑
k ̸=j

ck
i + xj

i

)
−γ(

d

∑
k ̸=j

ck
i + xj

i)
dRTTj

dT
(1)

where Lj is the loss rate and
dRTTj

dT quantifies the delay variation observed by the subflow j,
and 0 ≤ α < 1, β > 3 and γ ≥ 0 are the parameters for balancing performance objectives.
However, from a higher MPTCP connection level perspective, the utility function of the
MPTCP i can be estimated as

Ui =
( d

∑
k

xk
i

)α
−max

k∈d
{βLk + γ

dRTTk
dT

}
d

∑
k

xk
i (2)

It has been reported that [5], with MPCC we can achieve better performance by
decentralizing optimization across subflows. This can be clearly observed in (1) as the
utility function or the utility that will lead to rate changes is dependent on its own locally
perceived success, loss, and delay statistics. MPCC adopts the concept of Monitoring
Intervals (MI), which is the duration of a time long enough to gather sufficient statistics for
each of the MPTCP subflows. First, MPCC selects a sending rate for the subflow for each
MI, and then it computes the utility value of the subflows (after the defined MI interval
to gather the required statistics). In this process, the subflow transitions occur in three
different states, namely, slow-start, probing and moving [2,3,5]:

(i) In the slow start phase, the sending rate is doubled in every MI until the utility decreases.
MPCC can utilize the previous experience of the sending rates to begin the probe.

(ii) In the probe phase, MPCC probes the subflow with a higher sending rate x + ω and
a lower sending rate of x−ω, where ω is the fraction of the total sending rate of all
subflows within the MPTCP connection (that is, ω = xk

i / ∑ xk
i ). It is worth noting that

the probing phase helps to decide the direction in which the rate should be modified,
which directs the beginning of the moving phase.

(iii) In the moving phase, MPCC estimates the gradient of the utility function by using
the utilities and the rates from the two preceding MIs. With the computed gradient,
MPCC mandates the rate change or the step increase/decrease in the direction to-
wards the increasing pattern for the utility of the connection. It can be seen that the
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MPCC inherited such specific and celebrated mechanisms (e.g., rate amplification
and changed bounds) from PCC Vivace [3] to seamlessly adjust the speed of data
transport for the Internet. For example, if the estimated utility decreases, then it can
quickly switch back to the probing phase.

2. Experience Driven MPCC Design

We first formulate a Markov Decision Process (MDP) to model the learning process of
the proposed DDPG-MPCC. MDP formalizes the environment for DDPG learning. The
learning process starts by observing the state of the environment sj(t) from the MPTCP
connection of the subflow j and decides by taking an action according to the policy π(a | s).
The action of the DDPG agent changes the environment state to sj(t + 1), and the model
receives a reward R(t). The state of the environment is represented by the tuple: sending
rate xj(t), round trip time RTT j(t), loss ratio Lj(t) of each MPTCP subflow. Actions are
represented by sending rate adjustments (increments/decrements) over an MPTCP subflow.

The proposed DDPG agent consists of three main components, (i) State space: st =[
xj(t), RTT j(t), Lj(t)

]
(ii) Action space: at =

[
x1, x2, . . . , xj]; and (iii) Reward: for simplicity,

reward R = U j (given by (1)). For simplicity, we use the MPCC utility as a reward after
each MI.

DDPG is explicitly adapted for continuous action spaces and therefore has the po-
tential to transform the MPCC. In our design of DDPG-MPCC, we have flexibly coupled
a deterministic policy network (Actor) and Q-network (Critic). The underlying idea is to
capture the network dynamics inherently by using a policy iterating mechanism, which is
applied to alternate between policy improvement (actor) and policy evaluation (critic). It is
worth noting that the actor is meant to improve the policy using a policy gradient, while
the critic evaluates the policy for the current parameters.

DDPG allows the implementation of an experienced pool and two target networks
to improve stability and convergence. For higher performance and better convergence,
we adopt replay buffers, where a set of previous experiences is stored. It contains a wide
array of experiences, though it may not be suitable to keep everything as using too much
experience may decelerate the learning process. Due to time-varying network dynamics, the
target function fluctuates, and the training needs to cope with such fluctuations. Therefore,
we adopt the target network that fixes the parameters of the target function for a fixed
number of epochs and then replaces them with a newly updated target network.

We formulate an actor and critic model by representing policy function and Q-network
parameters as:

policy

{
online : µ(s|θµ) gradient update θµ

target : µ
(

s|θµ′
)

so f t update θµ′

Q network

{
online : Q

(
s, a|θQ) gradient update θQ

target : Q
(

s, a|θQ′
)

so f t update θQ′

The policy objective function, J(θµ), for the actor-network is computed as a weighted
cumulative expected reward from all subflows:

J(θµ) = Eθµ

[
R1 + γR2 + γ2R3 + . . .

]
with γ exponentially decreasing the future rewards’ weight.

With relevant insights from [19], we assume that the change in the policy gradient with
respect to θµ is approximately equal to the considered gradient of the Q-valued function.
Therefore, the policy gradient of J(θµ) can be estimated by computing the expectation

∂J(θµ)

∂θµ = Es

[
∂Q

(
s, a|θQ)
∂a

∂µ(s|θµ)

∂θµ

]
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Similarly, the critic network receives the action and state spaces and computes Q(s, a)
for evaluating the impacts of taking action a. It updates its parameters on the basis of the
target value. The underlying gradients can be estimated as

∂L
(
θQ)

∂θQ = Es,a,s′
(TQ −Q

(
s, a|θQ)∂Q

(
s, a|θQ)

∂θQ (3)

where,
TQ = r + γQ′

(
s′, µ(s′|θµ′)|θQ′

)
Using Polyak averaging after each MIs, the parameters of the target network are

updated from the parameters of the online network, i.e., the soft update of the target policy
and Q network can be estimated as: θQ′ ← τθQ + (1− τ)θQ′ ; θµ′ ← τθµ + (1− τ)θµ′ . The
Algorithm 1 demonstrates detailed steps of the DDPG-MPCC algorithm devised.

Algorithm 1 Pseudocode of DDPG-MPCC Algorithm

Initialization of DDPG Params: critic Q
(
s, a|θQ), actor µ(s|θµ) Replay Buffer B and

Q
(

s, a|θQ′
)

, µ
(

s|θµ′
)

while Episode < Max do
for t = 1, 2, . . . MI do

Run Ornstein–Uhlenbeck Process for exploration
Determine at using policy network and exploration
Apply action at Compute system reward Rt
Determine next state st+1
Save transitions (st, at, Rt, st+1) in Replay B

end for
Retrieve N transition from B (si, ai, Ri, si+1)
Yi = Ri+ γQ′(si+1, µ′(si+1|θµ′)|θQ′)

Renew Critic: min
(

L = 1/N ∑i(yi −Q
(
si, ai|θQ))2

)
Renew Actor Policy using updated policy gradient
Renew Target Networks (using hyperparameter, τ):{

θQ′ ← τθQ + (1− τ)θQ′

θµ′ ← τθµ + (1− τ)θµ′

end while

2.1. Key Components of DDPG-MPCC: Engineering Interpretation

DDPG-MPCC involves several key components, each contributing to its functional-
ity. In the following, as shown in Figure 1, we discuss these components along with a
conceptual diagram.

State Space. The state space represents the current state of the system, capturing
relevant information for decision making. It includes details such as network conditions,
available paths, congestion levels, and historical data.

Action Space. The action space consists of the possible actions the agent can take in
a given state. Actions involve selecting the combination of paths for data transmission,
adjusting sending rates, and managing congestion control.

Reward Mechanism. The reward mechanism provides feedback to the agent based on
its actions, guiding it toward desirable outcomes. Rewards can be derived from achieving
efficient data transmission, minimizing congestion, or optimizing network utility.
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Figure 1. Abstract view of the interrelationship between DDPG-MPCC Modules.

Actor Network. The actor-network determines the policy or strategy for selecting
actions in a given state. In DDPG-MPCC, the actor-network decides the optimal path
combination and sending rates based on the current state.

Critic Network. The critic network of DDPG-MPCC evaluates the actions taken by the
actor, providing feedback on their effectiveness, which assesses the selected actions’ impact
on overall system performance. ctor.

Experience Replay Buffer. The experience replay buffer B stores past experiences to break
the temporal correlation in sequential data. It retains historical data to improve the stability
and efficiency of the learning process.

Training Process. The training process involves iteratively updating the actor and critic
networks based on experiences and rewards. It refines the policy and value functions to
improve decision-making over time.

2.2. DDPG-MPCC Implementation

Our implementation is tailored so that DDPG-MPCC retains the sound characteris-
tics of MPCC while the DDPG plugin module accelerates the learning and bandwidth
exploration process. MPCC starts with the slow start phase, multiplicatively increasing its
sending rate until the utility decreases. When the utility decreases, it will go to the probing
phase, exploring a network with a higher and lower sending rate. This probing mechanism
helps congestion control to decide the direction in which the rate should be changed. In the
moving phase, DDPG-MPCC will determine how much the rate must change to increase
the utility. When utility decreases, it falls back to the probing phase. Our project page is
available at github https://github.com/MPTCP-FreeBSD (accessed on 1 January 2024),
and the implementation of this paper will be publicly available at DDPG-MPCC repository
https://github.com/MPTCP-FreeBSD/DDPG-MPCC-SRC (accessed on 1 January 2024).
The implementation and experiment of DDPG-MPCC have been fully conducted by the
author, D. Satish, as a part of his honors thesis for SIT723, School of IT, Deakin University.

The initial data were collected through the kernel logs while setting up the network sce-
nario over CloudLab. The CloudLab clusters consist of nearly one thousand machines dis-
tributed across three sites in the United States: Utah, Wisconsin, and South Carolina. These
machines are interoperable with existing testbeds, such as GENI and Emulab, allowing us
to utilize hardware at dozens of sites around the world. See https://www.cloudlab.us/
for details.

https://github.com/MPTCP-FreeBSD
https://github.com/MPTCP-FreeBSD/DDPG-MPCC-SRC
https://www.cloudlab.us/
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We train the DDPG model offline using the collected logs. We can also change the
utility function to prioritize lower latency and loss rather than high utilization or vice
versa. In our experiments, each episode starts by resetting the whole environment, and the
training session always begins with a new data point whose utility is between 40% and
70%. Each episode trains the underlying agent to capture the interrelationship between
action, states, and reward. We execute 1000 actions or steps, improving the entire episode’s
reward. This is the training of the model based on the data-networking dynamics collected
over the MPCC environment data for 1000 episodes. In actual deployment, the model will
be used at specific intervals to receive data from the kernel space and calculate the best
action given the current state of the network.

2.3. Testbed Setup and Normalization

We implemented the MPCC kernel and incorporated an offline DDPG module for
training and testing using realistic datasets. In contrast to the default MPTCP scheduler,
our rate-based approach in DDPG-MPCC signals the scheduler to set a high congestion
window, unless unforeseen consequences occur. To maintain tractability, following [5],
we adopted the assumption in a rate-based multipath scheduler that a subflow becomes
unavailable when 10% of the packets needed to sustain the current sending rate for the
current RTT duration are queued for transmission in the path. The DDPG-MPCC scheduler
and kernel design extend the work in [5] by importing logs and integrating the DDPG
module into our Linux client node. The extraction of kernel logs provides the necessary
data for the training and offline learning of DDPG-MPCC.

Figure 2 illustrates the network topology and the three scenarios employed in eval-
uating the multipath protocols. Our testbed, created over CloudLab, features a typical
client and server connected through two emulators and two routers simulating WiFi and
5G paths. This test bench comprises six nodes, including a client, server, emulators, and
routers, as depicted in Figure 3.

Figure 2. Three scenarios to quantify the performance of MPCC across varying bandwidth: (a) MPTCP
connection vs. singlepath connection; (b) MPTCP connection vs. two singlepath connections; (c) Two
MPTCP connections contending with each other in both paths.

While testing and comparing various congestion controls, we vary the bandwidth
of the route by changing the bandwidth of the router’s interface. Similarly, we insert a
certain loss percentage in our emulator nodes by using the Linux traffic control or utility
for the interface in that route. We run five 300s iperf3 tests in multiple network scenarios
for varying bandwidth and varying loss percentages where we keep the other environment
variables to default.

Figure 3. Cloulab Testbed Setup with Two paths.
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3. Performance Evaluation

While testing and comparing various congestion controls, we vary the bandwidth
of the route by changing the bandwidth of the router interface. Similarly, we insert a
certain percentage of loss into our emulator nodes by using the Linux traffic control for the
interface on that route. We run several iPerf3 tests in network scenarios shown in Figure 2
by varying the bandwidth and varying the percentages of losses without changing other
network parameters (along the lines of [5]).

Unless otherwise specified, all path latencies, bandwidths, and buffer capacities
are 40ms, 100Mbps, and 400 packets, respectively. Along the lines of MPCC [5], in
Figures 4 and 5, we compare MPCC with the Linux kernel-implemented MPTCP versions
Lia, Olia, and Balia, as well as with the use of singlepath TCP (Reno and BBR) for each
subflow. The details about Linux kernel-implemented MPTCP versions (Lia, Olia, and
Balia) and TCP (Reno, Cubic, and BBR) are explained in [5,7] and therefore we include
essential details only.

400 500 600 700 800 900
Size of bottleneck buffer in packets

60
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90

100

110
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130
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ug
hp

ut
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bp
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BALIA
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MPCC

PCC

RENO

Figure 4. Throughput comparison of one of the shared paths of MPCC with the state-of-the-art
MPTCP and TCP protocols over the variation in the size of bottleneck buffer in the path (network
scenario a).
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Figure 5. Throughput comparison of MPCC with the state-of-the-art MPTCP and TCP protocols over
the variation in the percentage of path loss (network scenario b).

We repeat the experiment outlined in Network Scenario a, the multipath sender
competes with a single path sender (PCC vs. MPCC, TCP Reno vs. MPTCP). As shown
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in Figure 4, when a multipath protocol fails to exploit path 1 effectively, it will become
more aggressive on path 2, resulting in a decrease in good performance for the single
path connection.

As shown in Figure 5, MPTCP responds to packet loss by scaling down the sending
rate multiplicatively. In sharp contrast, MPCC maintains a higher throughput across the
full range and only drops performance when the loss rate is several times greater than that,
which has the equivalent effect on MPTCP. These observations have been partly reported
in [5], all of which have been extensively experimented with, and the logs are gathered to
generate the data sets required to train the DDPG module.

By implementing the three different scenarios shown in Figure 2, the internet traffic
and performance parameters are captured through custom logging functions placed within
the kernel to ensure accurate data analysis. This is to prepare sufficient data for offline
training and setting up the input environment of the DDPG module. For simplicity,
considering the data distribution of the inputs for DDPG training, we normalized values
(between 0 and 1) to simplify the learning process. Based on our observations across several
experimental runs, the performance logs have drastic variations, and normalization allows
us to eliminate such skewed data. It is known in the DDPG literature that such an approach
helps to improve the convergence of training dynamics and achieves better stability.

After gathering training data from the kernel logs, we train our DDPG-MPCC using
the three networks and several runs. In the offline training procedure, we ensure that
each training episode begins with a new data point and always converges. We then tested
our trained model for 100 MIs using the test dataset obtained in the same fashion when
DDPG-MPCC competes with MPCC across the network in scenario c) under the same
parameter settings. In each MI, we calculate the tuples (average sending rates, average
utility, and average reward) and plot them to examine how the sending rate and utility of
DDPG-MPCC and MPCC improve with MIs. Figures 6–8 illustrate the results.

20 40 60 80 100
Number of Monitoring Intervals (MIs)
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A
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e
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g
e
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n
d
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g
 r

a
te

s
 E

[x
i]

10
8

MPCC  
DDPG-MPCC

Figure 6. Comparison of the evolution of the average sending rates of MPCC [5] and DDPG-MPCC
on the number of MI (network scenario c, Figure 2).

We can see in Figure 6 that the average sending rate of DDPG-MPCC is very low at the
start, with a bit of contention with MPCC for some initial MIs. It demonstrates substantial
increments over higher MIs and attains the maximum without any visible (adverse) impacts
on the dynamics and performance of the competing MPCC rates.

In Figure 7, we present our new observations of the evolutionary graphs of the
utilities experienced by DDPG-MPCC and MPCC in relation to the number of MIs. We
clearly observe that the utility of the DDPG-MPCC, which is initially rather low, improves
significantly more than the utility of the MPCC. Observe that the utility of DDPG-MPCC
increases as MIs progress and follows the same trend as that of the sending rates in
Figure 6. To further explore and understand such an important capability of maximizing
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utility with DDPG-MPCC, we quantify the average rewards over MIs, and we can see in
Figure 8 that the performance of DDPG-MPCC in terms of utility maximization is due to
the intrinsic ability to gradually move towards improving the rewards. It is noted that the
average episodic reward for MI in Figure 8 increases sharply, thus maximizing the utility
of the network.

0 20 40 60 80 100
Number of MIs

0
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U

ti
lit

y
 U

i

10

MPCC  
DDPG-MPCC

Figure 7. Evolution of the average utilities of MPCC [5] and DDPG-MPCC over the number of MI
(network scenario c, compared to Figure 6).
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Figure 8. Evolution of the average reward (Rt) of the trained DDPG over the number of MIs, while
DDPG-MPCC and MPCC for utility maximization as demonstrated in Figure 6.

4. Discussion and Directions

The proposed DDPG-MPCC, designed to boost MPCC performance in dynamic net-
work scenarios, integrates a deterministic policy network and Q-network. This reinforce-
ment learning agent demonstrates superiority over MPCC, excelling in adaptive learn-
ing, handling complex state spaces, providing enhanced stability, balancing exploration-
exploitation, and optimizing policies. In this section, we will discuss how our experimental
results reveal improved utility and reward over MIs, showcasing its potential for dynamic
network optimization. However, effective real-world implementation requires careful
consideration of reinforcement learning parameters and extensive further research with
thorough evaluations.
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4.1. DDPG-MPCC Action Is Optimal

DDPG-MPCC is designed to enhance the performance of MPCC, particularly in
the context of time-varying network scenarios. Recall that the proposed DDPG agent is
composed of three main components: (i) State space, (ii) Action space, and (iii) Reward.
For tractability [7], we use the MPCC utility as a reward after each Mutual Information
(MI). In Figure 6, we illustrate the comparison of the evolution of the average sending rates
(actions) between MPCC and DDPG-MPCC over the number of MIs. DDPG is specifically
tailored for continuous action spaces, providing an opportunity to enhance the MPCC.

In our DDPG-MPCC design, we seamlessly integrate a deterministic policy network
(Actor) and a Q-network (Critic). The core concept involves capturing network dynamics
through a policy iteration mechanism that alternates between policy improvement (actor)
and policy evaluation (critic). This process is depicted in Figure 7, showcasing the evolution
of average utilities (shaping optimal policy) for MPCC [5] and DDPG-MPCC over the
number of MIs.

The actor’s role is to enhance the policy using a policy gradient, while the critic
evaluates the policy based on current parameters. We establish an actor and critic model
by representing the policy function and Q-network parameters. The policy objective
function, J(θµ), for the actor-network is calculated as a weighted cumulative expected
reward. Additionally, Figure 8 illustrates the evolution of the average reward (Rt) of the
trained DDPG, that is, the optimal policy over the number of MIs, while DDPG-MPCC and
MPCC aim at maximizing utility.

4.2. Perfromance Evaluation with MPTCPs and Data Collection

In contrast to MPTCP, which responds to packet loss by scaling down the sending
rate multiplicatively, our proposed DDPG-MPCC demonstrates a novel approach. It is
known that MPCC [5] maintains a higher throughput across a broad range of loss rates
and only experiences performance degradation when the loss rate significantly surpasses
that of MPTCP. These distinctive observations have been rigorously tested and analyzed;
important findings are shown in Figures 4 and 5. When a multipath protocol fails to
effectively utilize path 1, it tends to become more aggressive on path 2. This behavior leads
to a decrease in the overall performance of the singlepath connection. The insights gained
from the experiments have been instrumental in collecting logs to generate datasets for
training the innovative DDPG module developed in this research work.

We collect Internet traffic and performance parameters by implementing three scenar-
ios (Figure 2) using custom log functions within the kernel. These data are crucial for offline
training and configuration of the input environment of the DDPG module. Normalizing
values between 0 and 1 simplifies the learning process, addresses significant variations in
performance logs, and contributes to improved convergence and stability in the dynamics
of the DDPG training. In our results earlier, we clearly illustrate our new findings on
evolutionary graphs that depict the utility of DDPG-MPCC and MPCC in relation to the
number of MIs. In particular, DDPG-MPCC exhibits a substantial improvement in utility
compared to MPCC, and this improvement aligns with the trend observed in the sending
rates illustrated in Figure 6. To dig deeper into the utility maximization capability of
DDPG-MPCC, we quantify the average rewards over MIs (Figure 8).

4.3. Superiority of DDPG-MPCC over MPCC

The superiority of DDPG-MPCC over MPCC can be attributed to its enhanced learning
and adaptive capabilities. DDPG introduces a Deep Deterministic Policy Gradient-based
reinforcement learning framework that enables the agent, referred to as DDPG-MPCC, to
learn and improve its policy over time through interactions with the environment.

Here are some reasons why DDPG-MPCC may outperform MPCC:

• Adaptive Learning: DDPG-MPCC adapts its policies based on continuous feedback
from the environment. This adaptability allows it to dynamically adjust to varying
network conditions, optimizing performance in real time.
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• Handling Complex State Spaces: DDPG is well-suited for problems with continuous
action spaces, making it effective in scenarios where MPCC faces challenges. The
ability to handle complex state spaces allows DDPG-MPCC to navigate a broader
range of network conditions.

• Enhanced Stability: The reinforcement learning framework of DDPG often contributes
to stable and consistent learning over time. This stability can lead to more reliable and
robust performance compared to non-learning or less adaptive approaches.

• Exploration and Exploitation: DDPG-MPCC employs a balance between exploration and
exploitation, exploring new strategies while exploiting known effective ones. This can
lead to more effective decision-making in diverse and dynamic network scenarios.

• Improved Policy Optimization: DDPG-MPCC uses a policy gradient approach to optimize
its policies. This methodology can lead to more refined and effective policies compared
to traditional methods, potentially resulting in improved utility and performance.

DDPG is a popular deep reinforcement learning algorithm applied to continuous
control problems like congestion control, but it has its drawbacks. It can become unstable,
highly dependent on searching for optimal hyperparameters, and is susceptible to overes-
timating Q values in the critic network. This overestimation can lead to the agent being
trapped in local optima or suffering from disastrous forgetting over time. Twin-delayed
DDPG addresses the overestimation bias but may not fully exploit performance due to
underestimation bias. Authors in [20] introduce Twin Average Delayed DDPG, tailored to
TD3, and demonstrate superior performance compared to TD3 in challenging continuous
control environments, which requires further investigation to be adopted for the proposed
DDPG-MPCC in the future.

It is important to note that the effectiveness of DDPG-MPCC depends on various
factors, including the design of the reinforcement learning setup, the choice of hyperparam-
eters, and the specific characteristics of the network environment. Experimental validation
and a thorough performance evaluation, as detailed in this paper, are typically essential to
affirm the benefits of DDPG-MPCC over MPCC in a given context, which requires further
extensive evaluations in the wild.

4.4. Potential Future Direction

Future research in MPCC with ML could explore integrated approaches that jointly
optimize congestion control and packet scheduling. Current works often address these
aspects separately, but a holistic view, combining both elements, holds promise for more
efficient and adaptive MPCC systems. This direction could lead to the development
of models that dynamically adjust MPCC parameters in response to changing network
conditions, enhancing overall performance.

A novel avenue involves leveraging predictive analytics into MPCC for anticipatory
path selection. ML algorithms could analyze historical data to predict changes in path
characteristics, enabling MPCC to make proactive decisions for optimal performance.
This forward-looking approach aims to enhance decision-making in MPCC by leveraging
predictive insights, potentially mitigating performance issues before they occur.

The future of MPCC research with ML also encompasses enhancing security, im-
proving explainability, and conducting extensive real-world evaluations. Researchers can
explore ML applications for anomaly detection, adaptive security measures, and adversarial
training to fortify MPCC against potential threats. Additionally, incorporating explainable
AI features ensures transparency in MPCC decision-making. Real-world deployments
and evaluations will be crucial to validate the effectiveness, scalability, and robustness of
ML-based enhancements in diverse network environments.

5. State of the Art of Multipath Congestion Control

In recent years, significant strides have been made in optimizing MPTCP performance
through the development of packet scheduling and congestion control mechanisms [21–24].
Noteworthy contributions include Ji et al.’s adaptive approach for multipath live stream-
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ing [25] and the shared bottleneck multipath detection mechanism proposed by [26]. Multi-
path congestion control has been addressed in works such as [27–30], while advancements
in packet scheduling are discussed in [31–33]. The MPTCP scheduler, employing the “min–
RTT” policy [34], allocates packets to the path with the smallest RTT and has been widely
studied [15,16,28,35–38].

Recent machine learning advances have influenced MPTCP redesign, with notable
contributions focusing on control strategies [15–18,39,40]. Mai et al. [17] applied a de-
terministic policy gradient for efficient control strategies, while Liao et al. [39] proposed
multipath scheduling based on Deep Reinforcement Learning (DRL) on heterogeneous
paths. Silva et al. [40] introduced an adaptive virtual reality with content-aware prioritiza-
tion to enhance MPTCP’s performance.

Three new multipath congestion control designs [15,16] focus on congestion control but
do not address packet scheduling. Notably, all the mentioned MPTCP designs [15–18,39,40]
consider congestion control or packet scheduling separately instead of jointly.

In the realm of MPTCP controllers,[16] demonstrates advantages when applied to a
group of sources, diverging from the more common one-controller-per-source scenario.
However, despite stability being a key goal in the original MPTCP design philosophy [6],
the stability of the proposed algorithms [15–18,39,40] remains unaddressed.

6. Conclusions

We developed a DDPG-MPCC approach to enhance MPCC network utility maximiza-
tion capabilities under time-varying network scenarios. Our initial design and evaluation
of DDPG-MPCC hope to inspire more research into its theoretical and empirical assurances
and how the design might be enhanced. In particular, specific observations raise the chal-
lenge of obtaining verifiable warrants extending beyond harnessing multipath networks.
Some impending aspects include inadequate performance over network links with vastly
varying available capacities and inefficient flow completion duration for short-lived flows,
which requires further work.
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