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Abstract: Nowadays, wireless communications are ubiquitously available. However, as pervasive
as this technology is, there are distinct situations, such as during substantial public events, catas-
trophic disasters, or unexpected malfunctions of base stations (BSs), where the reliability of these
communications might be jeopardized. Such scenarios highlight the vulnerabilities inherent in our
current infrastructure. As a result, there is growing interest in establishing temporary networks that
offer high-capacity communications and can adaptively shift service locations. To address this gap,
this paper investigates the promising avenue of merging two powerful technologies: Unmanned
Aerial Vehicles (UAVs) and millimeter-wave (mmWave) transmissions. UAVs, with their ability to be
operated remotely and to take flight without being constrained by terrestrial limitations, present a
compelling case for being the cellular BSs of the future. When integrated with the high-speed data
transfer capabilities of mmWave technology, the potential is boundless. We embark on a hands-on
approach to provide a tangible foundation for our hypothesis. We carry out comprehensive experi-
ments using an actual UAV equipped with an mmWave device. Our main objective is to meticulously
study its radio wave propagation attributes when the UAVs are in flight mode. The insights gleaned
from this hands-on experimentation are profound. We contrast our experimental findings with a
rigorous numerical analysis to refine our understanding. This comparative study aimed to shed light
on the intricacies of wave propagation behaviors within the vast expanse of the atmosphere.

Keywords: UAV base station; millimeter-wave; radio propagation for UAV; experiment; theoreti-
cal analysis

1. Introduction

In recent years, the explosive growth of various applications, such as video streaming
services, has caused total mobile network traffic to increase at an average annual rate of
46% [1]. Even in Japan, in June 2023, the average traffic per contract increased approximately
1.6 times in three years and 1.2 times in one year [2]. Fifth generation mobile communication
system (5G) services were launched worldwide in 2019 to address this issue [3]. In the 5G
era, people and objects are connected to the Internet as social infrastructure. This trend is
expected to continue in the future, and in the Beyond 5G/6G era, mobile communication
systems are expected to function as the basic infrastructure of society [4–7]. In today’s
society, it is clear that telecommunications are an indispensable technology for daily life.
The number of subscriptions to mobile communications in Japan, including cell phones
that we carry with us and use all the time, was approximately 205.48 million at the end of
September 2022, an increase of 3.5% from the previous year [8]. In addition, the number
of mobile applications is expected to increase, as mobile telecommunications are essential
in increasingly active fields such as the Internet of Things (IoT) for home appliances and
self-driving cars [9–11]. Since 2019, 5G, which was anticipated as a foundational framework
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for connecting the IoT, has been launched globally [12]. Notably, the adoption of millimeter
waves (mmWaves), which offer a broader bandwidth for enhanced throughput, marked
the first in mobile communications to address the swiftly rising user traffic [13]. It is clear
from this that, increasingly, the amount of data generated by mobile communications will
further increase. In addition, Industry 5.0 has recently been envisioned by the European
Commission as a roadmap for the future, aiming to foster a prosperous society through the
strategic use of advanced technologies such as artificial intelligence, robotics, big data, and
the IoT [14]. These technologies are being put to practical use in digital twins that connect
the real and virtual worlds [15]. Unmanned Aerial Vehicles (UAVs), which can move freely
in three dimensions, are essential to realizing Industry 5.0 [16,17]. UAVs have recently
been widely used in military and civilian applications, characterized by their high mobility,
rapid deployment, and low cost. Examples of use include reconnaissance, transportation,
inspection, agricultural irrigation, disaster relief, and many other fields [18–22].

While high-quality communications are available to everyone, there are situations
in which communications become unavailable. This is the case during major disasters
and large-scale events: the magnitude 6.5 Kumamoto earthquake in April 2016 caused
landslides and commercial power outages that knocked out as many as 400 cell phone base
stations (BSs), rendering cell phones temporarily unusable [23]. In addition to earthquakes,
there have been many cases overseas where communications have been disrupted due
to hardware damage caused by hurricanes [24,25]. Since communication is necessary for
rescue operations during a disaster, restoring the communication environment quickly is
essential [26–28]. During large-scale events, the number of accesses and the amount of traffic
in a local area will increase due to the active posting of videos and photos due to the spread
of social networking services (SNSs), creating a situation where sufficient communication
is impossible [29]. Adding more BSs to cope with these temporary situations is costly for
installation and maintenance. In addition, since mobile base station vehicles are affected by
the ground environment, such as going to the site to install them for communication area
restoration, it is difficult to respond quickly in the event of road damage [30]. Therefore, a
temporary network is needed that can provide high-capacity communications and flexibly
change the location of its provision. Therefore, network construction using mmWave
frequency band radio waves and UAV base stations is expected.

We will use UAV BSs that utilize mmWave band radio waves to address these issues.
mmWave radio waves are in the 30–300 GHz band, a high-frequency band characterized
by high-capacity, low-latency communications [31]. In addition, drones are not dependent
on the ground environment, such as traffic conditions, and can be deployed remotely
and unmanned. The mmWave bandwidth has the disadvantages of being vulnerable
to obstacles and being affected by distance attenuation [32]. UAV technology enables
communications from the sky, which provides a clear line of sight, and beamforming
technology enables high-quality communications.

The system architecture of a mmWave UAV BS is shown in Figure 1 [33]. Here,
we consider a situation where the existing cellular communication network is no longer
available. The entire system is divided into two parts: backhaul UAVs and access link UAVs.
The backhaul UAVs connect the access link UAVs with available ground BSs far from the
user. By deploying an appropriate location and number of backhaul UAVs, multi-hop
communication is possible even when the distance between the user and the ground BS is
large. Access link UAVs communicate directly with users instead of BSs. mmWave bands
are used for all radio communications between these backhaul UAVs and the access link
UAVs. mmWave bands are highly linear and are significantly attenuated by obstacles. Since
this architecture utilizes drones, it is possible to communicate in the upper airspace area
with good communication visibility without being affected by obstructions. In addition,
since there has been little use of communications in the sky area and mmWave band radio
waves have not been used much, it is possible to communicate with little radio interference.
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Figure 1. Overview of system architecture [33].

Currently, mobile BS vehicles are used for temporary network construction during
emergencies, but drones can cover a wider area because they communicate from a higher
altitude [34]. In the future, satellite communications such as “Starlink” and UAV-based
communication technologies such as HAPS (High Altitude Platform Systems) are expected
to be used for communications from the sky [33,35] at the altitude of about 20 km. On the
other hand, the drones in this paper will be used at altitudes of tens to hundreds of meters
so that the communication distance will be relatively short, the atmospheric loss will be
smaller than others, and communication will be possible with low latency. In the past,
network construction utilizing UAV BSs had been considered by other researchers, but
only microwaves had been used to guarantee connectivity [36]. Microwaves have limited
applicability due to bandwidth limitations. There is also concern about the depletion of
frequency resources, necessitating new research on frequency sharing and the development
of higher frequency bands. Although there have been studies on building UAV-based
networks using mmWave technology, these have been limited to theoretical studies based
on simulations [37,38].

The main features of 5G communication services include high-capacity communica-
tions, large numbers of simultaneous connections, low latency, and high reliability [39].
In [40], latency in mmWave networks was studied. The goal there was to construct an
edge content delivery system that adapts to user information and relocate content servers
through dynamic routing on a mmWave mesh backhaul network, and experiments were
conducted to study its effectiveness. The latency in the paper was measured through
ping tests.

Since mmWave communications are significantly affected by distance attenuation and
shielding, the placement of UAVs concerning user distribution is an important issue [33].
In [33], dynamic placement of access UAVs for mmWave UAV BSs for user distribution was
considered. Here, assuming that the user distribution is known in advance, the authors
proposed a method of UAV placement by frequency division to maximize the system rate.
Here, the method in [41] was used to determine the optimal altitude of the UAVs, while
the K-means method and the minimum circle problem were employed to determine the
UAVs’ optimal interference-reduced placement. The paper also showed that frequency
division efficiently distributes the available bandwidth to each UAV, which helps to avoid
interference and improves the overall system rate.

In mmWave UAV BSs, many UAVs communicate with each other, but the commu-
nication from the UAVs to the user is directed toward the ground, which causes ground
reflection. Therefore, to realize a simultaneous uplink/downlink UAV network, it is nec-
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essary to consider ground-reflected wave interference between adjacent UAVs. For this
purpose [42], employed SIR (Signal Interference Power Ration) as a metric to show that
an architecture with circularly polarized antennas can significantly reduce interference
compared to the conventional architecture with linearly polarized antennas. Furthermore,
it was found that interference can be significantly reduced when both backhaul UAVs and
access UAVs use identical circularly polarized antennas.

In addition to the above, power consumption is also an issue in mmWave UAV BS
networks. Although specifications for wired drones have been considered, the operating
range of UAVs is limited by the power cable length [43,44]. To take full advantage of the
freedom of movement that is also an advantage of UAVs, this study focuses on UAVs
that can operate wirelessly without earth connection cables. Therefore, each UAV must
be equipped with a battery. This battery must power not only the UAV’s flight but also
the communications of various wireless interfaces. There is a tradeoff: increasing battery
capacity increases the relative weight of the UAV while also increases the power supplied
to the UAV. However, the issue of UAVs’ power consumption is beyond the scope of this
paper, knowing that there is research and development of lightweight, low-power wireless
components and lightweight, high-capacity batteries, or even wireless power transmission
for UAVs.

Wireless communications at the mmWave frequency band are critical for 5G wireless
networks [45]. In addition, understanding radio propagation characteristics in the airspace
domain is essential for the efficient use and development of air-to-ground mobile commu-
nication systems in the future. However, to the authors’ best knowledge, there are only a
few studies focusing on the use of the mmWave frequency band for low-altitude platforms
such as UAVs [37].

Therefore, this paper examines the construction of a UAV BS network using mmWave
frequencies and demonstrates its effectiveness via both empirical experiments and validat-
ing theoretical studies. The major contributions are briefly outlined below.

1. We are the first to propose, design, and implement a UAV system equipped with a
mmWave device.

2. We conducted an outdoor proof-of-concept (PoC) experiment with multiple drones
equipped with mmWave communication devices, evaluating the proposed system
over various scenarios.

3. We discussed the radio propagation model for mmWave communications between
UAVs, based on the data collected. The validity of the proposed model is demon-
strated by comparing the outdoor experimental results with those from theoreti-
cal studies.

The structure of this paper is presented as follows. Section 2 provides detailed tech-
nical descriptions and relevant prior studies. This section begins by examining mmWave
wireless communication, followed by a discussion on the dynamic deployment approach
for mmWave UAV access, and concludes with an exposition on mmWave antenna po-
larization. Section 3 presents an in-depth look at our proposed mmWave-powered UAV
system, describing the experimental methods and presenting the results. Section 4 describes
the numerical evaluation model, including the setup and the resulting numerical data.
Section 5 compares the experiment and numerical results. Finally, Section 6 concludes the
paper with a summary and discussion of future work.

This paper is an extended version of a conference paper presented at The 14th Interna-
tional Conference on Ubiquitous and Future Networks (ICUFN 2024) held in Paris, France
in July 2023 [46].

2. Technical Background

This section presents technical descriptions that appear in this paper. Section 2.1
introduces millimeter-wave band communication technology; Section 2.2 introduces UAV
technology.
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2.1. Millimeter-Wave Wireless Communication Technology

mmWave operates within the frequency range of 30 to 300 GHz [47]. These waves are
a high-frequency band offering wide bandwidth, facilitating high-speed and high-capacity
communications. Additionally, since a wide bandwidth is allocated, it can accommo-
date more terminals or higher traffic volumes [10]. However, a notable drawback is their
sensitivity to interference from rain, fog, and other obstacles, resulting in significant dis-
tance attenuation [11]. While 5G currently operates Frequency Range 2 (FR2), such as
26.5–29.5 GHz (band n 257), which is categorized under submillimeter waves, this pa-
per focuses on harnessing the 60 GHz band—a license-free spectrum that is ready for
implementation [48,49].

The 60 GHz band was originally used for motion sensors and radar with high-precision
positioning functions, and there are also data communication standards that utilize the
60 GHz band, such as IEEE802.11ad/ay [50–52]. Research is also being conducted on
IEEE802.11ad communications utilizing the 60 GHz band for the introduction of 5G in
urban areas [53]. In this paper, we utilize IEEE802.11ad communication standard devices
for our experiments, which will be discussed in Section 3. The basic design of IEEE802.11ad
is shown in Appendix A. IEEE802.11ad uses a directional communication method with
beamforming to suppress attenuation and other drawbacks caused by high frequency
bands [54]. IEEE802.11ad includes a function to adjust beamforming according to the
procedure shown in Figure 2 [47]. This determines the beam direction and improves
directivity as following steps.
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1. The AP transmits a beacon signal, varying the beam direction. The UE receives this
beacon signal using semi-omni-directivity.

2. The operations of Step 1 are repeated, but with the transmitter and receiver exchange
their roles.

In Steps 3 and 4, the communication between the AP and UE is established using
the directivities determined, respectively, in Steps 1 and 2, which maximizes the expected
received signal strength.

2.2. UAV Classification, Configuration, and Advancement in Flight Technology

UAVs can be broadly classified into two types: multi-copter types, such as drones,
and fixed-wing types, such as airplanes [55]. The differences between the two types are
shown in Table 1. UAVs are widely used in military and civilian fields due to their high
mobility, rapid deployment, and low cost [56,57]. Examples of use include reconnaissance,
transportation, inspection, agricultural irrigation, disaster relief, and many other fields.
This paper assumes using a multi-copter type with excellent maneuverability and hovering
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performance. The configuration of a typical multi-copter UAV is shown in the Figure 3. The
flight controller sends commands to each Electric Speed Controller (ESC) according to the
instructions from the transmitter [58]. In addition, during flight, the position information,
altitude information, etc., obtained from the air pressure sensor, acceleration sensor, GPS,
etc., are transmitted to the transmitter. At the same time, the flight controller continues to
send commands to each ESC to maintain stable expectations in the face of environmental
changes. Currently, it is possible to set the flight path in advance and have the flight
controller operate the planned path by itself, and there are also UAVs with built-in collision
avoidance systems. The transmitter is equipped with levers, switches, and other interfaces
necessary for control, and it communicates wirelessly with the aircraft. Microwaves are
generally used for this communication. A battery powers the aircraft. To lengthen the
flight time, the battery capacity must be increased, but there is a tradeoff in that the weight
increases, resulting in higher power consumption. In the future, UAVs are expected to have
longer flight times by using higher power efficiency, lightweight high-capacity batteries,
and even concurrent wireless power transfer technology [43,59].

Table 1. Comparison of two types of UAV features.

Multi-Copter Fixed Wing

Fly time Short Long

Onboard weight Light Heavy

Vertical take off Support Not Supported

Air stop Support Not Supported

Flight altitude Low High
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3. Field Experiments

This section will explain our developed PoC system, demonstration experiments,
and the corresponding measurement results. The distance and coverage characteristics
of millimeter-wave communications between the access UAV and the terminal and the
presence of ground reflected wave interference will be investigated.

3.1. Experiment Environment

The experimental field was at Ogawa-cho, Hiki-gun, Saitama, Japan. The experimental
field is shown in Figure 4. This rural area with little pedestrian traffic was selected for safe
flights. Professional pilots were hired to manage and operate the UAVs in the demonstration
experiment. Due to the limitation of our developed hardware, only throughput was
measured in the experiments to evaluate the communication quality.
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Table 2 shows the mmWave devices’ specifications used in our demonstration exper-
iments. In addition, a photograph of the inside of the mmWave device and numerically
analyzed antenna details are shown in Figure 5. The reasons for selecting this device
were that it is small and lightweight enough to be mounted on a UAV and is capable of
100 m communications. The device comprises a small PC, an array, and a lens antenna [47].
The mmWave wireless communication device was equipped with Ubuntu, and through-
puts were measured using the iperf3 command. The measured values were evaluated at
MAC layer.

The demonstration experiment used two “Matrice 600 Pro” UAVs manufactured
by DJI. They can carry a maximum of 6 kg of load, and their specifications are shown
in Table 3 [60]. The screen on the transmitter side of the drone displays a map and air
information such as the drone’s position, altitude, and remaining battery power. The flight
time of the UAV used in the experiment was about 20 min per flight, prioritizing safety.
Therefore, it was only possible to acquire experimental data for limited scenarios.

The UAV equipped with mmWave interfaces and the on-board mmWave extension
equipment are shown in Figures 6 and 7, respectively. Another item was used in the
experiment. Others used are shown in Table 4. A large pocket warmer was inserted to keep
the temperature at about 20 ◦C to prevent the battery from deteriorating in performance.

Table 2. Antenna specifications used in the experiment.

Manufacturer Intel

Size 210 mm × 115 mm × 95 mm

Weight 0.87 kg

Wireless Chip Wireless-AC 17265

CPU Intel Core i3-4010U

Wireless Chip Tri-Band Wireless-AC 17265

Wireless Standard IEEE802.11 ad

Array Antenna 10041R

Power Supply 65 W

Max MCS 12

Max Transmission Speed 4.620 Gbps

Antenna Gain 25.4 dBi

Scan Angle (deg.) ±13.5 (hor), ±7 (Ver)
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Table 3. Matrice 600 pro specifications.

Category Specification

Size 1668 mm × 1518 mm × 727 mm

Weight 9.5 kg

Max Takeoff Weight 15.5 kg

Hovering Time 32 min

Max Wind Resistance 25◦

Max Speed 40 km/h, 65 km/h (Windless)

Battery Capacity 4500 mAh

Battery Voltage 22.2 V

Number of Batteries 6

Max Transmission Distance 3.5 km
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Table 4. Experiment equipment.

Item Purpose

Monitor To be used as a screen for wireless devices

Keyboard To operate wireless devices

PC To check data

Safety Corn To accurately align the drone

Thermal Box To maintain battery temperature and efficiency

3.2. Experimental Results

In wireless communications, distance attenuation is unavoidable. In addition, mmWave
communications are more strongly affected by distance attenuation than microwaves. As
for the system design of access UAVs, the placement and other factors will vary greatly
depending on how much coverage can be secured. In addition, if the number of UEs on
the ground is large, multiple access UAVs are assumed to work near each other. However,
since both will be communicating toward their associated ground terminals, earth-reflected
wave interference will be an issue.

Using the above equipment, three types of experiments were conducted in this paper to
determine the distance and coverage characteristics and the extent to which earth-reflected
wave interference occurs:

• Direct Experiment

This experiment examined changes in throughput by varying the height of the UAV
against the fixed ground user.

• Coverage Measurement

This experiment varied the ground user’s location against a UAV BS hovering at a
certain height to measure its coverage.

• Ground Reflection Experiment

When there are two UAV BSs, this experiment investigated how much ground reflec-
tion affects the communications.

Details about each experiment are explained as follows.

3.2.1. Direct Experiment

A schematic diagram of the experiment is depicted in Figure 8a. The relationship
between UAV–UE vertical distance and throughput was investigated. Throughput measure-
ments were taken by increasing the altitude of the UAV by each 5 m step. The measurement
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results are shown by the green circle in Figure 9. The maximum physical layer throughput
of the antenna device is 4.62 Gbps. However, the measurement results in this study are not
throughputs of the physical layer but those measured at the MAC-SAP (that corresponds to
the MAC layer throughput). It can be observed from the Figure 9 that a saturated through-
put of approximately 1.4 to 1.5 Gbps is achieved up to an altitude of about 40 m. The quality
deteriorated after 45 m due to distance attenuation, resulting in lower throughput.
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3.2.2. Coverage Measurement

A schematic diagram of the experiment is shown in Figure 8b. Coverage was measured
by varying the position of the ground user against a fixed-height UAV. This time, the
altitude of the UAV was set at 30 m, and the UE’s locations were set apart by 2.5 m
steps from the center beneath the UAV. The green circles depicted in Figure 10 show the
measurement results.

The results show that the attenuation increases at a horizontal distance of 10 m. Since
the physical length of the communication link is about 32 m when the horizontal distance
is 10 m, it can be understood that the deterioration of communication quality is not due to
distance attenuation but to the deterioration of antenna directivity due to the increase in
the incident angle.
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3.2.3. Ground Reflection Experiment

A schematic diagram of the experiment is shown in Figure 8c. The experiment was to
observe how ground reflections affect the communications of UAV BSs under conditions
of two closely located UAVs. In this experiment, one of the UAVs worked as a BS while
the other played the role of a UE. Here, the interference was evaluated by the quality of
the indirect communication link via the ground reflection path between the two hovering
UAVs. In other words, the higher the throughput, the stronger the signal arrives at the
other UAV via the reflected path. In the measurements, the horizontal distance between
the UAVs was set to 5 m, and the throughputs were measured when both UAVs gradually
increased their altitudes. The snapshot of the experiment can be seen in Figure 11. The
measurement results are shown by the green circle in Figure 12.

Several findings can be seen from these results. When the drone’s altitude is low, that
makes a large incident angle of the reflected path, and the throughput is poor since the
ground-reflection path is out of the main lobe of the directivity antenna. When the altitude is
high enough, the incident angle is smaller such that the ground-reflection path is within the
main lobe of the directivity antenna, and we can observe improved communication quality
(or worse interference conditions). Furthermore, increasing the altitude, the throughput
decreases naturally due to longer distance attenuation.
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4. Numerical Evaluations

To further understand our experimental results, the radio propagation characteris-
tics between an access UAV and a terminal using the mmWave band are investigated
via numerical evaluations in a virtual environment imitating the experimental one. In
wireless communications, propagation attenuation due to distance and coverage effects
due to antenna directivity is essential for the link budget. That is why optimizing the
position (altitude and horizontal location) of access UAVs is required, and it is important to
understand the distance and coverage characteristics of our access UAVs. Furthermore, it
is also significant to understand how inter-system interference via ground reflection affects
our system performance in scenarios with multiple UAVs. Hence, distance characteristics,
coverage characteristics, and ground-reflected wave characteristics will be numerically
investigated in this section to supplement our experimental results.

4.1. Numerical Evaluation Model

In the numerical evaluation, we consider radio propagation in free space. The received
power is calculated using the Frith transfer formula in Equation (1), where Pr is the received
power, λ is wavelength, Pt is the transmitted power, Gr is the receive antenna gain, and Gt
is the transmit antenna gain [61].

Pr [dB] = 20log
(

λ

4πd

)
+ Gt + Gr + Pt − Lox (1)

This paper considers the usage of a 60 GHz mmWave band, which is particularly
affected by atmospheric attenuation [62]. Therefore, atmospheric attenuation Lox is con-
sidered in the above model. For the antenna gain, the antenna model in Equation (2) is
employed, where θ3dB is the half beamwidth [63].

G(θ) =

{
10

G0−3.012( 2θ
θ3dB

)
2

(θ ≤ | θml
2 |)

10−0.41ln θ3dB−10.6 (other)
(2)

In addition, θml and G0 are obtained using the following equations.

θml = 2.58θ3dB (3)

G0[dB] = 20 log10
1.62

sin
π

180 θ3dB
2

(4)
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An example of this antenna gain model is shown in Figure 13. When considering
ground reflection, the two-ray model in Equation (5) is adopted [64].

Pr = 10log

(
Pt

∣∣∣∣√Gt(0)Gr(0)
λ

4πrd
+
√

Gt(θ1)Gr(θ2) +
λ

4πrdr

Γe−j 2π
λ (rd−rdr )

∣∣∣∣2
)
− Lox (5)
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The reflection coefficient Γ is shown in Equation (6) [65].

Γ =
n2cosφ −

√
n2 − sin2 φ

n2cosφ +
√

n2 − sin2 φ
(6)

where φ is the angle of incidence of the ground-reflected wave with respect to the ground,
as shown in Figure 14. Also, n is dependent on the ground material and is shown in
Equation (7) [66].

n = εr − j
σ

2π f ε0
(7)

where εr is dielectric constant, ε0 is dielectric constant of vacuum, f is radio frequency, σ is
conductivity. The Signal to Noise Ratio (SNR) [65] is computed using Equation (8). Pn is
the thermal noise power provided by Equation (9).

SNR =
Pr

Pn
(8)

Pn [dB] = 10 log10
(
kqKB

)
+ NF (9)

where B is bandwidth, kq is Boltzmann’s constant, K is temperature in Kelvin, and NF is
Noise figure. The throughput is calculated using Shannon’s famous capacity equation,
where C0 is the maximum performance value defined by the used hardware [67].

C = Blog2(1 + SNR) (10)

T = min(C0, C) (11)

The actual throughput in the measurements will be degraded due to many factors and
the above theoretical throughput would only indicate the upper bound.
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4.2. Numerical Evaluation Parameters

The list of parameters used in the numerical evaluation is shown in Table 5, which are
compatible with the IEEE802.11ad standard also used in our demonstration experiments.
The transmit spectrum conforms to the spectrum mask shown in Figure 15 [68]. The
bandwidth is 2.16 GHz, but whole band cannot be used for communication because of the
guard bands. In this paper, 1.88 GHz is considered the effective bandwidth [68]. Based on
the antenna model in [63], as the peak of the antenna gain is 25.4 dBi, we found that the
antenna 3 dB beam width corresponds to 9.98 deg. Numerical evaluations were performed
by assuming that perfect beam alignments were operated on both sides of the transmitter
and the receiver. For comparison, we also performed theoretical numerical evaluations
with antenna gains of 15, 20, and 30 dBi. The corresponding 3 dB beam widths are 33.47 deg,
18.65 deg, and 5.87 deg, respectively.

Table 5. Numerical evaluation parameters.

Frequency Band f 60 GHz

Wavelength λ (speed of light: 3.0 × 108 m/s) 5.0 × 10−3 m

Transmission Power Pt 15 dBm

Atmospheric Attenuation Lox 16 dB/km

Permittivity of Vacuum ε0 8.854 × 10−12 F/m

Boltzmann’s Constant kq 1.38 × 10−23 J/K

Temperature K 290 K

Noise Figure 10 dB

Bandwidth B 1.88 GHz

Max Antenna Gain 15, 20, 25.4, 30 dBi

Scan Angle (deg.) ±13.5
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4.3. Numerical Results
4.3.1. Direct Experiment

Distance attenuation characteristics are investigated where the upward-facing antenna
is fixed to the ground and the UAV, which has a downward-facing antenna installed as
an access point, is gradually raised to a higher altitude directly above the ground. Similar
to our experimental results, the achievable throughput is used as a metric to indirectly
evaluate radio propagation characteristics. In this case, it is assumed that the antenna on
the ground does not receive ground-reflected waves since it is at an altitude of 0 m, and
only the Line of Sight (LOS) path from the access UAV is received. In addition, both the
access UAV and the ground terminal’s antenna gains are assumed to be the same. The
numerical results are shown in Figure 16. It can be seen that a saturated throughput can
be achieved up to a certain height (distance between the transceivers) and then decays
gradually due to propagation attenuation. It can also be found that the higher the antenna
gain is, the higher the quality of communication can be ensured.
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4.3.2. Coverage Measurement

Coverage characteristics are investigated where we assume that an access UAV with a
downward-facing antenna is hovering at a fixed altitude and a ground user terminal with an
upward-facing antenna gradually changes its horizontal distance. Similar to Section 4.3.1,
it is assumed that the antenna on the ground does not receive ground-reflected waves since
it is located at an altitude of 0 m, and only the LOS path from the access UAV is received.
Figure 17 shows the numerical evaluation at different UAV altitudes of 10 m, 30 m, and
50 m with varying horizontal distances. In Figure 17b, the numerical results show that even
at a close horizontal distance of 10 m, the performance degrades significantly. It means that
the degradation is not due to distance attenuation but instead due to the fact that the angle
of incidence did not face the main lobes of the antennas, which deteriorates the effective
antenna gains. In addition, those with higher antenna gain (or narrower beam width) are
revealed to be more susceptible to the angular shift. Hence, the steepness of throughput
deterioration against the saturated rate is more remarkable for those with narrower beam
widths. Our analyses at different UAV altitudes also reveal that the higher the UAV is,
the longer the coverage distance (that can achieve the saturated rate) that can be realized.
On the other hand, since propagation attenuation increases against longer distances, it is
clear that higher antenna gain is effective to maintain better communication quality (higher
throughput) when evaluated at the same distance.
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4.3.3. Ground Reflection Experiment

The earth-reflected waves will be investigated in this section. The throughput between
two UAVs with downward-facing antennas, each of which plays the role of transmitter and
receiver, respectively, is indirectly used to investigate the propagation characteristics of
the earth-reflected radio waves. The two UAVs are kept at the same altitude. In contrast,
this altitude is gradually increased, knowing that the relative locations of the two UAVs
on the horizontal plane are fixed similarly to the experiment. Since there is no terminal
on the ground at this time, the UAVs communicate with each other via ground-reflected
waves, which means that the larger the throughput, the greater the interference effect
of ground-reflected waves. The two antennas on the UAVs are considered to have the
same antenna gain. Numerical evaluations were performed at different horizontal-plane
separation distances of 5 m, 10 m, and 30 m, and the results are shown in Figure 18,
separately. When the altitude is low, the antenna directivity deteriorates due to a broad
incident angle, resulting in almost no throughput. The antenna’s directivity at higher
altitudes improves owing to a steeper incident angle, resulting in higher throughput. On
the other hand, throughput is decreased again at further higher altitudes due to the effect
of distance attenuation. The attenuation is even higher than that in the direct experiment
in Section 4.3.1 because the two UAVs are simultaneously flying at the same altitude,
which doubles the traveling distance of the communication link. Also, when increasing the
horizontal distance between the two UAVs and the antenna directivity deteriorates, the
throughput performance decreases when evaluating it at the same UAV altitude. Therefore,
the ground-reflected wave interference might be ignored in realistic scenarios with sufficient
horizontal separation between the two UAVs.
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5. Comparison of Experimental and Numerical Results and Discussions

Our observations in Sections 3 and 4 show that while the distributions of the measure-
ment and numerical results are analogous, there is a notable difference in their absolute
values. Specifically, the measured saturation throughput in the experiments ranges from
1.4 to 1.5 Gbps, whereas the theoretical analyses project values around 4.5 to 4.6 Gbps. This
discrepancy was due to many factors but the main reason is that the theoretical throughput
is computed at the PHY layer while the hardware’s output throughput was evaluated at
the MAC layer. At the same time, our numerical analyses target the PHY layer throughput
using Shannon’s formula as a basis. Factors like the beam alignment process and the limita-
tions of available modulation and coding schemes introduce uncertainties that theoretically
make it challenging to gauge the interlayer’s inefficiency. Recognizing this complexity,
we have chosen an empirical methodology in this study to bridge the gap between the
experimentally measured and theoretically computed saturation rates.

∼
T = α × min(C0, C) (12)

In other words, the numerical throughput is scaled by a factor of α, which is a spectral
efficiency coefficient that is responsible for all protocol-dependent loss (e.g., MAC portion
over the whole physical frame, bandwidth, and time usage efficiency, etc.). In this paper,
α is estimated from the difference between the saturated throughput of the experiment
and theoretical results. The result was α = 1/3.2636. After this modification, the results of
experimental and numerical analyses are redrawn and depicted on a same graph again for
comparison and discussion in the following sections.

5.1. Direct Experiment and Coverage Measurement

The results of the direct experiment are shown in Figure 19. The graphs show that
both the measured and simulated throughputs are saturated up to 45 m, after which they
decay. The difference between the measured and simulated values after the saturated
throughput is because the numerical evaluation shows a continuous throughput, but the
actual throughput is discrete due to the selection of MCS and other factors. A summary of
the coding rates, etc. for each MCS in IEEE802.11ad is shown in Appendix B. In addition,
we believe that this is because the numerical evaluation was able to take modulation, etc.
into account in the MCS in the saturated throughput state due to α in Equation (12), but
not in the other MCS states.
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A comparison of the numerical evaluation and empirical results of the coverage exper-
iment is shown in Figure 20. There is a similar performance trend between the theoretical
and experimental results, although there is a close agreement when the horizontal distance
is short and a slight error when it is long. As in the previous case, here too, we believe
that the difference between the measured and simulated values is due to the difference in
MCS, which is different from the α at saturation. In addition, the distributions at saturated
throughput in Figures 19 and 20 are almost identical, indicating that the attenuation at
saturation can be taken into account with α utilized in Equation (12). As the horizontal
distance increases, the error is not only due to the choice of MCS, but in fact may be due
to the position error caused by the wind of the UAV and the deterioration of antenna
directivity due to its tilted angle. In addition, when the received power is high, a high
MCS also results in a high throughput. Therefore, the throughput is close to the Shannon
capacity at high MCS values. In this case, α is set at high MCS at saturation, which means
that the simulated value is larger than the measured value, because when the attenuation
is high and MCS is low, the α must be even smaller than the set value.
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In addition, the drone’s position was affected by the pilot’s operation, wind, and GPS
corrections. Therefore, positional error must be taken into account. The drone’s flight
performance in this experiment had an error accuracy of ±1.5 m for horizontal distance and
±0.5 m for vertical distance [60]. Figures 21 and 22 show the results of numerical analysis
of the maximum and minimum throughput values when the drone is positioned within
this error range in the direct experiment and coverage measurement. The solid line is the
average value, and the dashed lines are the maximum and minimum values. From the
numerical results of the direct experiment with positioning errors in Figure 21, it can be seen
that the difference between the theoretical and numerical results is relatively large at lower
altitudes due to the deteriorating antenna directivity when there are misalignments caused
by positioning errors. It can also be seen that the maximum and minimum values gradually
converge as the positioning error becomes relatively smaller at higher altitudes. Figure 22
shows the graph of coverage measurement considering the positioning error. When the
horizontal distance is small, the effect of the positioning error is small because the altitude
is 30 m, and both the maximum and minimum values show saturated throughput values.
When the horizontal distance increases to some extent, the measured throughput was
within the range of the maximum and minimum numerical throughput, which validated
the fact that drone’s positioning errors contributed to the discrepancy of the measured
throughput against the numerical one. Also, the gap between the maximum and minimum
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throughputs at longer horizontal distances can be explained by the antenna directivity’s
improvement or degradation due to the corresponding positioning errors.
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5.2. Ground Reflection Experiment

Measured and simulated ground-reflected waves are compared in Figure 23. In the
numerical evaluations, a two-ray model is employed to account for ground reflection [66].
Since the ground where the demonstration experiment was conducted was grassy, the
parameters were set assuming a wet ground [66]. The distribution of measured and
simulated values is slightly different, but the distribution is the same: throughput increases
up to a certain altitude and then decreases again due to larger distance attenuation. The
difference between the measured and simulated values can be attributed to the different
values of conductivity and dielectric constant due to differences in the ground environment,
and the fact that the ground geometry is not ideal in the actual experiment. Furthermore,
numerical evaluations were conducted with an antenna gain of 25.4 dBi and different
ground materials to confirm the effect [66,69]. The results are shown in Figure 24. The
ground parameters utilized in the numerical evaluation are in Table 6. The trend of the
measured values did not exactly follow the specific material, even the conductor, metal.
One of the main reasons for this discrepancy could be due to the influence of the ground
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geometry, which was not perfectly flat as assumed in the numerical analysis. The next
section will investigate this issue via the introduction of scattering waves.
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Table 6. Ground parameters for each material used in the numerical evaluation.

Type Dielectric Constant Conductivity (S/m)

Poor Soil (Dry) εr = 7 σ = 1 × 10−3

Good Soil (Wet) εr = 30 σ = 2 × 10−2

Sea εr = 81 σ = 5
Conductor (Iron) εr = ∞ σ = 107

Consider ground reflection where the ground is rough and multiple waves arrive due
to scattering, the received power in dB can be calculated with the following equation.

Pr = 10log

Pt

∣∣∣∣∣∣
√

Gt0Gr0 × λ
4πrd

+
√

Gt1Gr1 × λ
4πrdr

× Γ1 × e−j 2π
λ (rd−rdr )

+∑
√

GtiGri × λ
4πrdri

× Γi × e−j 2π
λ (rd−dri)

∣∣∣∣∣∣
2
− Lox (13)
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Γ = Γ0e−( 4πσ
λ )

2
(14)

where σ is the surface roughness (root mean square (RMS) square value), rd is the linear
distance between drones, rdr is the minimum distance of ground reflected wave, dri is
the distance of scattering waves, Γ is the value of the reflection coefficient, and Γ0 is the
specular reflection at that point [70]. An image of the scattered wave arrival model for
ground reflection is shown in Figure 25. We assume that the scattering waves fall to the
ground and arrive randomly with a normal distribution against the center located at 2.5 m
in between the two drones.
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Figure 26 summarizes numerical data taken from 100,000 ground reflection positions
of the scattering waves derived numerically using our Monte Carlo simulation. The red
line is a normal distribution approximation of 100,000 data. Empirically, this approximated
normal distribution has a mean value of 2.5007 m, a maximum value of 4.8346 m, a
minimum value of 0.397 m, and a standard deviation of 0.5003 m.
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Using the above scattering model, Figure 27 show the results after 1000 Monte Carlo
simulations when the numbers of generated scattering waves are 1, 3, 5, and 10, separately.
The solid line is the mean value, and the dashed lines are the lower and upper bounds
defined by the standard deviation. The earth’s surface roughness (RMS value) at this time
is set to 100 µm.
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These additional Monte Carlo simulation results show that when there are 1 to 5 scatter-
ing waves, the theoretical results’ approximation range can cover the measurement results,
except for the measured values at the UAV’s altitude of 60 m. The throughput measured at
60 m can be considered as an outlier because the linear distance of the ground-reflected
wave is more than 120 m, and it is not easy to measure at a distance longer than 100 m
using our dedicated hardware. It can also be observed that throughput slightly increases
with higher numbers of scattering waves, which means the effect of ground-reflected
interference is more remarkable when there are more scattering waves.

The surface roughness (RMS value) was set at 100 µm in the above analysis, but
in order to check whether it was appropriate or not, we performed 1000 Monte Carlo
simulations with a fixed number of scattering waves of 3, while the surface roughness’s
values are changed to 10 µm, 50 µm, 500 µm, and 1000 µm, individually. The results are
shown in Figure 28. The results show that the larger the surface roughness, the lower
the throughput. This is due to Equation (14), in which a thicker surface roughness yields
a smaller reflection coefficient. The results also imply that surface roughness plays an
important role to understand scattering phenomenon of mmWaves.

Positioning errors in multiple arrival waves of ground reflection are also taken into
account. Figure 29 shows the maximum and minimum throughput values when there
are positioning errors within a horizontal distance of ±1.5 m and a vertical distance of
±0.5 m. The results show that the measured throughput is within the range of the minimum
and the maximum throughput due to positioning errors. Again, it validated the fact that
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positioning error is one of the reasons for the discrepancy between the measured and the
theoretical analysis results. However, at higher altitude, e.g., above 30 m, there is still an
unexplainable gap that will be investigated in our future work, knowing that one of the
possible reasons for this might be related to the MAC/PHY conversion efficiency α.
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6. Findings and Future Work

In this paper, we investigated the radio propagation characteristics of mmWave UAV
BSs for the construction of temporary network areas during contingencies such as large-
scale events and disasters, based on both numerical evaluations and demonstrative experi-
ments. We evaluated the distance and coverage characteristics between access UAVs and
terminals and analyzed the effect of radio interference due to earth reflection. Our findings
revealed that our experimental devices, utilizing the IEEE802.11ad standard, could achieve
high-capacity communication at a rate of nearly 1.5 Gbps. Also, ground reflections were
confirmed as sources of interference. Furthermore, the consistency across the three sets of
evaluation results underscores the trustworthiness of our measurements. Consequently,
the theoretical model we established is a valuable reference for subsequent model-driven
inquiries in system design.

However, since there is still a small gap between the measurement and theoretical
results, our future endeavors will encompass more detailed investigations, e.g., to consider
positional inaccuracies observed during the experiments. Given that our demonstrative
experiment inherently operates in a three-dimensional (3D) space, our numerical evalu-
ations require a more intricate 3D representation. For instance, accounting for potential
shifts in the antenna’s received polarization due to possible 3D beam misalignments is
essential. Also, while our current study centered on access UAVs, an expanded focus
is vital—encompassing backhaul UAVs and the broader mmWave UAV BS network—to
comprehensively understand the radio propagation characteristics of our proposed system.
The findings presented in this paper indicated that additional errors like positioning ones
are likely to occur in real UAV-based networks that might degrade or improve the system’s
performance unexpectedly. It reconfirms the importance of experiment-based performance
evaluation of a system like in this paper, rather than only computer-based theoretical work.
Also, this paper indicates the significance of considering practical parameters in realistic
environments when designing a UAV-based network that might involve many UAVs rather
than only several UAVs like in this paper. One of our future works will include detailed
investigation of the PHY/MAC conversion factor α. In addition, this experiment was
conducted with a limited amount of data due to battery issues and the need for a license
to fly drones in Japan. In future verification experiments, we will devise ways to secure
a larger amount of data so that not only throughput but also other KPIs, e.g., delays, can
be measured.
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Appendix A

The basic specifications of IEEE802.11ad are depicted in the below table. In this table,
IEEE802.11ad has four channels in Japan [71].

Table A1. Basic specifications of IEEE802.ad.

Frequency Band 60 GHz

Max Antenna Power 24 dBm

Max Antenna Gain 47 dBi

Number of Channels 4

Channel Width 2.16 GHz

Modulation Method SC/OFDM

Appendix B

The below table describes the relationship between the modulation method and
throughput in each MCS of IEEE802.11ad [68].

Table A2. Relationship between throughput, modulation scheme, etc. in each MCS of IEEE802.11ad.

MCS Modulation Code Rate Data Rate
[Mbps] EVM [dB]

1 π/2 BPSK 1/2 385.00 −6

2 π/2 BPSK 1/2 770.00 −7

3 π/2 BPSK 5/8 962.50 −9

4 π/2 BPSK 3/4 1155.00 −10

5 π/2 BPSK 13/16 1251.25 −12

6 π/2 QPSK 1/2 1540.00 −11

7 π/2 QPSK 5/8 1925.00 −12

8 π/2 QPSK 3/4 2310.00 −13

9 π/2 QPSK 13/16 2502.50 −15

10 π/2 16QAM 1/2 3080.00 −19

11 π/2 16QAM 5/8 3850.00 −20

12 π/2 16QAM 3/4 4620.00 −21

13 SQPSK 1/2 693.00 −7

14 SQPSK 5/8 866.25 −9

15 QPSK 1/2 1386.00 −10

16 QPSK 5/8 1732.50 −11

17 QPSK 3/4 2079.00 −13

18 16 QAM 1/2 2772.00 −15

19 16 QAM 5/8 3465.00 −17

20 16 QAM 3/4 4158.00 −19

21 16 QAM 13/16 4504.00 −20

22 64 QAM 5/8 5197.00 −22

23 64 QAM 3/4 6237.00 −24

24 64 QAM 13/16 6756.75 −26
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Abbreviations

5G 5th generation mobile communication system
IoT Internet of Things
mmWave millimeter wave
UAV unmanned aerial vehicle
BSAP base stationaccess point
SNS social networking service
ESC electric speed controller
SIR signal to interference power ratio
LOS line of sight
RMS root mean square
3D three-dimensional
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